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Abstract

This article presents a novel connectivity analysis method that is suitable for multi-node net-

works such as EEG, MEG or EcOG electrode recordings. Its diagnostic power and ability to

interpret brain states in schizophrenia is demonstrated on a set of 50 subjects that consti-

tuted of 25 healthy and 25 diagnosed with schizophrenia and treated with medication. The

method can also be used for the automatic detection of schizophrenia; it exhibits higher sen-

sitivity than state-of-the-art methods with no false positives. The detection is based on an

analysis from a minute long pattern-recognition computer task. Moreover, this connectivity

analysis leads naturally to an optimal choice of electrodes and hence to highly statistically

significant results that are based on data from only 3–5 electrodes. The method is general

and can be used for the diagnosis of other psychiatric conditions, provided an appropriate

computer task is devised.

1. Introduction

Electroencephalography (EEG) has become a preferred tool for general brain state interpreta-

tions, despite its low spatial resolution. The main alternative to the EEG for recording and ana-

lyzing brain activity is the MRI (or functional MRI), a high-resolution tool based on magnetic

resonance. Although superior to the EEG in spatial resolution, fMRI-based recordings have

poor temporal resolution (compared to EEG recordings), and the acquisition device is several

thousand times more expensive. It can only be used in clinical settings, is sensitive to the sub-

jects’ movement and cannot be used for continuous brain state monitoring. Thus, analyses

based on EEG recordings offer significant advantages and enable many applications. There-

fore, while analyses of network connectivity conducted to gain a broader knowledge of clini-

cally relevant physiological attributes of mental disorders have largely been performed based

on fMRI, using EEG data could be of tremendous use in medicine and research.

EEG data have primarily been regarded as complementary to fMRI data, [1][2][3], but

more recently, the EEG has been used as a tool for the early detection of changes in general
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cognitive activity, for example, in emotional states [4][5], cognitive states [6][7], analysis of

epileptic seizures [8][9] and autism [10][11]. Other recent EEG applications have been in the

area of brain-machine interfaces [12].

EEG studies have suggested that changes in functional connectivity occur in schizophrenia

patients [13], and a significant difference in theta-frequency activity has been found, as well

[14]. Recent studies suggest that a single- or few- electrode approach may be used to classify

changes in schizophrenia [15] and that single trial-based analysis may be used to characterize

emotional states [16].

As connectivity research using fMRI has become common in analyzing mental pathologies

[11][17] including resting state schizophrenia demonstrating strong discrimination [18][19],

it has inspired the study of EEG-based connectivity analysis. In particular, EEG enables finer

temporal connectivity analysis.

Motivated by fMRI, multiple-electrode methodologies tend to look for the most relevant

connections based on a dense configuration [20]. More recent work has attempted to examine

all possible direct connections between electrodes to enable real-time clinical diagnosis [21]

[22]. A recent connectivity study of resting EEG networks successfully demonstrated the abil-

ity to discriminate between Psychogenic non-epileptic seizures (PNES) and Epilepsy [23].

The present study is inspired by feature-connectivity research that is based solely on EEG

recordings. We describe a novel connectivity analysis tool—Connectivity Maps—for the analy-

sis of connectivity between nodes. The main difference between this method and conventional

connectivity analysis [22] is that the connectivity between nodes is measured in terms of the

connectivity between each node and a third, reference node.

In connectivity analysis, a total of n2 maps are created (n from each source electrode), and

the largest changes between each pair of electrodes are determined. Thus, the properties

obtained using such an approach enrich the current direct perception of connectivity.

This methodology is demonstrated using data from schizophrenia patients that has been

examined previously [24]. Applying the proposed methodology to this data set improved the

ability to discriminate between patients and healthy controls and provided insight into physio-

logical aspects of this disease.

