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Abstract

In this study, we used recurrence quantification analysis (RQA) and recurrence plots (RPs)

to compare the movement activity of individual workers of three ant species, as well as a

gregarious beetle species. RQA and RPs quantify the number and duration of recurrences

of a dynamical system, including a detailed quantification of signals that could be stochastic,

deterministic, or both. First, we found substantial differences between the activity dynamics

of beetles and ants, with the results suggesting that the beetles have quasi-periodic dynam-

ics and the ants do not. Second, workers from different ant species varied with respect to

their dynamics, presenting degrees of predictability as well as stochastic signals. Finally,

differences were found among minor and major caste of the same (dimorphic) ant species.

Our results underscore the potential of RQA and RPs in the analysis of complex behavioral

patterns, as well as in general inferences on animal behavior and other biological

phenomena.

Introduction

Animal behavior is characterized by broad differences in hierarchical organization and vari-

ability, from individual organisms to societies. The variability often detected in animal behav-

ior seems unpredictable at first sight, resulting from genetic, developmental, neural and

physiological processes, as well as environmental effects [1]. However, this apparent intrinsic

variability could hide nonlinear and unstable deterministic signals. In a seminal work, Cole [1]

observed that the time series of single, isolated workers of the ant Temnothorax (= Lep-
tothorax) allardycei had movement activity characteristic of low-dimensional chaos, whereas

periodic patterns emerge when larger numbers of ant workers are allowed to interact. Indeed,

the existence of chaos in ant activity has been suggested as a necessary dynamic for foraging

and exploration [2–3], yet empirical studies about the dynamics of activity (movement) pat-

terns are still in their infancy (e.g. [1–2, 4–9]). Ants, in particular, display several advantages as

a model organism for these kinds of study, given that they show considerable variation in

social complexity (e.g. colony size, behavioral and genetic composition, and the way in which

reproduction is partitioned among nestmates), morphological, ecological and behavioral traits

at the colony-level [10–11]. Furthermore, ants are easy to manipulate and rear under labora-

tory conditions, and to observe in 2D experimental setups [10].

PLOS ONE | https://doi.org/10.1371/journal.pone.0185968 October 9, 2017 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Neves FM, Viana RL, Pie MR (2017)

Recurrence analysis of ant activity patterns. PLoS

ONE 12(10): e0185968. https://doi.org/10.1371/

journal.pone.0185968

Editor: Jürgen Kurths, Humboldt-Universitat zu

Berlin, GERMANY

Received: July 4, 2017

Accepted: September 24, 2017

Published: October 9, 2017

Copyright: © 2017 Neves et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: CNPq/MCT (http://cnpq.br/) provided

support for this study through research fellowships

to MRP (571334/2008-3), as well as a graduate

fellowship to FMN (141355/2012-3). The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0185968
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185968&domain=pdf&date_stamp=2017-10-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185968&domain=pdf&date_stamp=2017-10-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185968&domain=pdf&date_stamp=2017-10-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185968&domain=pdf&date_stamp=2017-10-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185968&domain=pdf&date_stamp=2017-10-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185968&domain=pdf&date_stamp=2017-10-09
https://doi.org/10.1371/journal.pone.0185968
https://doi.org/10.1371/journal.pone.0185968
http://creativecommons.org/licenses/by/4.0/
http://cnpq.br/


Activity could be considered as one of the most vital biological features of animals, being

correlated with a wide spectrum of behavioral syndromes, such as aggressiveness and explora-

tion [12–17]. A highly informative way to collect and investigate movement activity probably

could be provided by the investigation of spatio-temporal data of several species. However, the

study of time series patterns imposes some difficulties, not the least of which being data collec-

tion. A large amount of noise in data collection (as often occurs in real data, e.g. from EEG

analysis, cardiology or geology) reduces the ability to detect deterministic signals. Fortunately,

the possibility of automated tracking of individuals in recent years offers efficient ways to

obtain qualitative reliable data [18]. Characterizing irregular behavior of deterministic or

stochastic processes is not a straightforward task to perform either. Nevertheless, we can take

advantage of tools from nonlinear dynamics based on the temporal component of the behavior

to gain insights into its operation and evolution [19]. Several analysis methods have been

proposed to investigate the presence of determinism in time series (e.g. Lyapunov exponents,

Fourier analysis, Power spectral analysis), however, hitherto with very limited empirical appli-

cations [19].

