
RESEARCH ARTICLE

Properties of halogenated and sulfonated

porphyrins relevant for the selection of

photosensitizers in anticancer and

antimicrobial therapies

Barbara Pucelik1, Robert Paczyński2,3, Grzegorz Dubin2,3, Mariette M. Pereira4, Luis

G. Arnaut4, Janusz M. Dąbrowski1*

1 Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, Poland, 2 Faculty of Biochemistry,

Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland, 3 Malopolska Centre of

Biotechnology, Jagiellonian University, Krakow, Poland, 4 Chemistry Department, University of Coimbra,

Coimbra, Portugal

* jdabrows@chemia.uj.edu.pl

Abstract

The impact of substituents on the photochemical and biological properties of tetraphen-

ylporphyrin-based photosensitizers for photodynamic therapy of cancer (PDT) as well as

photodynamic inactivation of microorganisms (PDI) was examined. Spectroscopic and

physicochemical properties were related with therapeutic efficacy in PDT of cancer and PDI

of microbial cells in vitro. Less polar halogenated, sulfonamide porphyrins were most readily

taken up by cells compared to hydrophilic and anionic porphyrins. The uptake and PDT of a

hydrophilic porphyrin was significantly enhanced with incorporation in polymeric micelles

(Pluronic L121). Photodynamic inactivation studies were performed against Gram-positive

(S. aureus, E. faecalis), Gram-negative bacteria (E. coli, P. aeruginosa, S. marcescens)

and fungal yeast (C. albicans). We observed a 6 logs reduction of S. aureus after irradiation

(10 J/cm2) in the presence of 20 μM of hydrophilic porphyrin, but this was not improved with

incorporation in Pluronic L121. A 2–3 logs reduction was obtained for E. coli using similar

doses, and a decrease of 3–4 logs was achieved for C. albicans. Rational substitution of tet-

raphenylporphyrins improves their photodynamic properties and informs on strategies to

obtain photosensitizers for efficient PDT and PDI. However, the design of the photosensitiz-

ers must be accompanied by the development of tailored drug formulations.

Introduction

Photodynamic therapy (PDT) is a noninvasive and promising cancer treatment modality and

has attracted considerable attention in recent years [1]. Properly designed photosensitizer (PS)

is crucial for the final outcome of PDT. Modified tetrapyrrolic-based photosensitizers are

highly attractive phototherapeutic agents not only for PDT of cancer, but also for photody-

namic inactivation of microorganisms (PDI). PDI has recently been considered as a viable
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alternative method to antibiotic chemotherapy of infective diseases [2, 3]. PDT is based on the

generation of reactive oxygen species (ROS) in the biological target by a combination of light,

a photosensitizer and molecular oxygen. The broad range of photosensitizers employed in

PDT and PDI includes naturally occurring and synthetic compounds modified by various sub-

stitution patterns [4, 5]. Current progress in the development of photosensitizers relies on the

identification of specific design parameters. On one hand, there is an increasing appreciation

of the need to integrate in molecular design insights emerging from studies of PS-target inter-

actions, cellular signaling processes and increased resistance [6, 7]. On the other hand, photo-

physical and photochemical properties of PS can be related with its behavior in biological

systems, namely with aggregation, tumor type-specific PS uptake mechanisms, binding to

plasma proteins or change in hydrophilicity/lipophilicity in given physiological environments.

It is tempting to transfer the knowledge from anticancer PDT to PDI of microorganisms.

However, several differences in the PS properties adequate for each of these applications must

be highlighted. While PDT agents must strongly absorb in the phototherapeutic window, this is

not as critical for antimicrobial approaches. The application of blue light for infectious diseases

is well documented. Photons from this region may lead to potential biomedical applications

(the treatment of acne vulgaris which is an important dermatologic disorder) as well as environ-

mental fields such as water disinfection, decontamination systems for air, contact surfaces, and

medical instruments. The presence of a positive charge in the PS structure seems to be impor-

tant to target Gram-negative bacteria [8, 9], but negatively charged molecules may be effective

for Gram-positive bacteria. Moreover, they seem to be more selective against bacteria than

mammalian cells because they do not cross cell membranes efficiently. As the phototherapeutic

agents are indiscriminate in their action on bacterial and host cells, it is imperative that PS is

preferentially directed to bacterial cells rather than host cells before activation with light. Photo-

sensitizers for PDI of microorganisms that are positively-charged (innate or modified by cat-

ionic molecular vehicles i.e. poly-L-lysine) porphyrin derivatives tend to have a superior activity

towards microbial species and a relative selectivity over host mammalian cells, enabled by

increased binding and penetration through the negatively charged bacteria outer barrier [2, 10–

12]. The ability of the cytotoxic agents to preferentially target bacteria over healthy mammalian

cells can be also achieved by specific conjugation with antimicrobial peptides [13]. Interesting

biological properties have also been reported for various non-tetrapyrrolic compounds with dif-

ferent molecular frameworks [14, 15], such as functionalized fullerenes that act not only as

highly effective PDI agents but also as antiretroviral dyes in cells, or benzo[a]phenoxazine chal-

cogen analogues that were proposed as broad-spectrum antimicrobial agents [16–18].

Tetrapyrrolic derivatives remain the most promising PDT photosensitizers in terms of

strong absorption in the visible and excellent photosensitizing ability due to their long-lived

triplet states. The PS lowest-electronically excited triplet state is the precursor of reactive oxy-

gen species (ROS), which are the major cytotoxic agents during photodynamic action. They

are generated either by transferring an electron/hydrogen atom (Type I processes) or elec-

tronic energy (Type II processes) to molecular oxygen, with the formation of oxygen-centered

radicals (e.g. superoxide ion and hydroxyl radicals) or singlet oxygen, respectively [19, 20].

Rational molecular design of PS can determine many of their photophysical properties. For

instance, protonation or incorporation of metal ions or halogen atoms in the macrocycle

changes the balance between fluorescence and intersystem crossing and can influence many

photophysical parameters [21–24]. It is generally recognized that molecules bearing fluorine,

chlorine or other halogen atoms display enhanced photoinduced cytotoxic properties [25–27].