2 Methodology – A novel measure of connectivity

2.1 –Connectivity maps

The motivation for the proposed connectivity analysis is best explained by the following analy-

sis of airline traffic. Consider the air traffic from BOS to ATL and BOS to DEN. A classical

connectivity analysis of the nodes ATL and DEN would examine the connection between

these two cities. For the sake of argument, let us assume that all the flights of a certain airline

from BOS to DEN go through ATL. We consider a more refined, high dimensional notion of

connectivity by analyzing the changes in connectivity between ATL and DEN with reference

to flights that emanated from other locations, such as BOS. By observing that there was a

reduction in connectivity between BOS and DEN but no change in or even an increase in con-

nectivity between BOS and ATL. In other words, we may observe that when the flights of one

airline company that flies from BOS to DEN via ATL are canceled, it is possible that those pas-

sengers book alternative flights with another carrier due to the cancellations. Note that the traf-

fic between ATL and DEN includes flights by all other carriers; thus, it would be difficult to

observe the reduction in traffic due to cancellations by a single carrier. By finding a city, BOS,

from which a given carrier’s flights to DEN only go through ATL, a cancellation becomes

more apparent.

Connectivity maps analysis of EEG for diagnosis of schizophrenia
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In Electroencephalography, such technique may reveal the same type of significant insights,

while the nodes in this case are simply the electrodes placed on the scalp and a reference-based

connectivity function is required to measure the relationships between them. Therefore, in the

same way, we analyze the connectivity between electrodes A and B (Fig 1) by examining either

the direct connectivity or information transfer between A and B (left panel) or the induced

change in connectivity between A and B, as seen by the change in the information transfer

between reference electrode C and A with respect to the information transfer between C and

B.

Our proposed discrimination and classification mechanism is based on a novel connectivity

analysis tool that we term “Connectivity Maps”. These maps are generated in a relatively sim-

ple process that consists of the following 6 steps:

1. Several preprocessing tasks are performed, and the raw signals are broken into relevant

intervals. Technical description of the preprocessing phase is detailed below under “Experi-

mental Setup”.

2. The signal in several frequency bands is decomposed and reconstructed, and then time win-

dows that maximize the correlation between electrodes are sought.

3. A network of correlations with respect to different base or reference electrodes is

constructed.

4. Fisher-based feature extraction (See below definitions for Fisher and Relative Fisher matri-

ces) from the set of connectivity maps obtained for the different reference electrodes is

performed.

5. An optimization analysis is conducted based on the chronological presence of stimuli.

6. Post analysis and processing of the results is performed, including discrimination between

the correlation matrix and Fisher-based features of the healthy subjects and those of the

schizophrenia patients. In addition to the resulted parameters, this step is also performed

under different constraints, such as specific time frames or following specific stimuli, for a

broader statistical analysis.

These steps are shown in Fig 2 below.

Fig 1. In addition to the direct connectivity approach (left panel), the connectivity maps approach

brings features involving a reference electrode when addressing bi-electrode connectivity. Adding

such an electrode expands the connectivity approach, as the relative changes in connectivity are uncovered.

https://doi.org/10.1371/journal.pone.0185852.g001
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Given a window size W, a maximum phase φ and a number of trials i 2 {1..t} for an elec-

trode, let us define a connectivity function Fconn between two electrodes, such as a cross corre-

lation, as

FConnðwÞ ¼ FCrossCorðA;BÞ ¼ argmaxφCrossCorw;φðavgðAiÞ; avgðBiÞÞ

FConn � subjects argmaxwFConnðwÞ

Fconn can be replaced with any other metric of bi-electrode connectivity. For example, the

average-over-trials function could be replaced with the corresponding max or median

function.

For each electrode, two initial connectivity maps are created and presented using matrices.

The correlation connectivity map for electrode A is defined by

CMA Bð Þ ¼
1

N
P

subjectFConnðA;BÞ;

where N is the total number of subjects and W 2 {50 ms, 100 ms, 150 ms, 200 ms}. Such a

cross-correlation function with different possible window sizes alongside a small phase limit φ
can be efficient in detecting synchronization of the flow of information in a system.

In a similar way, a standard deviation matrix map can be defined as follows:

CM_STDA(B) = StdsubjectFConn(A,B). A healthy-schizophrenia patients Fisher-score matrix

can then be created using the following equation:

FISHER A;Bð Þ ¼
jMEANsubjectHEALTHYCMAðBÞ

� MEANsubjectSICKCMAðBÞ
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

STDsubjectHEALTHY CM STDAðBÞ
2
þ STDsubjectSICK CM STDAðBÞ

2
q :

Feature matrices are then created for additional features, for prediction and classification.