In this study, we introduce the use of recurrence analyses for the study of animal behavior.

Recurrence analysis is a new, reliable and robust method of nonlinear data analysis that could

be used for an improved understanding of biological time series. It is composed of visual diag-

nostics known as Recurrence Plots (RPs), and measures of complexity, such as Recurrence

Quantification Analysis (RQA) [20–21]. Using these tools, one can distinguish regimes of

recurrence behavior, which may be characteristic of different processes, such as white noise,

chaotic maps, and (quasi-) periodic processes [21]. RQA has several advantages when com-

pared to other time series analysis, such as its mathematical simplicity, non-restrictive model-

ling assumptions, and the capacity to deal with inherent noise [19]. RQA has been used to

interpret and correlate complex patterns in dynamic systems, such as in physics [22], physiol-

ogy [23], meteorology [24], economics [25], geophysics [26] and cardiology [27]. The use of

the RQA measures could give a more detailed and qualitative approach to time series analysis

of complex dynamics. Here, we examine and compare the complex temporal pattern of move-

ment activity dynamics of isolated individuals of species with varying levels of social complex-

ity and behavioral specialization.

Methods

Three ant species were used in our study: Gnamptogenys striatula (Ectatomminae), Line-
pithema micans (Dolichoderinae), and Pheidole rudigenis (Myrmicinae). Workers from three

colonies of each chosen species were collected in the campus of the Universidade Federal do

Paraná in Curitiba, state of Paraná, Brazil. Gnamptogenys striatula is typically found in open

habitats and rainforests, showing a suite of primitive behavioral and morphological traits [28].

Colonies of G. striatula are small (150–200 individuals) and have either one or several queens

and gamergates (i.e. workers with reproductive capacity) [29–30]. Linepithema micans belongs

to a widespread genus that includes an important invasive species (i.e. Linepithema humile
[31]), which could be an indicative of its own potential as an invasive species. Colony size in

L.micans might exceed 1000 individuals, leading to a fairly complex social organization [32].

Finally, P. rudigenis, as is the norm for its genus, is characterized by a dimorphic sterile worker

caste, with regular workers (minors) carrying out quotidian colony tasks, whereas larger, big-

headed workers (majors) are specialized in specific tasks, such as colony defense or seed mill-

ing [33]. Furthermore, for comparison with non-social insects, we used adults of the beetle

Tenebrio molitor, a cosmopolitan pest of stored grains with gregarious behavior. No specific

permissions were required for the locations or activities reported in this manuscript. The
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study did not involve human participants, specimens or tissue samples, or vertebrate animals,

embryos or tissues. Furthermore, the field studies did not involve endangered or protected

species.

Ants were collected manually by attracting them outside their nests using sugar water or

tuna baits between 10:30 am and 5:00 pm (n = 30 workers for each species, except for P. rudi-
genis, in which 30 minor and major workers were tested separately). Assays lasting for two

hours (n = 7200 seconds) typically started 45 min after the collection, whereas T.molitor were

reared in laboratory in three acrylic boxes, stored in a well-ventilated, dark place, at ambient

humidity and temperature with food (i.e. wheat bran) ad libitum. Trials were carried with dif-

ferent combinations of colonies and species per day (i.e. at least 10 individuals for each colony;

30 individual time series by each species), for a total of 150 analyzed experiments (n = 300

hours). In order to extract the time series without the interference of fluctuating densities, only

one single individual of each species was used in each trial, so that we only conducted analyses

using isolated ants. Given that all chosen ant species have similar body sizes, we disregarded

the possible effects of the body size of the individuals or its body parts when comparing the

time series of each ant species. However, the adults of T.molitor are much larger than the ants

(i.e. the ant species chosen have a mean body size of 2.6 mm while T.molitor has a body size of

15 mm). We justify the use of T.molitor in this study because we are not investigating the

amplitude of the activity between the species, but how its dynamics, i.e. the changes of states

between activity and inactivity over time occurs (the concept of activity considered in our

study is explained in the section below).