This is assigned to the “heavy atom effect” resulting from the increased spin-orbit coupling in

the presence of atoms with higher atomic number and, consequently, higher spin-orbit cou-

pling constants that enable efficient intersystem crossing, large triplet quantum yields and the
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generation of ROS with high yields [16, 28]. We have recently observed that for some chlori-

nated tetrapyrroles the heavy atom effect is so enhanced that can lead to almost complete loss

of the fluorescent properties of PS and makes it much more difficult to study by fluorescence-

based techniques [20]. Another important issue in designing efficient photosensitizers is their

lipophilicity and solubility in biocompatible media. It is widely recognized that the hydropho-

bic nature of the majority of unmodified porphyrins is a limiting factor for their biomedical

applications. Thus, hydrophilic substituents are frequently inserted into the macrocycle in

order to develop clinically relevant photosensitizers [29]. Various hydrophilic substituents

have been introduced in the phenyl rings of tetraphenylporphyrin (TPP) and their effects on

the photodynamic behavior of the compounds have been examined. The number of polar

groups and pattern of the substitutions significantly affect the photocytotoxicity of porphyrin

derivatives and phthalocyanines [24, 30–32]. Another strategy for improved drug delivery is

based on the use of specific carriers such as nanoparticles, liposomes or micellar formulations

[33]. Among them, polymeric micelles are renowned for modulating the drug efficacy thanks

to targeted delivery and effective solubilization of hydrophobic molecules [34–36]. PEG-conju-

gated photosensitizers, other micellar modification of tetrapyrroles as well as various hybrid

materials have also been synthesized and examined in vitro and in vivo for PDT applications

[37, 38]. The rational design of PS for PDI of microorganisms has been mostly based on the

modification of porphyrins [5, 39].

Herein, we report a series of synthetic halogenated porphyrin derivatives as multifunctional

photosensitizers for biomedical applications. In particular, we discuss the effect of peripheral sub-

stituents in the macrocycle on the photophysics, photochemistry and in vitro photodynamic effi-

cacy with respect to biological targets (cancer cells and microbes). The molecular design involves

peripheral substituents to obtain polarity-tunable compounds. Furthermore, halogen atoms (-F,

-Cl) in the ortho positions of the phenyl rings in the meso position of macrocycle improve the

photophysical properties by promoting intersystem crossing and increase singlet oxygen quantum

yields. The effects of the number of substituents and major substitution pattern are discussed in

the context of the hydrophobicity, the relative efficiency of ROS generation and overall in vitro
photocytotoxicity. It is shown that the photodynamic activity of these PS is related to their molec-

ular structures and drug formulations. We show that porphyrin derivatives offer a very convenient

template to design and test phototherapeutic agents for PDT and PDI.

Materials and methods

Spectroscopic measurements

All commercial chemicals and reagents were of analytical grade and were purchased from

Sigma-Aldrich. UV/Vis absorption spectra were recorded in a Hewlett Packard HP8453 spec-

trophotometer. Solutions containing samples of photosensitizers were dissolved in the selected

solvent in quartz cuvettes. Using measured absorbance for various concentrations of porphy-

rin in ethanol, the molar absorption coefficients were determined from Beer’s law.

Fluorescence emission spectra were recorded from 550 nm to 750 nm with excitation at

Soret band (λ�420 nm). The excitation and emission slits were both set to 8 nm and scanning

speed to 50 nm/min. Fluorescence spectra were recorded with a Perkin Elmer Fluorescence

Spectrometer LS 55. Determination of fluorescence quantum yields: FF of studied photosensi-

tizers was determined using the comparative method according to the equation:

FF ¼ FFStd �
FAStdn2

FStdAn2
Std
; ð1Þ

where F and FStd are the areas under the fluorescence emission curves of the sample and the
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standard, A and AStd are the absorbance of the sample and the standard and n are the refractive

indices of the solvent used for the sample and the standard, respectively. Commercially avail-

able tetraphenylporphyrin TPP (Std) (FF = 0.10 in toluene) was employed as the standard.

The absorbance of the solutions at the excitation wavelength was in the range of 0.02. Singlet

oxygen quantum yields were determined based on the relative phosphorescence emissions of

singlet oxygen generated by a reference and by each one of the porphyrins, using a method

described elsewhere [19]. Briefly, a modified Applied Photophysics LKS.60 flash photolysis

spectrometer with a Hamamatsu NIR photomultiplier for detection and HP Infinium (500

MHz, 1GSas-1) or Tektronix DPO 7254 (2.5 GHz, 40GSas-1) oscilloscopes were used. The

adaptation of this spectrometer allowed for the detection of singlet oxygen phosphorescence at

room temperature. This emission was detected using a Hamamatsu R5509–42 photomulti-

plier, cooled to 193 K in a liquid nitrogen chamber. Excitation was achieved with the third har-

monic of Nd:YAG lasers (Spectra-Physics Quanta Ray GCR 130, 5–6 ns FWHM, or EKSPLA

PL 2143 A, 30 ps pulse width). The modification of the spectrometer for time-resolved singlet

oxygen phosphorescence measurements involved the interposition of a Melles Griot cold mir-

ror (03MCS005), which reflects more than 99% of the incident light in the 400–700 nm range,

and of a Scotch RG665 filter. A 600 line diffraction grating was mounted in place of a standard

one. This equipment allows spectral identification of the singlet oxygen phosphorescence and

measurement of the singlet-oxygen lifetime in the nanosecond and microsecond ranges. The

filters employed are essential for eliminating from the infrared signal all harmonic contribu-

tions of the sensitizer emission in the 400–900 nm range. Solutions of photosensitizers were

prepared with matched absorbances close to 0.2 at 355 nm. Following laser excitation, the sin-

glet oxygen phosphorescence was followed at 1270 nm in the hundreds of nanoseconds and

microseconds range. By extrapolating to time-zero the decays of the singlet oxygen emissions

in ethanol, we obtain relative phosphorescence intensities at a given laser pulse energy. The

measurements were repeated at various laser pulse energies and the intensities were correlated

with the laser energy to ensure that a linear relation was observed (i.e., the experiments were

made far from saturation of the signal). The relative intensities were converted to singlet oxygen

quantum yields using the phosphorescence of singlet oxygen obtained after excitation of a refer-

ence: phenalenone in ethanol (FΔ = 0.95 ± 0.02). The ratios of the slopes of the laser energy

dependence for each photosensitizer versus phenalenone were used together with the singlet

oxygen quantum yield to obtain the singlet oxygen quantum yields of the photosensitizers.

Photodegradation experiments. The photostability of porphyrins was investigated fol-

lowing the measurement of their optical absorption in aqueous solutions. Continuous irradia-

tion of an aerated solution were carried out using the xenon lamp (XBO-150) through the 10

cm water filter and bandpass filter transmitting within >400 nm range, delivering 75 mW/

cm2. The reaction progress was monitored by UV/Vis spectroscopy using a Hewlett Packard

HP8453 spectrophotometer.