Three characteristics were used to create these additional features: 1. Relative distances: the

Fig 2. Phases of the connectivity maps methodology.

https://doi.org/10.1371/journal.pone.0185852.g002

Connectivity maps analysis of EEG for diagnosis of schizophrenia

PLOS ONE | https://doi.org/10.1371/journal.pone.0185852 October 19, 2017 4 / 15

https://doi.org/10.1371/journal.pone.0185852.g002
https://doi.org/10.1371/journal.pone.0185852


differences in the direct connectivity map are computed with respect to the reference electrode

(see Fig 1). The relative distances are defined by

RELCðA;BÞ ¼ CMCðAÞ � CMCðBÞ:

2. Feature multiplication: Multiplication elements that are extensions of the relative dis-

tances are defined. As reference electrode is shared by both elements of each multiplication

matrix, these features amplify contribution of such successful, “multi-purpose” reference

points. For each pair of relative elements, as defined above, a multiplication element is created,

defined as follows:

8C;A1;A2;B1;B2 2 electrodes;MULCðA1;B1;A2;B2Þ ¼ RELCðA1;B1ÞRELCðA2;B2Þ

3. Fisher relative score features matrix: This matrix is defined by

FISHER REL A;B;Cð Þ ¼
jMEANsubjectHEALTHY RELAðB;CÞ � MEANsubjectSICK RELAðB;CÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

STDsubjectHEALTHY RELAðB;CÞ
2
þ STDsubjectSICK RELAðB;CÞ

2
q

The feature classification procedure collects only the most statistically significant discrimi-

nating features rather than the holistic network connectivity level. The procedure is as follows:

1. Set the parameters K1, K2 with the goal of limiting the number of electrodes involved in the

process of interest. Construct a feature matrix F of size K1 electrodes x K2 features by letting

each row Fi represent the source electrode i and its derived features. Steps 2–6 were tested

with K1 chosen from {0.1N, 0.2N,.., N}, and K2 from {5%,10%}.

2. The elements of row i of the feature matrix are all features obtained from electrode i, as

defined above: CMi; STDCMi ;Fisheri;RELi;RELFISHERi ;MULi.

3. To increase the clarity of the maps, only the top 10% of features in terms of healthy-schizo-

phrenia patients variance were retained [25].

4. For each row, calculate the average of the maximal K1 elements.

5. Choose the K2 features that have maximal scores. Use Laplacian regularization for feature

scoring. Alternatively, another feature scoring method may also be used [26].

6. Analyze the projected results for new segments of acquired data using a statistical model

that features 2 states or models; compare the likelihood of each model (healthy individuals

or schizophrenia patient) using Chi-squared tests followed by model comparison [27].

Classify the feature set according to the likelihoods of the two models.

Post-procedure validation: Perform cross-validation between patients’ data using the ‘leave

one out’ method [28]. In each phase, one subject’s data is left out of the training set, and all

properties are computed without using this data. Testing and predictions are then conducted

with the data that was left out, treating this data as a fresh, newly acquired dataset.

2.2 –Experimental setup

We demonstrate an analysis of EEG data from a previously reported study [24]; this data pro-

vided evidence for contextual processing deficits in patients with schizophrenia by demon-

strating alterations in the neural correlates of local contextual processing.

This experimental data was acquired while the subjects played a computer simulation

game. The game featured a basic visual-stimuli identification-response task. Three different

triangles were presented, each pointing in a different direction, with different patterns of

Connectivity maps analysis of EEG for diagnosis of schizophrenia
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recurrence. One of the shapes (‘P’ stimulus type) had a recurrence pattern that created a higher

level of cognitive activity (“anticipation”) among the subjects in comparison to the other two;

we focused on the EEG data that was recorded while responding to this specific stimulus. EEG

data was recorded from a 64-electrode array using the ActiveTwo system (Biosemi, The Neth-

erlands). External electrodes above and below the right eye monitored vertical eye movements,

and electrodes placed laterally to the left and right eyes monitored horizontal eye movements.