Experimental setup

The experimental apparatus for the trials consisted of an environmental chamber made with

cardboard (51 x 26 cm) with a tracking Petri dish arena inside (92 mm in diameter) (Fig 1).

The arena was brightly lit (�880 lux) by two fluorescent light spots (Taschibra 1 TKT15 15W

120 VAC 60 Hz 370 mA 6.400 K) positioned at opposite corners. Individuals were placed inside

the arena under controlled environmental conditions (21 ± 2˚C and 65% ± 10 relative humid-

ity), between a glass cover plate and the substrate, which was shallow enough to constraint

movement into only two dimensions. The color of the floor of the arena was opaque white for

better image contrast, consisting of odorless white rubber silicon RTV (i.e. Room Temperature

Vulcanizing silicon CS1000). After each trial, both the arena and the substrate were cleaned,

washed in bleach (80%), dried and not used for at least five hours before a new experiment.

We recorded the movements of the individuals with a camera mounted 20 cm above the

experimental setup (Everio GZ-MG435BUB). Trials were recorded at 20 frames per second.

The extracted raw movie (MPEG-2; 720x480 pixels) was transformed into uncompressed AVI

video files by the program Virtual Dub software by Avery Lee, version 1.5.10. The Euclidean

distance between the consecutive coordinates (x, y) of each frame, was considered the measure

of activity (at an interval of three seconds; n = 2400 frames per trial). Thus, a high level of activ-

ity produced large number of pixel differences. Inactivity was characterized by the motionless

state of the individual, which did not change its position within the interval of time considered

between the frames. Activity was represented by white dots and inactivity by black dots in the

RPs. Our definition of the activity measurement is similar to that of Cole [1] in the study on

the activity behavior of the ant Temnothorax albipennis.

Tracking system

The x-y coordinates of the individual positions were extracted using the Ctrax software (Cal-

tech Multiple Fly Tracker; version 0.3.12) and the associated FixErrors toolbox for MATLAB
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Fig 1. The experimental setup. Measurements, disposition view of the light spots, camera and the tracking arena (a). Video

frame of an ant (Linepithema micans) in the arena during the tracking, the black line corresponds to the movement of the ant (b).

Final tracking coordinates (x,y) of 2400 frames extracted from a time series (Linepithema micans), the grey dashed lines are the

coordinates obtained (c).

https://doi.org/10.1371/journal.pone.0185968.g001
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(v. 7.10.0 2010; MathWorks, Inc., Natick, MA, USA [34–35]; MATLAB v. 7.10.0). Ctrax was

primarily made for tracking fruit flies, but is able to track individuals and large groups of ani-

mals (e.g. cockroaches, fishes, ants) while maintaining their individual identities [35–37]. Fur-

thermore, Ctrax has high accuracy in movement tracking and requires simple recording

equipment [35]. During preliminary experiments, we observed false positives errors (type I)

and false negative errors (type II). Type I errors (mismatches of object identity) were corrected

manually with the help of the FixErrors toolbox available for the Ctrax software, whereas type

II errors (loss of tracking) were accepted only when they accounted for less than 5% of the

time series.

Recurrence plots

We investigated the obtained time series using the Recurrence Plot (RP), which is a technique

of nonlinear data analysis first proposed by Eckmann et al. [20]. RPs consists of a visualization

(or a graph) of a square matrix in which the matrix elements correspond to those times at

which a state in a dynamical system recurs, i.e. approaches itself after some period of time [20–

21]. Consequently, the RP reveals all the times when the phase space trajectory of the dynam-

ical system visits roughly the same region in the phase space [21]. We constructed recurrence

matrices by comparing embedding vectors with each other at different times, drawing pixels

when the distance between vectors falls within an ε-neighborhood [21, 38–39]. Such an RP

can be mathematically expressed as

Ri;j ¼ Hðε� k xi � xj kÞ; ði; j;¼ 1; 2 . . .NÞ;

where ε is a threshold, H(.) is the Heaviside unit step function, ||. . .|| stands for some norm

(e.g., the Euclidean norm), i = 1, 2,. . .N is represented in the horizontal axis, and j with the

same range in the vertical axis. The RP is thus obtained by assigning a black (white) dot to

the points for which Ri,j = 1(0). By construction, the recurrence matrix is always symmetric

(Ri,j = Rj,i), and a point is always recurrent to itself, i.e., Ri,i = 1 forming the main diagonal line

of the RP [21].