Detection of reactive oxygen species in solution. 3’-p-(aminophenyl)fluorescein (APF)

and 3’-p-(hydroxyphenyl)fluorescein (HPF) are selective probes for hydroxyl radicals. Singlet

Oxygen Sensor Green1 (SOSG) is a specific probe for singlet oxygen. Dihydroethidinum

(DHE) is a probe for the identification of superoxide ion. These probes were employed for the

detection of ROS after illumination of the PS. PS solutions were diluted to a final concentra-

tion of 10 μM per well. Next, each fluorescent probe was added to a well at a final concentra-

tion of 15 μM. PS solutions were irradiated with LED light for various time intervals. A

microplate reader (Tecan Infinite M200 Reader) was used for acquisition of fluorescence signal

immediately before and after illumination. When APF and HPF were employed, fluorescence

emission at 515 nm was measured upon excitation at 490 nm. With SOSG, the corresponding

values were 525 and 505 nm, and 480 nm and 580 nm for DHE, respectively.

PDT photosensitizers for anticancer and antimicrobial approaches
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n-Octanol/PBS partition coefficients

The n-octanol/PBS partition coefficients were measured following shake-flask method with

minor modifications. The photosensitizers were dissolved in n-octanol previously saturated

with a solution of PBS. The same volume of PBS saturated with n-octanol was added and

mixed on a vortex device and then the phases were separated by centrifugation. Next, the PBS/

n-octanol phase was taken and diluted to obtain 0.5% of PBS/n-octanol content in the final

solution. This solution was left into the ultrasonic bath. The fluorescence of each solution was

measured using Fluorescence Spectrometer LS 55 (Perkin Elmer) and compared with calibra-

tion curve to obtain the concentration of the photosensitizer. Partition coefficients were calcu-

lated from the ratio coct/cPBS, where coct and cPBS are the concentrations of the porphyrin

derivatives in the n-octanol and in the PBS.

Binding to plasma proteins determined by fluorescence quenching

The binding of the PS to HSA was studied by spectrofluorometry at room temperature. An

aqueous (phosphate buffer saline, PBS) solution of HSA was titrated with varying concentra-

tions of the respective porphyrin solutions. HSA was excited at 295 nm and fluorescence was

recorded between 300 nm and 400 nm. The systematic lowering of HSA fluorescence with

increasing photosensitizer concentrations was noted and used in the determination of the

binding constants and the number of binding sites on HSA according to Scatchard equation.

The changes in HSA fluorescence intensity were related to porphyrin concentrations by the

Stern-Volmer relationship. The binding constant (Kb) of PS to lipoproteins was also deter-

mined using the spectroscopic titration method. The sets of steady-state emission spectra of

PBS solutions with different concentrations of HDL and LDL, to which the porphyrin (5 μM)

was added were measured. The fluorescence intensity of the dye increased upon its partition-

ing into the lipoproteins. To obtain Kb, F versus [L] data were plotted and fitted to by a nonlin-

ear regression routine.

Characterization of PS-loaded polymeric micelles

Micellar formulations with Pluronic L121 were prepared according to a method recently

described [40]. The micelles were characterized by Dynamic Light Scattering (DLS) using a

Malvern Zetaziser Nano ZS system. The apparent diffusion coefficients of the micelles were

obtained from the normalized time correlation function of the scattered electric field, g(1)(τ),

using the cumulants analysis. An average value was obtained from repeated measurements for

each sample (N = 3).

Biological tests

The studies were performed on human lung adenocarcinoma (A549), murine colon carcinoma

(CT26) and murine endothelial/vascular epithelium (2H11) cell lines. A549, CT26 and 2H11

cells were grown in full-strength DMEM with 4.5 g/L glucose, L-glutamine, sodium pyruvate

and 3.7 g/L NaHCO3 (BioTech) with addition of 10% fetal bovine serum (BioTech, Poland)

and supplemented by antibiotics (penicillin/streptomycin). Before the experiments, the cells

were washed with PBS, removed by trypsinization, then re-plated into microplate (or culture

flask) with appropriate cells density and maintained in a humidified atmosphere at 37 oC and

5% CO2.

Photosensitizer cellular uptake determination. Cells were seeded on 96-plate microplate

(104 per well). After 24 h, the cells were incubated with different concentrations of photosensi-

tizers for various time intervals from 2 h up to 24 h. The appropriate controls were included.
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The solutions of photosensitizers were prepared by diluting the porphyrin stock solution in

PBS (hydrophilic compounds) or DMSO (amphiphilic derivative) or PS-Pluronic micellar for-

mulation with the culture medium to the desired final concentration (5 μM). The highest con-

centration of DMSO in medium did not exceed 0.5%. After incubation, the cells were washed

two times with warmed PBS and solubilized in 30 μl of Triton X-100 and 70 μl of DMSO/etha-

nol solution (1:3). The retention of cell-associated porphyrin was detected by fluorescence

measurement with the microplate reader (Tecan Infinite M200 Reader).

Cytotoxicity in the dark. MTT cytotoxicity assay (which determines the mitochondrial

activity), based upon the ability of living cells to reduce (3-(4,5-dimethylthiazol-2-yl)2,5-diphe-

nyl tetrazolium bromide (MTT) into formazan was used to assess photosensitizer-mediated

cytotoxicity. Two identical 96-well plates with A549, CT26 or 2H11 cell cultures seeded on

96-plate microplate (104 per well) were used for each experiment. When the cells were attached

to the plates, PS solution in growth medium (DMSO<0.5%) at concentrations between 0.1

to 100 μM was added to the culture. Treated cultures were incubated for optimal time (esti-

mated experimentally) at 37˚C in the dark. Next, the photosensitizer solution of each well was

removed, cells were washed with PBS and 200 μl fresh full-strength culture medium supple-

mented with FBS and antibiotics were added to each well and cells were returned to the incu-

bator for 24 h. MTT was dissolved at the concentration of 5 mg/ml in PBS. Briefly, MTT

solution were added to each well (final concentration 0.5 mg/ml) and the microplates were fur-

ther incubated for 3–4 h. Medium was then discarded and 100 μl of mixture of DMSO/metha-

nol (1:1) was added to the cultures and mixed thoroughly to dissolve the dark blue crystals of

formazan. Formazan quantification was performed using an automatic microplate reader

(Tecan Infinite M200 Reader) by absorbance measurements with the 565 nm test wavelength.

Each experiment was repeated three times. Data were expressed as mean absorbance value of

six samples and standard error of the mean.

Photodynamic effect. Based on the cytotoxicity results, the nontoxic concentration of

20 μM was selected. Cells were seeded on 96-plate microplate (104 per well). After 24 h cells

were incubated in the dark with PS solution or PS-Pluronic micellar formulation in a culture

medium for the time interval determined in cellular uptake study. After the incubation time,

the cells were washed with PBS and irradiated with the 635±20 nm light emitting diode (Illu-

minator with adjustable light intensity, Instytut Fotonowy, Poland) for various time intervals.