Signals were sampled at 512 Hz.

The stimuli consisted of black triangles on a gray background (triangles pointing to the left,

upwards and to the right, in 90-degree increments). In each block, a total of 78 stimuli were

presented for 150 ms each with an inter-stimulus interval (ISI) of 1 s. The stimuli blocks were

a mixture of randomized sequences of standards and sequences including a three-standard

predictive sequence. The predictive sequence always consisted of the three triangles facing to

the left, up and to the right, always in that order. We focused our analysis on the response to

the predictive sequences (“P” stimuli), as these are considered to be significant indicators of

schizophrenia [24].

In the preprocessing phase, a band-pass filter was implemented to pass frequencies in the

interval of 0.1 Hz-30 Hz (excluding the gamma-1 and gamma-2 bands), and the filtered data

were normalized by the standard deviation nsig ¼ sig
stdðsigÞ. The data were analyzed in 1.2-s

epochs that began 200 ms prior to the appearance of the ‘P’ stimulus.

Eye blinks were removed using ICA [29]. Epochs containing misses (no button press 150–

1150 ms post stimulus onset) and eye saccades were excluded from further analysis. EEG

epochs with amplitudes of more than 75 μV at any electrode were excluded.

The parameters used for preprocessing and arguments for repetition analysis and optimiza-

tion were the same as those used in a recent study that analyzed the same data set [15].

The process described above was applied using a set of time windows separated into differ-

ent frequency bands. Windows were created to overlap 90% of the 1.2-s epochs starting 200

ms before the stimulus and ending 1000 ms post stimulus. After pre-processing, bands of 0.1

Hz-30 Hz were separated into 6 equal 5-Hz intervals, and different combinations of these

intervals (all subsets of the full band including the full band itself), in addition to the classical

Alpha/Beta/Theta/Delta/Gamma bands, were tested. The responses to 5 to 15 stimuli from the

beginning of each recording were analyzed, as described previously [15]; the number of

responses analyzed was constant per iteration.

The full data set included 50 subjects: 25 were healthy, with no history of psychiatric illness

or problematic behavior, and 25 had been diagnosed with schizophrenia, hospitalized and

treated with appropriate medication. Signed, informed consent was obtained from all subjects.

All participants had full capacity to consent, following a clinical evaluation of a psychiatrist.

The local ethics committees of A Curuna University and Shaar Menashe Hospital approved

the study. Patients were diagnosed with schizophrenia according to the Structured Clinical

Interview for DMS-IV-Tr, and the severity of their symptoms was rated using the Positive

(SAPS) and Negative (SANS) Syndrome Scale [30]. We note that during the recording phase,

schizophrenia patients were receiving their regular medications.

3 Results

3.1 General overview

Our results are presented in four sections: (I) Significant connectivity maps with significant

ability to discriminate between healthy subjects and schizophrenia patients. (II) Time windows

that exhibit strong differences in connectivity features yet a high correlation in brain activity.

(III) Fisher-based analysis to obtain connectivity maps calculated using the most significant

Connectivity maps analysis of EEG for diagnosis of schizophrenia
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connections. (IV) The accuracy of the discrimination methodology based on the prediction of

schizophrenia.

3.2 Connectivity maps

The connectivity maps that were based on posterior electrodes showed large differences

between healthy subjects and schizophrenia patients. The below figures demonstrate that from

different posterior locations.

Fig 3, below, depicts connectivity maps for healthy individuals and schizophrenia patients,

with respect to reference electrode O2. The average score for electrode F2 among healthy sub-

jects was 0.784 compared with 0.531 among schizophrenia patients. The average score gap

between Cz and FCz was 0.122 among healthy subjects and 0.186 among schizophrenia

patients.

Fig 4, below, shows connectivity maps of healthy and schizophrenia patients, with source

electrode P7. The average score for electrode F2 among healthy subjects was 0.797 compared

with 0.596 among schizophrenia patients. The average score gap between Cz and FCz was

0.083 among healthy subjects and 0.139 among schizophrenia patients.