Graphic representations of recurrence points permit to observe and interpret the general

overview pattern of each individual time series. Eckmann et al. [20] made distinctions on how

to visually read some of the plots. Marwan et al. [21] classifies recurrence plot structures into

large-scale and small-scale patterns, Homogeneous patterns, characterizing white noise; Peri-

odic patterns, when recurrence plots present diagonal lines and/or checkerboard structures;

Drift patterns, when there is fading in the corners, for systems which are non-stationary; Dis-

rupted patterns, for extreme (and rare) events, when white bands are present, indicating tran-

sitions. Furthermore, small-scale patterns can also be characterized, as in the case of isolated

points, which is an expression of quickly changing/fluctuating states. Diagonal and vertical

lines are important structural elements of RPs, creating the basis for its quantification. Diago-

nal lines appear when two parts of the phase space trajectory run parallel for some time,

whereas vertical or horizontal lines occur when the system either does not change or it changes

slowly [38]. Moreover, Zbilut and Webber [23] introduced measures based on the information

extracted from the RPs to quantify dynamical features of the data. Recurrence quantification

analyses (RQA) provide a characterization of the type of dynamics present in the system (e.g.

periodic, chaotic) [21, 40]. RPs and RQA were obtained through the CRP toolbox (v. 5.17)

developed by Norbert Marwan for MATLAB (MATLAB 7.10.0) [34]. The toolbox can be

found at http://tocsy.pik-potsdam.de/CRPtoolbox/.
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Recurrence quantification analysis

RQA comprises many quantitative diagnostics of the distribution of dots (actually pixels) in a

recurrence plot to provide quantification of important aspects revealed through the RPs in

detail. We choose five measures to examine our data: Recurrence rate (RR), Determinism

(DET), Entropy (ENT), Laminarity (LAM) and Trapping Time (TT). The recurrence rate (RR)

is the probability of finding a black recurrence point (for which Ri,j = 1), or

RR ¼
1

NðN � 1Þ

XN

i;j¼1;i6¼j
Ri;j;

where N2 is the total number of pixels (black or white) in a RP [21]. Recurrence rate uses the

same definition of the correlation sum, which does not include the main diagonal line, being

related with to probability that a specific state will recur. Higher RR (for the same value of the

ε parameter) would indicate that there are only few overall changes in the dynamics of the

responses over time and that performance is confined to few different states.

Determinism (DET) measures the percentage of points in an RP belonging to diagonal

lines, indicating deterministic components in the recurrence plot [21]. The DET measure is

calculated by,

DET ¼
Plmax

l¼lmin
lPðlÞ

PN
i;j¼1; i6¼j Ri;j

;

the lmin is the minimum and the lmax is the maximum length allowed for a diagonal line.

P(l) = {li; i = 1,2, . . ., Nl} is the frequency distribution of the lengths li of diagonal lines, and Nl
is the absolute number of diagonal lines, except for the main diagonal line [21]. The higher the

DET value, more it reflects the predictability of the system over time. We can also compute

estimates for the Shannon entropy (ENT),

ENT ¼ �
Xlmax

l¼lmin

pðlÞln pðlÞ;

where

pðlÞ ¼
PðlÞ

Plmax
l¼lmin

PðlÞ
;

is the probability distribution of the diagonal line lengths. The ENT reflects the complexity of

the deterministic structure present in a system [21]. Higher entropy would indicate more

inherent complexity of the corresponding time series, e.g. for uncorrelated noise the value of

ENT would be rather small, indicating its low complexity. Laminarity (LAM) is the percentage

of RP points forming vertical lines, or of these laminar phases,

LAM ¼
Pvmax

v¼vmin
vPðvÞ

PN
i;j¼1; i6¼j Ri;j

;

where vmin is the minimum lengths of a vertical line and vmax is the maximum vertical length.