Next, the cells were washed with fresh medium and plates were returned to the incubator for

24 h. The phototoxicity was determined by a MTT assay (described above) performed 24 h

after irradiation.

Intracellular detection of reactive oxygen species. APF and HPF were employed for

intracellular detection of ROS formation during PDT experiments. Cells were seeded on

12-plate microplate (2�104 per well). After being washed with fresh medium, cells were incu-

bated in the dark with PS solution (20 μM) diluted in cell medium for appropriate incubation

time. The cells were also incubated with APF/HPF for 2 h prior to the experiment. In all exper-

iments, the fluorescent probes were present at the 25 μM concentration. Then, the cells were

washed with PBS and irradiated with the red LED light. The microplate reader (Tecan Infinite

M200 Reader) was used for acquisition of fluorescence signal before and immediately after

illumination. The fluorescence emission at 515 nm was measured upon excitation at 490 nm.

Photodynamic inactivation of microorganisms. The microorganisms used in PDI were:

S. aureus (8325–4), E. faecalis (ATCC29212), E. coli (K12), P. aeruginosa (ATCC19660), S. mar-
cescens (ATCC14756) and C. albicans (DAY286). The planctonic bacteria cells were cultured

in brain heart infusion broth (Sigma-Aldrich) and LB Broth/Lennox (BioShop Lab Science

Products) in an orbital incubator (37˚C, 130 rpm), until the optical density reached 0.5, which

corresponds to approximately 107 CFU per mL. The fungal yeasts were cultured in YPD Broth

PDT photosensitizers for anticancer and antimicrobial approaches
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(BioShop) with overnight aeration at 30˚C to reach ca. 106 CFU/mL. For PDI experiments cell

suspensions of bacteria or fungal yeasts were incubated with various concentrations of the por-

phyrins at pH 7.4 (PBS) for 1 h in the dark at room temperature. Aliquots (1 mL) were trans-

ferred to a 12-well plate and illuminated with a blue light. We used blue-LED array (420±20

nm) to deliver a light dose of 10 J/cm2 (measured with a power meter). Cells treated with pho-

tosensitizers in the dark were incubated covered with aluminum foil for the same time as the

PDI groups (1 h). After illumination (or dark incubation) samples were shaken, diluted in

PBS, mixed and plated (LB agar). Aliquots were taken from each well to determine the CFU

value. Plates were streaked in triplicate and incubated for 12–36 h at 30 oC (for fungal yeasts)

or 37 o C (for bacteria) in the dark to allow colony formation. A control group of cells treated

with light alone showed the same number of CFU as the absolute control (data not shown).

Statistics

All values are expressed as average±SEM (standard error of the mean), which represents the

standard deviation of the sample mean estimate of a population mean. All experiments were

repeated at least three times with comparable results. The sample size in biological tests was

N = 6–12 in each experimental group. Experiments were also repeated at least three times with

comparable results. The t-test was used for the determination of statistical significance. Results

were considered as statistically significant with a confidence level of 95% (p< 0.05). Statistical

analysis was performed with the STATISTICA 12.5 (StatSoft Poland, Krakow).

Results and discussion

Photochemical, physicochemical and pharmacological characteristics

Photosensitizers. The synthesis of meso-substituted porphyrin derivatives 5,10,15,20-tet-
rakis(2,6-difluoro-3-sulfophenyl)porphyrin (F2POH), 5,10,15,20-tetrakis(2,6-dichloro-3-sul-

fophenyl)porphyrin (Cl2POH) and 5,10,15,20-tetrakis(2,6-dichloro-3-N-

ethylsulfamoylphenyl)porphyrin (Cl2PEt) have been described before [41, 42]. They were pre-

pared according to previously described routes, via nitrobenzene [43, 44] or nitrobenzene

modified NaY methods [45], followed by chlorosulfonation and nucleophilic attack of water

or ethylamine. Their structures are presented in Fig 1.

The substituents in the phenyl rings modulate photophysical properties and lipophilicity

that then strongly influence their biological activity. The halogen atoms in the ortho positions

enhance intersystem crossing to the triplet state and increase the triplet quantum yield (ФT).

Fig 1. Chemical structures of investigated photosensitizers.

https://doi.org/10.1371/journal.pone.0185984.g001
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Additionally, the steric interaction between the halogen atoms and hydrogen atoms in β posi-

tions, increases the angle between the macrocycle and the phenyl ring, and diminishes the ten-

dency of porphyrin derivatives to aggregate [4, 46]. Besides the electronic effects derived from

halogen substituents, the peripheral, polarity-tunable groups (sulfonic acid vs. sulfonamide)

can alter the biological properties as required for a wide variety of biomedical applications, e.g.

PDT and PDI.

Photophysical and photochemical properties of halogenated porphyrins. The absorp-

tion spectrum of each compound is similar and shows five bands characteristic for this class of

porphyrins (according to Gouterman model): an intense Soret band around 420 nm and four

other less intense Q-bands at lower energies [4]. Fig 2 shows representative absorption and

fluorescence spectra of F2POH in ethanol.

The molar absorption coefficients were determined from Beer’s law and exceed 105 M-1cm-1

near 420 nm. The porphyrins have the characteristic spectra of the phyllo type—the Q-bands

intensities follow the sequence εI >εII <εIII > εIV. The absorption and fluorescence properties

of all the studied halogenated porphyrins are listed in Table 1.

All photosensitizers display some absorption maxima within the phototherapeutic window

(ε�103 M-1cm-1 at 638–646 nm). The longest-wavelength absorption band is essential for anti-

cancer approach, because red light has sufficient tissue penetration ability. On the other hand,

the intense absorption at 420 nm can be useful for antimicrobial evaluation. Light at 630 nm

has a higher optical penetration depth than light at 420 nm (1.7 mm vs. 0.4 mm in skin). It is

possible to calculate that, for the same incident light fluence at the skin surface, the light inten-

sity 2 mm beneath the skin is ca. 50 times larger at 630 nm than at 420 nm. However, the

molar absorptiom coefficients of porphyrins are typically 200–400 times higher at 420 nm

than at 630 nm. The results of these two factors is that, at a depth of 2 mm beneath the skin,

the number of photons absorbed by a porphyrin photosensitizer at 420 nm is ca. 5 times higher

than the number of 630 nm photons. Deeper in the skin the situation is inversed. However,

this explains why the treatment of actinic keratosis (a lesion located less than 2 mm deeper in

the epidermis) is as effective with Levulan1 Kerastick1 using BLU-U1 ate 417 nm, as it is

with Metvix1 using Aktilite at 630 nm. It is unlikely that in the clinic PDI of microorganisms

will be used to treat infections more than 4.5 mm in depth. Hence, it is possible that 420 nm

light is at least as effective as 630 nm light to treat such infections when porphyrin photosensi-

tizers are used. When dealing with decontamination of invasive medical instruments, it is even

Fig 2. Normalized electronic absorption (a) and fluorescence (b) spectra of fluorinated sulfonated

porphyrin (F2POH) registered in EtOH at room temperature. Inset in 2b shows the absorbance profile with

multiplied values at λ>450 nm.

https://doi.org/10.1371/journal.pone.0185984.g002
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more likely that 420 nm light will be more effective, for porphyrin photosensitizers, than 630

nm light.