Fig 5, below, shows connectivity maps for healthy and schizophrenia patients with source

electrode P8. The average score for electrode F2 among healthy subjects was 0.76 compared

with 0.642 among schizophrenia patients. The average score gap between Cz and FCz was

0.097 among healthy subjects and 0.14 among schizophrenia patients.

3.3 Time windows exhibit strong differences in connectivity yet a high

correlation in brain activity

Considering P9 as the source electrode and using a Euclidian distance function to find the

closest activity states between patients and healthy individuals, a time window of 10 ms was

found 420 ms after the appearance of the stimulus. Fig 6 below shows similar brain activity (in

the top sub-plots) and relatively different connectivity distances (in the bottom sub-plots).

Considering the average of all base electrodes from the posterior section of the scalp, the

average time at which brain activity was most similar was at 404 ms post stimulus. Among

selected features by the methodology, the frequency 25 Hz - 30Hz was found most common

(41%). Such activity in low-gamma band indicates neural oscillation is similar given substan-

tial time interval from the stimulus.

Fig 3. (A): Connectivity map for healthy subjects, with respect to reference electrode O2 located on the posterior area of

the scalp. (B): Connectivity map of schizophrenia patients with respect to the same base electrode, O2. (C): Fisher score

for the difference in each electrode’s connectivity with respect to reference electrode O2 between healthy subjects and

schizophrenia patients. The location from which significant gaps in the flow of information between healthy subjects and

schizophrenia patients originate (with respect to the specific reference electrode) can be determined.

https://doi.org/10.1371/journal.pone.0185852.g003
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3.4 Fisher-based analysis to identify the most significant connectivity

maps

Considering Fisher score averages for connections based on posterior base electrodes, Fig 7,

below, shows a map of connections with a Fisher score higher than a threshold of 0.6.

After averaging the top 5 connection scores for each electrode, the following Fisher score

connectivity map is obtained, as shown in Fig 8 below.

3.5 Accuracy of the prediction-based discrimination methodology

The accuracy of the connectivity maps in identifying schizophrenia was compared with that of

several state-of-the-art methodologies for identifying this disorder. All methodologies were

applied to the described dataset. The output of each methodology per tested data was binary

and total correct calls as percentage were used as measurement for accuracy. The methods

compared included the following:

1. TFFO: time and frequency optimization-based methodology for distinguishing between

healthy individuals and schizophrenia patients based on input from several electrodes [15].

2. P-300 derived features, as analyzed by “RT ANOVA”: a reaction times-based approach for

discriminating between healthy individuals and patients diagnosed with schizophrenia

[24].

3. Latency-based methodologies: a basic comparison with subject latency analysis was per-

formed by: (a) calculating for each stimulus its distance to peak energy amplitude and clus-

tering using K-means (“PE-Latency”) [30], (b) repeating the post feature extraction

methodology but replacing the time-frequency features with the distribution of the energy

peak located in the P300 area (“P300-RF-Latency”) [31].

4. “Direct connectivity only” approach: using the “Connectivity Maps” methodology without

relative features (or using only CM_VAL-based features, as presented in section 2), simulat-

ing an approach to evaluating the connectivity between two nodes with data only from the

pair itself. Such an approach was used in a recently published patent [21][22].

The strongest 5 connectivity maps were chosen according to maximum Fisher scores, as

shown above in Fig 6). The connectivity maps’ features were stable and consistent during the

cross validation phase.

Fig 4. (A): Connectivity map for healthy subjects with respect to reference electrode P7, located in the posterior area of

the scalp. (B): Connectivity map for schizophrenia patients with respect to the same base electrode, P7. (C): Fisher

score for the difference in each electrode’s connectivity with respect to reference electrode, P7, between healthy

subjects and schizophrenia patients. The location from which significant gaps in the flow of information between healthy

subjects and schizophrenia patients (with respect to the specific reference electrode) can be determined.

https://doi.org/10.1371/journal.pone.0185852.g004
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Maximal separation was achieved using 11 stimuli from the beginning of each recording.