Analogously to diagonal lines, we can obtain the frequency distribution of the lengths vi of ver-

tical lines P(v) = {vi; i = 1,2, . . ., Nv}, where Nv is the absolute number of vertical lines. LAM

represents the occurrence of laminar states in the system without describing the length [21].

Moreover, we calculated the trapping time (TT) that is the average length of a vertical line, it’s
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given by

TT ¼
Pvmax

v¼vmin
vPðvÞ

Pvmax
v¼vmin

PðvÞ
;

TT estimates the mean time that the system will remain at a specific state or how long the state

will be trapped [21].

There are different ways into how to apply RQA, mostly based in order of magnitude (large

and small scale) and data format (e.g. networks, time series). Here, we applied a global time

series approach for each individual replicate. The global time series approach focuses on a

large scale encompassing the entire time series with the five chosen RQA measures been

extracted from it.

Recurrence parameters. The recurrence plots and the corresponding recurrence analysis

used in the experiments might be affected by the chosen parameters from each time series and

the embedding parameters affecting the quality of the phase space reconstruction, namely,

time delay τ, embedding dimension m and the threshold value ε. The time delay τ determines

the predictability of the components in the reconstructed vectors of the system state [21]. It

should be chosen in a way such that the elements in the embedding vectors are no longer cor-

related. We estimate the time delay as the one where average mutual information reaches its

first minimum [41]. The embedding dimension m determines the number of the components

in the reconstructed vector of the system state. It should be large enough to unfold the system

trajectories from self-overlaps, but not too large as the noise will be amplified. We employ the

false nearest neighbor (FNN) method as suggested by Kennel et al. [42] to determine a good

value for our system. The threshold value Ɛwas defined accordingly to each time series recur-

rence plot, it was chosen using the value that corresponds to 10% of the maximum phase space

diameter of the data [20]. Through the methods exposed here, the recurrence measures were

stipulated in such a way that the embedding dimension and the time delay for all the time

series were defined with the value of three. The threshold value was defined individually

according to each time series (i.e: threshold median value and interquartile range: G. striatula
0.71 (0.12); L. micans 0.74 (0.11); P. rudigenis minors 0.79 (0.16); P. rudigenis majors 0.74

(0.09); T.molitor 1.23 (0.29).

Surrogate data and statistical tests. We compared each time series original data with a

shuffled surrogate, which is a common approach used for validation of results in time-series

analysis [43]. In the context of RQA, significant differences between the RQA measures of the

data and its surrogates could be indicative of a strong deterministic component (not determin-

istic in the mathematical sense, but meaning that the dynamics is not simply stochastic) with

the absence of spurious elements present by the system, as well as indicating non-stationarity

[21, 44]. It should be made clear that determinism in the RQA context actually reflects the

predictability of the system over time. It is indeed possible for a stochastic process to produce

such patterns in the RQA terminology [39], and one should not conclude that the process is

“deterministic” in the usual sense. In order to create the surrogate time series, we shuffled the

data x(n) randomly choosing a pair of points from the data chain and randomly exchanged the

positions of such points for each trial. The procedure has been repeated N times, where N is

the number of data points. This shuffling preserves the statistical distribution of the data (e.g.

mean, variance) but destroys the phasic time-correlated information in the dynamics. This

leads to an empirical distribution of the RQA measures under the null-hypothesis of indepen-

dence in time and an identical distribution. Given that normality was not met for the RQA

measures obtained based on a preliminary Lilliefors test [45], we used the two tailed Mann-

Whitney non-parametric rank sum test for independence [46] to compare the recurrence
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measures between the original data for each species and it is corresponding shuffled data (with

p�0.05). The comparison between species was made by the Kruskal-Wallis test [47]; it is also a

non-parametric one-way analysis of variance by ranks for testing equality of three or more

population medians. The pairwise differences between the species were tested using the

Dunn’s test (1964). The null hypothesis for each pairwise comparison is that the probability of

observing a randomly selected value from the first group that is larger than a randomly selected

value from the second group equals one half; this null hypothesis corresponds to that of the

Wilcoxon-Mann-Whitney rank-sum test. Statistical analyses were performed by the R software

v. 3.2.3 (R Core Team 2015 [48]) using the dunn.test package [49].