The fluorescence spectrum in Fig 2B is typical for halogenated tetraphenylporphyrins

showing a small Stokes shift (~4–8 nm) in ethanol. Table 1 also presents the fluorescence emis-

sion maxima and fluorescence quantum yields determined for the PSs studied in this work.

The fluorescence quantum yields increase in the order Cl2POH� Cl2PEt < F2POH, revealing

that the presence of heavier atoms in the ortho position of the phenyl ring in the porphyrin

macrocycle increases the rate of intersystem crossing to the triplet state and reduces the fluo-

rescence quantum yield [16, 28, 47]. Chlorine atoms possesses significantly higher spin-orbital

coupling constant than fluorine atoms making ISC more favorable for chlorinated com-

pounds. The fluorescence quantum yields determined for halogenated porphyrins are signifi-

cantly lower than that of non-halogenated reference TPP, FF = 0.10 [46].

Reactive oxygen species generation. Considering the potential applications of these por-

phyrins, their ability to generate ROS via type I (hydrogen or electron transfer) or type II

(energy transfer) photoreactions was evaluated. The singlet oxygen quantum yields (FΔ) were

first determined directly by measuring the singlet oxygen phosphorescence decay at 1270 nm.

As shown in Table 1, the singlet oxygen quantum yield of the fluorinated PS (FΔ = 0.71) is sig-

nificantly lower than those observed for the dichloro-substituted PS (FΔ = 0.98 for Cl2POH,

FΔ = 0.85 for Cl2PEt, respectively). This is consistent with the spin-orbit coupling constants of

the atoms in the ortho positions: z = 0.24 for H, z = 269 for F and z = 586 for Cl [25]. Hence,

the internal heavy atom effect accelerates the S1!T1 intersystem-crossing rate and increases

the triplet quantum yields (ФT) of investigated photosensitizers, which are maximized with

chlorine atoms in the ortho positions. Even though 1O2 (1Δg) is thought to be the dominant

cytotoxic ROS in porphyrin-mediated PDT, other type of ROS may be also generated by elec-

tron or hydrogen atom transfer. We recently reported that fluorinated sulfonamide porphyrin

derivatives generate hydroxyl radicals in solution as well as in a cellular environment [24, 26].

This motivated the study of 1O2, hydroxyl radical and superoxide ion generation by our PS

using SOSG, APF, HPF and DHE fluorescent probes (Fig 3). These fluorescent probes indicate

the relative contribution of the different ROS to the photodynamic effect of the series of PS.

While SOSG is mainly sensitive to 1O2, the APF and HPF are more sensitive to hydroxyl radi-

cals, but APF is also sensitive to other ROS including 1O2 [48]. Dihydroethidium (DHE) is a

redox-sensitive probe used to detect (intracellular) superoxide anion [49]. Fig 3 shows the

fluorogenic response of each probe after activation by the porphyrins. The fluorescence of

APF, HPF and DHE suggests that all porphyrins produce radical species through type I photo-

reaction in addition to singlet oxygen. The intensity of SOSG follows that of singlet oxygen

phosphorescence: Cl2POH produces more singlet oxygen and F2POH produces less. The role

played by of each one of radical species (superoxide ion, hydroxyl radicals) and singlet oxygen

in the oxidative stress induced during photodynamic action also depends on the presence of

reductants or antioxidant enzymes, such as NADH, catalase or superoxide dismutase (SOD)

[50]. Thus, depending on experimental conditions, both 1O2 and oxygen-centered radicals

may be involved in the photodynamic activity and cause oxidative damages to the targeted

Table 1. Photophysical properties of F2POH, Cl2POH and Cl2PEt in EtOH.

Absorption ε /M-1�cm-1; λmax /nm; Fluorescence ΦΔ

B(0,0) Qy (0,1) Qy (0,0) Qx (0,1) Qx(0,0) λmax /nm ΦF

F2POH 3.29�105 (420) 7.44�103 (508) 1.48�103 (532) 2,29�103 (584) 1.00�103 (638) 646, 706 0.040 0.71

Cl2POH 1.16�105 (420) 7.16�103 (514) 1.64�103 (546) 2,13�103 (592) 5.07�102 (646) 650, 716 0.015 0.98

Cl2PEt 6.24�105 (418) 6.20�104 (514) 1.17�103 (546) 2,40�103 (592) 1.53�103 (646) 652, 710 0.017 0.85

https://doi.org/10.1371/journal.pone.0185984.t001
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cells. Hence, both type I and type II mechanisms may occur competitively and their relative

contributions will depend on the photosensitizer, substrates and environment.

Photobleaching. In order to establish the rate of photodegradation of our porphyrins,

photostability studies were performed at the same irradiation conditions as used in the biologi-

cal studies. The UV-Vis spectra showed that the absorbance intensities of the Soret bands did

not significantly changed during irradiation (S1 Fig). Under these conditions, all compounds

showed a high photostability. Other widely used porphyrin derivatives, such as HPD and PpIX

are more prone to photooxidation when irradiated under the same conditions.

Lipophilicity. Partition coefficients were obtained experimentally by the modified shake-

flask method and are summarized in Table 2 in terms of their logarithmic values (logP). These

results indicate that the sulfonic acid substituents significantly enhance hydrophilicity.

Investigation of PS-plasma protein interactions. The binding of the photosensitizers to

human serum albumin (HAS) plays an important role in their biodistribution and PDT effi-

cacy in vivo. Many compounds, especially amphiphilic drugs, have high affinity to HSA and

Fig 3. Reactive oxygen species generation. Fluorescence generated from selected ROS probes (10 μM):

(a) APF, (b) HPF, (c) DHE, (d) SOSG during irradiation of photosensitizer solution (5 μM, EtOH:PBS ca. 1:99

v/v). Presented data are expressed as mean value (N = 6) ±SEM. The label (*) represents statistically

significant difference (P<0.05). The t-test has been used for the statistical significance determination.

https://doi.org/10.1371/journal.pone.0185984.g003

Table 2. Partition coefficients, fluorescence quenching data for the interaction of the porphyrins with HSA and lipoproteins (HDL, LDL) with bind-

ing constants (Kb).