Results

We obtained a series of RQA global measures (n = 750) and individual RPs (n = 75) from a

total of 150 time-series. The results highlight similarities and disparities between the activity

dynamics of each species. Due to the topological nature of recurrence plots, we can also infer

by visual inspection of RPs some of the features presented by all species and some particular-

ities of them (Fig 2). All RPs showed several white bands, characterizing non-stationarity due

to transitions. RPs showed diagonal and horizontal structures for almost all the species, sup-

porting the hypothesis of a deterministic content present in the data. Furthermore, the RPs did

not show homogeneous topologies, clearly rejecting the idea of a random process for most of

the species. However, P. rudigenis had relatively short lines and isolated dots, indicating heavy

fluctuation in the activity dynamics. This can imply the existence of uncorrelated random

motions or even anti-correlated process. The RPs of T.molitor (Fig 2) have substantial phases

of inactivity (black clusters) with a few sparse bouts of activity (white clusters), which is consis-

tent with the influence of a deterministic quasi-periodic pattern.

We compared the global RQA measures of the original data matching the shuffled ones. In

general, the surrogate data possess lower significant values of the RQA measures compared to

the original data, with the exception of RR in P. rudigenis majors (Table 1). Differences

between normal and surrogate data were usually higher in G. striatula and L. micans, with a

typical percentage change between 38% and 86%. Differently, P. rudigenis and T.molitor had a

percentage change of 7.3% to 88%. A higher percentage difference between the time series and

their corresponding surrogates could indicate a more significant effect of the RQA values (i.e.

higher differences of DET suggests a time series with strong predictable dynamics over time).

RQA measures were also compared between species (Table 2). Tenebrio molitor presented

significant higher RQA measures than the ants, however, these results alone must not be inter-

preted as a display of higher complexity. The ant species G. striatula and L. micans had in gen-

eral significant RQA measures when compared with P. rudigenis (in the RR and DET values,

only significant compared to the majors), whereas both P. rudigenis worker castes presented

the lower results among all of the species. The worker castes of P. rudigenis differ significantly

in the LAM values, where the P. rudigenis minors have higher RQA measures compared to the

P. rudigenis majors (Table 2).

Discussion

To the best of our knowledge, the present study provided the first application of recurrence

analysis to the study of animal activity, as well as one of the first applications to biological phe-

nomena outside the study of physiological and cardiac rhythms. The implications of our study

are threefold. First, we found substantial differences between the activity dynamics of the gre-

garious beetles and the highly complex social ant species, with the results suggesting that the

beetles have quasi-periodic dynamics and the ants do not. Second, workers from the different
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Fig 2. Recurrence plots (RP’s) of the time series. Each species had a characteristic recurrence plot pattern, here

demonstrate by representative time series (approximately 2400 points; equivalent to 7200 seconds) with measures

near the median RQA values from the replicates. The species are Gnamptogenys striatula (a), Linepithema micans (b),

Pheidole rudigenis minor (c) and major subcaste (d), and Tenebrio molitor (e). In the RP’s, white dot are maximum

distance and black dots are minimum. Estimated parameters: Dimension = 3, Time delay = 3 and the Threshold values

were variable with each time series and are signalled in each RP.

https://doi.org/10.1371/journal.pone.0185968.g002
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ant species varied with respect to their dynamics, presenting a degree of predictability as well

as stochastics signals. Finally, differences were found among minor and major caste of the

same (dimorphic) ant species. Each of these issues will be discussed in turn.

The activity pattern observed in the flour beetle T.molitor was characterized by the pres-

ence of periodic short bursts of activity, interspersed with longer periods of quiescence, as indi-

cated by the extremely high values of vertical lines measures (LAM and TT). This could be also

verified by the presence and consistency of wide laminar states of inactivity within the RPs (i.e.

black clusters). The underlying causes of this behavior are still poorly known, but one possibil-

ity is that it is an involuntary response to the non-optimal conditions. In general, T.molitor is

more inactive during daylight [50], normally evading natural light in search of darker areas

[51]. The presence of long lines with different distances to each other in the RPs of T.molitor
suggests a quasi-periodic dynamic (several frequencies in the system, whose ratios are irratio-

nal). Conversely, the time series of ants were more dynamic, composed by diagonal and

Table 1. RQA percentage measures of the species (columns) compared with each respective surro-

gate data series (surr). Recurrence rate (RR), determinism (DET), entropy (ENT), laminarity (TT) and trap-

ping time (TT) of the original and surrogate data (surr).

DATA Gnamptogenys

striatula

Linepithema

micans

Pheidole

rudigenismin

Pheidole

rudigenismaj

Tenebrio molitor

RR 0.08 p<0.001 0.11 p<0.001 0.08 p<0.05 0.06 ns 0.69 p<0.001

RRsurr 0.05 (38%) 0.05 (55%) 0.06 (25%) 0.04 (34%) 0.41 (41%)

DET 0.51 p<0.001 0.45 p<0.001 0.31 p<0.03 0.28 p<0.001 0.97 p<0.001

DETsurr 0.09 (83%) 0.1 (78%) 0.08 (75%) 0.09 (68%) 0.65 (33%)

ENT 1.43 p<0.001 1 p<0.001 0.82 p<0.004 0.79 p<0.001 2.57 p<0.001

ENTsurr 0.2 (86%) 0.19 (81%) 0.16 (81%) 0.17 (79%) 0.95 (64%)

LAM 0.73 p<0.001 0.59 p<0.001 0.44 p<0.04 0.42 p<0.001 0.96 p<0.001

LAMsurr 0.16 (78%) 0.16 (73%) 0.16 (64%) 0.12 (72%) 0.89 (7.3%)

TT 5.15 p<0.001 3.39 p<0.001 2.39 p<0.003 2.39 p<0.001 35.7 p<0.001

TTsurr 2.1 (60%) 2.12 (38%) 2.14 (11%) 2.09 (13%) 4.41 (88%)

The p value is based on the Mann-Whitney rank sum test for independent samples, it was considered

significant when it was less than p<0.05. Significant results (represented by medians) are indicated in bold

followed by the p value, non-significant (ns) results are also indicated. Moreover, results are followed by the

percentage (%) difference between the normal and shuffled data (surr). The subscribed acronyms min and maj

mean the words “minors” and “majors”, respectively.

https://doi.org/10.1371/journal.pone.0185968.t001

Table 2. Comparison of the RQA measures: Recurrence rate (RR), determinism (DET), entropy (ENT), laminarity (LAM) and trapping time (TT)

between the species.

DATA RR DET ENT LAM TT

Gnamptogenys striatula 0.08 (0.1) 0.51 (0.44) 1.43 (1.13) 0.73 (0.46) 5.15 (4.5)

Linepithema micans 0.11 (0.06) 0.45 (0.44) 1 (0.78) 0.59 (0.37) 3.39 (15.2)

Pheidole rudigenis min 0.08 (0.14) 0.31 (0.73) 0.82 (1.71) 0.44 (0.68) 2.39 (10.9)

Pheidole rudigenis maj 0.06 (0.05) 0.28 (0.32) 0.79 (1.16) 0.42 (0.16) 2.39 (2.37)

Tenebrio molitor 0.69 (0.3) 0.97 (0.05) 2.57 (0.50) 0.96 (0.03) 35.7 (42.7)

Pairwise differences were tested using Dunn’s test, as a post-hoc test after the Kruskal-Wallys test rank sum test. The results were indicated with each

correspondent median and interquartile range (IQR), significant statistics results are indicated in bold (p<0.05). The subscribed acronyms min and maj mean

the words “minors” and “majors”, respectively.

https://doi.org/10.1371/journal.pone.0185968.t002
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horizontal structures from the RPs, RQA measures significantly higher in general than the

shuffled time series but mixed with stochasticity (i.e. white-noise like pattern from the RPs,

mostly present in P. rudigenis). Such patterns could be a result of noisy deterministic signals