Lipophilicity PS-Plasma Protein Interaction

HSA Lipoproteins

logP KSV/ 105M-1 Kb/ M-1 n Kb HDL / (mg/mL)-1 Kb LDL / (mg/mL)-1

F2POH -1.74 2.24 0.58 1 14.81 8.39

Cl2POH -1.80 4.66 0.74 1 12.84 8.88

Cl2PEt 1.84a 6.62 0.82 1 28.38 19.93

[a] See also Ref. [42].

https://doi.org/10.1371/journal.pone.0185984.t002
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can form stable complexes with HSA [51]. Porphyrins are usually introduced in the blood

from relatively high concentration solutions, which may diminish their action or even cause

adverse effects. Interactions with plasma proteins may control the efficacy and biodistribution

of porphyrins [52]. In addition to serum albumin, which is the predominant protein in plasma,

it is widely recognized that the very-low density (VLDL), low-density (LDL) or high-density

lipoproteins (HDL) may also play important roles in the interactions with photosensitizers in

the serum. For instance, the binding with lipoproteins may increase the selectivity of drugs

towards tumor tissue, due to enhanced expression of specific LDL receptors in many types of

neoplastic cells. In addition, it has been reported that the efficiency and tumor targeting by

photosensitizers may be improved by increasing the hydrophobicity of the molecule. In partic-

ular, hydrophobic photosensitizers mainly bind to LDL and can be successfully incorporated

into the apolar core of LDL. Kessel et al. performed the comprehensive studies on plasma

binding properties of sulfonated derivatives of tetraphenylporphyrin and indicates that PS

with one or two (adjacent) sulfonates bound to VLDL, LDL and HDL components of plasma,

while the tri- and tetra-sulfonated analogs bound progressively more to albumin [52]. There-

fore, the interaction of PS with plasma proteins, and especially with HSA, is of high importance

to establish safe and effective dosages. The binding of our porphyrins to HSA and lipoproteins

was followed by steady-state fluorescence measurements (Fig 4, S2 Fig) Fluorescence quench-

ing experiments were used to assess the association of the porphyrin with the HSA binding

sites and form PS-HSA complexes.

The fluorescence spectra were analyzed to calculate Stern–Volmer constants (KSV) for all

porphyrins. Following Eq (1) in Materials and Methods, KSV was obtained from the slope of the

plot (3b, inset). Moreover, the binding constant (Kb) and the number of binding sites (n) were

estimated, Table 2. The binding of the porphyrins to HSA is stronger for the less polar porphy-

rin (Cl2PEt) than for the hydrophilic porphyrins (Cl2POH, F2POH). An hydrophobic region

seems to stabilize PS-HSA complexes and is opposed by hydrophilic groups that increase aque-

ous solubility [52]. The results also suggest that the more lipophilic sulfonamide derivative indi-

cates the stronger interaction with lipoproteins (LDL, HDL). The differences in plasma proteins

binding behavior affect the localization of photosensitizers in cells. The transport and distribu-

tion of PS may be supported via two mechanisms, which one is mediated by lipoprotein binding

and leading to porphyrin accumulation in intracellular compartments and another associated

with albumin binding may results to porphyrin accumulation in membrane sites.

Fig 4. (a) Fluorescence spectra of HSA in the presence of various PS concentrations, (b) Scatchard analysis performed for

PS-HSA interaction and Stern-Volmer plots (inset).

https://doi.org/10.1371/journal.pone.0185984.g004
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Biological studies

Micellar formulation of hydrophilic photosensitizers. Previous studies carried out in

our research group showed that Pluronic copolymers (P123 and F127) provide interesting

drug delivery vehicles for photosensitizers not soluble in water [34]. On the other hand, it was

shown that a micellar formulation containing the hydrophobic copolymer Pluronic L121

improved the delivery to cancer cells of a hydrophilic fluorinated phthalocyanine derivative.

This seemed to be a more appropriate approach to the PS described in this work, and Pluro-

nic-based formulations were prepared as reported in the literature [40]. Addition of L121 to

the porphyrin solution revealed a dispersion of the oil phase in the phosphate buffer which is

typical for Pluronics with long propylene oxide (PO) chains and short ethylene oxide (EO)

chains [53]. Due to the strong interaction of Pluronic L121 copolymer with lipid molecules,

the presence of complex film at the oil-water interfaces increase the adsorption and entry of

the dispersed drug molecules across the cell membrane, facilitating its transport and improv-

ing the intracellular uptake [54]. We characterized the Pluronic L121-based formulation using

dynamic light scattering (Table 3, S3 Fig) and found that for F2POH particle distribution is

homogeneous with average hydrodynamic diameter ca. 115 nm. Cl2POH-L121 indicate differ-

ent densities of the heterogeneous particles and reveal formation of micellar cluster and large

aggregates (>1000 nm) usually observed for non-monodisperse systems such as these poly-

meric nanoparticles.

It is well known that several parameters (such as the block-length ratio of the hydrophilic to

the hydrophobic block, hydrophobicity of the apolar block, molecular weight etc.) influence

the type and size of the nanostructure formed upon self-assembly. However, short hydrophilic

blocks can result in the formation of large structures upon hierarchical aggregation of smaller

micelles [55].

The impact of polymer addition on ROS generation. The influence of Pluronic L121 on

reactive oxygen species generated by hydrophilic porphyrins was evaluated and is illustrated in

Fig 5. The changes in ROS level during irradiation were determined in order to evaluate the

ability of the micelles to improve PDT efficacy of hydrophilic halogenated porphyrins. The

fluorescence intensity of SOSG, APF, HPF and DHE generally increased with increased light

dose for L121-formulated photosensitizer, but that effect was more evident for F2POH.

Time-dependent cellular uptake. Hydrophilic photosensitizers have more difficulties in

crossing biological membranes and their intracellular accumulation may be lower. On the

other hand, they are generally less prone to self-aggregation in the plasma than hydrophobic

ones. Taking into account the fact that cellular uptake of porphyrin is limited by their water

solubility we decided to evaluate the impact of the micellar formulation on the accumulation

of PS in cells. The cellular distribution of Pluronics is strongly affected by hydrophobicity, con-

centration, cell type and incubation time. For instance, Pluronic P123 is retained in the plasma

membrane and slowly transported into the cells, resulting in endocytic localization. Fig 6 indi-

cates that the L121 micellar formulation leads to an increased cellular uptake of hydrophilic

photosensitizers in cancer cells. Moreover, we observe a reduced optimal accumulation time

for CT26 (2 h for micellar mixture vs. 6 h for free PS) and 2H11 (from 6 h to 4 h in the case of

F2POH and from 18 h to 12 h for Cl2POH).