(i.e. in terms of predictability) or even low-dimensional deterministic chaos. Noise is extrinsic,

it may come from various sources, such as uncertainties in the parameters of the system, fluc-

tuations in parameters we do not have access (e.g. influence of the environment). Determinism

is intrinsic, since it comes from the underlying dynamics of the system being studied. In bio-

logical systems, it is very likely that stochastic (noisy) behavior is always present, since there

are always environmental factors acting on the system in an unpredictable and seemingly ran-

dom fashion. One example would be the effect of the mutual interactions among the insects,

which although of weak intensity, can affect randomly the behavior of individuals. Discrimi-

nating between noise and chaotic patterns in the RPs is not a trivial task [39]. Thus, here we

limit to discuss what the presence of the observed patterns in the time series could mean in the

context of ant behavior. Although the behavior of an organism may appear to be quite variable,

the behavioral phenotype may be considerable less variable if a degree of predictability is pres-

ent as we observed in the ant species. Since movement activity is closely related with other

kinds of behavior, such as locomotion, patrolling (scouting), feeding or mating, all these

behaviors may also display evidence of noisy deterministic signals. Furthermore, there is evi-

dence from workers of the ant Camponotus fellah that single individuals are more active when

isolated than at higher densities [52]. Some tasks, such as patrolling/scouting and foraging,

which could be envisioned as information gathering processes outside the nest [53], also prob-

ably are composed by this kind of "hyperactive” behavior in isolated ants. Likewise, ants need

to also respond to the cues provided by nestmates in a variety of contexts, from the recruitment

during foraging to colony-level alarm behavior, for ensure the survival of the colony and its

ergonomic efficiency [54–55]. Therefore, it is not surprising that ant activity patterns are more

complex than those of solitary or even a gregarious species such as T.molitor.
There were interesting differences in activity patterns within the different ant species. For

instance, both L.micans and G. striatula, which are monomorphic species, had higher RR and

DET values. In monomorphic species, all colony tasks are performed by workers of equivalent

morphology, with specialization only being possible through behavioral or age differences

among workers [56]. On the other hand, in species with a dimorphic worker caste, some work-

ers are morphologically adapted to specific tasks (e.g. colony defense, seed milling) whereas

other workers can focus on more quotidian tasks, such as nest maintenance and brood care

[53, 56–59]. Such differences are probably reflected in their intrinsic propensity to respond to

specific cues in a way that is different from a colony with monomorphic workers. Indeed, in

P. rudigenis, a species with polymorphic workers, both castes showed the lower RQA measures

compared with the other species, with major caste presenting yet lower RQA values than the

minor caste. Given that major workers in P. rudigenis probably play an important role in col-

ony defense, the types of cues that they should respond are more stochastic or unpredictable in

nature (e.g. encountering a forager from a competing colony or a predator). Thus, an activity

behavior with a more unpredictable dynamic could be more adaptive given that randomness

or chaotic behavior is an efficient response to environmental unpredictability, as explored in

mathematical models based of ant behavior [3, 60–61]. Alternatively, the differences between

castes could reflect the counterpart aspects of the intrinsic division of labor in a dimorphic

species.

The search and interpretation of complex patterns in biological systems is an ambitious

task and must be made with caution. Through our reductionist methodological approach

using recurrence analysis, we propose the use of several RQA measures in conjunction with

RPs, for a more consistent and comprehensive interpretation of the results. The possible use of
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recurrence analyses in the study of animal behavior are vast, from the interpretation of transi-

tions within time series to the detection of synchronization and network complexity expect it

to be an important tool in new empirical studies. Furthermore, the present study is among the

first studies measuring individual complexity with comparison between species. The data gen-

erated by this kind of analysis could be interesting for behavioral ecologists as to physicists and

correlated fields interested in the modelling and theoretical investigations of biological com-

plex systems. The recurrence analysis permits further investigations to understand deeply

patterns within time series. For instance, preliminary results indicate a progress to a more

deterministic behavior with increasing densities, however by very different processes [62]. Our

first study using recurrence plots and recurrence quantification analysis in animal behavior

suggests that the activity dynamics of ants are composed by a plethora of complex patterns that

ranges from stochastics signals and degrees of predictability.

Supporting information

S1 File. Dataset of the time series of movement activity. This dataset (Excel workbook for-

mat) is composed by the analyzed time series (normalized to zero-mean and standard devia-

tion of one) of the activity dynamics of single individuals from all the species used in this

study. The original x and y coordinates and non-normalized data are provided as well.
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