Table 3. Properties of the PS-Pluronic-based formulation: Hydrodynamic diameter and zeta poten-

tials of prepared micelles.

Particle Diameter / nm Zeta Potential ζ / mV

F2POH-L121 115.4±20.7 -2.24±0.1

Cl2POH-L121 92.8±0.2 (10%); 1320±124 (90%) -1.51±0.3

https://doi.org/10.1371/journal.pone.0185984.t003
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The highest intracellular accumulation of sulfonamide derivative (Cl2PEt) was reached

without polymer addition (Fig 7). The sulfonamide groups in the structure of the macrocycle

suffice to promote cellular accumulation. The uptake of this PS in micelles stabilizes after 4–6

h of incubation, while the accumulation from serum-DMSO medium continues to increase for

20 h of incubation. This higher uptake for longer incubation times may be biased by the aggre-

gation of the photosensitizer followed by disaggregation when the cells are treated before the

fluorescence measurements.

Dark cytotoxicity of photosensitizers. The dark cytotoxicity of the photosensitizers was

evaluated using MTT assay. Various concentrations of the porphyrin (0–100 μM) were added

to cell cultures and the cells were incubated in the dark for 24 h. The analysis of cellular re-

sponse to increased concentration of photosensitizers showed no significant dark cytotoxicity

for three photoactive drugs in this concentration range (S4 Fig). 100 μM of F2POH induced

only 25% of cytotoxicity of A549, CT26 and 2H11 cells, thus in all subsequent PDT experi-

ments used the sub-lethal concentration of 20 μM to induce cell photodamage.

Photodynamic activity against cancer cells. Cells incubated with non-cytotoxic concen-

trations of photosensitizer for the time interval selected on the basis of cellular uptake were

Fig 5. Fluorescence generated from ROS probes (10 μM): (a) APF, (b) HPF, (c) DHE, (d) SOSG during irradiation of

porphyrin solution and porphyrin-L121 formulation at concentration at 5 μM. The data are expressed as mean value

(N = 6) ±SEM. The label (*) represents statistically significant difference (p<0.05).

https://doi.org/10.1371/journal.pone.0185984.g005
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subject to different light doses to evaluate phototoxicity. Fig 8 shows that photodynamic effect

depends on the type of cells, type of PS and light dose. Moreover, Pluronic L121 micelles

increased the efficacy of the hydrophilic photosensitizers without additional cytotoxicity. This

Fig 6. Time-dependent uptake of hydrophilic photosensitizers (F2POH, Cl2POH) without (a, c) and with (b, d)

various micellar formulations by A549, CT26 and 2H11 cells. The data are expressed as mean value (N = 12) ±SEM.

https://doi.org/10.1371/journal.pone.0185984.g006

Fig 7. Time-dependent cellular uptake of free Cl2PEt (a) and after micellar (L121) modification (b) in A549, CT26 and

2H11 cells. The data expressed as mean value (N = 12) ±SEM.

https://doi.org/10.1371/journal.pone.0185984.g007
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is especially evident for F2POH. A549 cells were in general more sensitive to PDT. 20 μM of

F2POH-Pluronic L122 with light doses 10–20 J/cm2 lead to ca. 90% mortality of A549 and

CT26 and 50% in case of murine endothelial cells. These results show that the Pluronic-L121 is

an advantageous drug delivery system for PDT with hydrophilic photosensitizers.

The relatively low photodynamic efficacy of F2POH and Cl2POH in aqueous media is

related with the hydrophilicity of these compounds, that reduces their ability to penetrate cell

membranes. This limitation is not experienced by Cl2PEt, which has a much higher cellular

uptake. Interestingly, once the problem of cellular uptake of F2POH is solved by the formula-

tion with poloxamer Pluronic L121, its phototoxicity becomes at least as high as that of Cl2PEt

but at a much lower concentration per cell. However, phototoxicity is not simply related with

the concentration of photosensitizer per cell. Fig 6B shows that the highest concentration of

F2POH in the F2POH-Pluronic formulation is observed for 2H11 cells and the lowest was

obtained for A549 cells, but the latter cells are more sensitive to PDT. Fig 9 shows the level of

oxidative stress induced by ROS as determined in vitro with APF and HPF fluorescent probes,

Fig 8. Photodynamic effect induced by studied photosensitizers in the absence (or in the presence) of poloxamer addition against A549,

CT26 and 2H11 cells. The data are expressed as mean value (N = 12) ±SEM. The label (*) represents statistically significant difference (p<0.05).

https://doi.org/10.1371/journal.pone.0185984.g008

Fig 9. Evaluation of ROS generation after photodynamic effect mediated by F2POH in two different formulations

(PBS vs. Pluronic L121 micelles) under comparable experimental conditions: fluorescence generated from APF

(25 μM) in (a) A549 and (b) CT26 cells incubated PS for optimal (comparative) incubation time and irradiated with

various red light doses. The data expressed as mean value (N = 6) ±SEM.

https://doi.org/10.1371/journal.pone.0185984.g009
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which gives a clue to this puzzle: the higher concentration of the PS is not necessarily related to

the highest oxidative stress. As seen from APF and HPF probes, the ROS generation in A549

cells is higher than in CT26 cells, although more PS molecules were internalized by CT26 cells.

A549 cells (characterized by low SOD activity) are especially sensitive to photosensitizers that

generate superoxide ions, and their phototoxicity can be potentiated by the inhibition of SOD

[50]. On the other hand, CT26 cells have higher SOD activity and can upregulate catalase, thus

conferring higher resistance against Type I processes. Although the ultimate phototoxicity of

the PS will depend on the cell environment, it is nevertheless clear that the formulation of

hydrophilic photosensitizers with Pluronic L121 increases their phototoxicity.

Photoinactivation of microorganisms. Photodynamic inactivation of pathogenic micro-

organisms including Gram-positive, Gram-negative bacteria and fungal yeast was conducted

in PBS cell suspensions incubated with different photosensitizer concentrations. The best way

to compare the phototoxicity of a group of photosensitizers with very different potencies is to

apply a wide concentration range and determine the cell survival with a single light dose (PDI)

or without light (dark toxicity). The results for the selected microbial species with the three

porphyrins are shown in Fig 10. In most cases, no toxicity was found after 1 h of incubation in

the dark with the concentrations of photosensitizers employed in this study. The exception is

C. albicans which showed an approximately 1 log reduction when incubated with Cl2PEt. The

sulfonamide moieties of this halogenated porphyrin may act as competitive inhibitor of the

dihydropterate synthase (DHPS) involved in folate synthesis. Due to its intrinsic sulfonamide

properties, Cl2PEt has some by antifungal activity in the dark. The viability of microbial cells

was not affected by irradiation without photosensitizer (data not shown). The photodynami-

cally-induced death of prevalent pathogens was strongly dependent on the PS concentration

and delivered light dose/illumination time. S. aureus (Fig 10B) was the most susceptible strain,

Fig 10. PDI of microorganisms mediated by halogenated porphyrin derivatives. Cells were incubated

with PS for 1 h and exposed (or not) to 10 J/cm2 of visible light (420±20 nm). The dashed black line shows

viability values for 99.9% (3 logs) inactivation of microorganisms.

https://doi.org/10.1371/journal.pone.0185984.g010
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with a 6 logs reduction in colony forming units (CFU) after 10 min irradiation with 20 μM of

F2POH. Similar results were obtained with Cl2POH. The superior activity of these compounds

toward Gram-positive S. aureus can be related to their negatively charged sulfonic groups. In

contrast, Gram-negative species as well as fungal yeast stem to be less susceptible to PDI, but

performed research allow as to determine the experimental conditions necessary for 99% (2

logs) inactivation. E. coli cells were the most difficult to eradicate (Fig 10A). A concentration of

20 μM Cl2PEt gave a reduction of 99% (2 logs) in the survival after 10 min irradiation. This PS

was most effective against P. aeruginosa (up to 3 logs in bacteria CFU killing). The photody-

namic activities of F2POH and Cl2POH towards E. coli and P. aeruginosa were very similar

and resulted in 1.5–2 logs decrease in survival. The antimicrobial activity was also investigated

against E. faecalis and S. marcescens (S5 Fig). Both sulfonic acid derivatives, at the lowest con-

centration (0.5–1 μM) have shown relevant decrease of C. albicans survival (~3 logs) after 10

min irradiation.

Relatively low PDI efficacy against Gram-negative bacteria has been reported for other

PSs [3, 56]. It is related to the difference in porosity and composition as cell wall structure in

Gram-positive and Gram-negative bacteria. The thicker and relatively porous cell wall of

Gram- positive bacteria is made of interconnected peptidoglycan which is located immediately

outside of cytoplasmic membrane. It is responsible for the rigidity of the cell wall but it is

not considered to be a limiting permeability barrier for small molecules. ROS produced by

illumination in cell environment can cross easily into the cytoplasm. In contrast, Gram-nega-

tive bacteria have an outer-membrane that contain lipopolysaccharide which lowers the

membrane permeability for lipophilic compounds. Furthermore, the negatively charged lipo-

polysaccharide surface acts as static barrier for neutral and anionic molecules. The moderate

PDI effect towards C. albicans may be due to the fact that fungal cell walls have a relatively

thick layer of β-glucan which decreases PS diffusion into cytoplasm. We also tested the activity

of encapsulated PS with Pluronic L121, but no significant differences were observed in com-

parison to studies without poloxamer addition (S6 Fig). We infer that the Pluronic L121-for-

mulated PS was unable to drive porphyrin through the cell outer-membrane of the bacteria.

Moreover, the molecular size and properties of the polymer and micellar formulation may hin-

der antimicrobial efficacy, as reported for phthalocyanine-based photosensitizer AIPcCl incor-

porated in Pluronic P123 [57].

Conclusions

A set of tetraphenylporphyrin (TPP) derivatives was selected and characterized for PDT and

PDI. The incorporation of halogen (fluorine or chlorine) atoms in the phenyl rings of TPP

increases the probability of intersystem crossing and the introduction of sulfonic or sulfonamide

groups modulates their water-solubility and the interaction with the biological membranes. Fur-

thermore, these substituents also prevent the aggregation and increase photostability of photo-

sensitizers. F2POH, Cl2POH and Cl2PEt combine these chemical and photochemical properties

with a low toxicity in the dark over the micromolar concentration range and a tendency to accu-

mulate in all tested cells. The cellular uptake, intracellular ROS generation and, consequently,

overall photodynamic activity of F2POH was significantly enhanced after its incorporation in

polymeric micelles of triblock copolymer (L121). In vitro PDI experiments showed that haloge-

nated porphyrins display diverse antimicrobial efficacy after a short period of incubation and

irradiation with light dose at 10 J/cm2. As expected, due to the nature of the envelope of Gram-

negative bacteria, it was more difficult to inactivate E. coli than Gram-positive species. Suscepti-

bility of C. albicans was intermediate between Gram-positive and Gram-negative bacteria. It

was shown, that sulfonic acid derivatives very efficiently inactivate Staphyloccocus aureus in PBS
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suspensions because the peripheral sulfonic (-SO3H) groups can acquire a negative charge at

physiological pH. Only the sulfonamide conjugate (Cl2PEt) was cytotoxic against fungal yeast in

the dark (1 log decrease). In contrast with the PDT efficacy obtained in human and murine cell

cultures, the incorporation of the porphyrins in L121 micelles did not improve significantly the

PDI efficacy. This reveals that the molecular design of tetrapyrrolic structure to improve PDT

and PDI efficacies cannot be dissociated from tailored development of drug formulations. It is

interesting to note that fluorinated and sulfonated porphyrin (F2POH) turned out to be a selec-

tive PS against Staphyloccocus aureus over mammalian cells when it was dissolved in PBS, but

once encapsulated in L121 micelles it can effectively serve as PS in anticancer approach.

Supporting information

S1 Fig. Photostability of studied porphyrins in EtOH. Irradiation of the solutions was car-

ried out using 75 mW xenon lamp through water filter and 550 nm cut-off filters.

(TIF)

S2 Fig. Fluorescence intensity at the maximum of absorption band (ca. 700 nm) of photosen-

sitizers (c = 5 μM) as a function of increasing (a) LDL, (b) HDL concentration.

(TIF)

S3 Fig. Particle size distribution of F2POH-L121 (a) and Cl2POH-L121 (b) measured by DLS

in RT in PBS solutions.

(TIF)

S4 Fig. Representative data with dark cytotoxicity of F2POH against several cancer cell

lines.

(TIF)

S5 Fig. PDI of S. marcescens (a) and E. faecalis (b) mediated by halogenated porphyrin deriva-

tives. Cells were incubated with PS for 1 h and exposed (or not) to 10 J/cm2 of visible light (420

±20 nm).

(TIF)

S6 Fig. The photodynamic activity of encapsulated porphyrins with Pluronic L121 against

tested microorganisms.

(TIF)
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