The inclusion of all bands (use of a full set of bands) and use of the interval between 200 ms

and 450 ms after the appearance of the stimulus helped to achieve the best result.

Using only 5 maximum-variance connections (involving a total of 5 electrodes) resulted in

correct discrimination 92.1% of the time; this accuracy was very similar to that observed when

using all connections (93.8%). In both cases, no false-positive cases with a strong statistical sep-

aration were observed (P = 0.0045).

No predictive classification results using this set of parameters contained false positives

(classifying healthy subjects as schizophrenia patients).

Fig 5. (A): Connectivity map for healthy subjects with respect to reference electrode P8 located on the posterior area of the

scalp. (B): Connectivity map for schizophrenia patients with respect to the same base electrode, P8. (C): Fisher scores for

the difference in each electrode’s connectivity with respect to the reference electrode, P8, between healthy subjects and

schizophrenia patients. The location from which significant gaps in the flow of information between healthy individuals and

schizophrenia patients (with respect to the specific reference electrode) can be determined.

https://doi.org/10.1371/journal.pone.0185852.g005

Fig 6. A (Top left): The brain activity of healthy subjects 420 ms after the presentation of a stimulus. Fig 6B

(Top right): The brain activity of schizophrenia patients 420 ms after the presentation of a stimulus. Fig 6C

(Bottom left): The connectivity features obtained 420 ms after the presentation of a stimulus for healthy

subjects. Fig 6D (Bottom right): The connectivity features obtained 420 ms after the presentation of a stimulus

for schizophrenia patients. Strong connectivity can be observed within the healthy subjects, and weak

connectivity can be observed within the schizophrenia patients, even though the general brain activity level is

similar in both populations.

https://doi.org/10.1371/journal.pone.0185852.g006
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4. Discussion

We have presented a novel method for quantifying the connectivity between brain regions as

measured by the correlation of activity among electrodes. The novelty of this method is pri-

marily due to two features of the method: i) a holistic view of the connectivity at every

Fig 7. Connectivity maps showing electrode connectivity from posterior sources to frontal

destinations with Fisher scores of at least >0.6, zoomed in to the relevant interval.

https://doi.org/10.1371/journal.pone.0185852.g007

Fig 8. The Fisher score for each electrode based on the average score of the top five maximal

connections in which it is involved. There is a significant fall in the aggregated Fisher score in the

prefrontal area from 0.4 to 2.

https://doi.org/10.1371/journal.pone.0185852.g008
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electrode is created, and this view is easily interpretable and summarizes the connectivity fea-

tures, ii) a novel method is used to identify the initiating (reference) electrodes from which the

connectivity map is most indicative of the difference between two pathologies. This method

can be used to diagnose or monitor a pathology.

An analysis of the results obtained using the schizophrenia data suggests the following

conclusions:

I. Connectivity maps with a strong ability to discriminate between healthy

subjects and schizophrenia patients

The results presented in section 3.2 show a repeating pattern of substantial differences at pre-

frontal electrodes when the base electrodes are at the posterior part of the brain. Figs 3–5 dem-

onstrate clearly how the degradation of connectivity strength is being accelerated within the

patients. Target electrode F2 brings an absolute score difference that ranges from 18.74% to

34.5% depending on the posterior reference electrode chosen.

Links in the prefrontal area also show significant differences in connectivity scores based

on the selection of the posterior base electrodes. Specifically, the link Cz-FCz degradation gap

between healthy subjects and schizophrenia patients ranges from 35.8% to 67.5%, with maxi-

mum results obtained with P7 as the base electrode.

These results indicate that information relay changes in an abnormal manner primarily in

the prefrontal area. These results correlate with past connectivity analyses conducted using

fMRI [32][33]. A high difference in the score of target electrode F2 has been found in previous

work using the TFFO method [15]; in that study, F2 was found to be able to discriminate

between healthy subjects and schizophrenia patients better than any other single electrode.

Frontal electrodes have previously been shown to be significant in recent research that

addressed schizophrenia [24][34], together with other illnesses with psychiatric components,

such as Parkinson’s disease [32].

The results in both scenarios—using all the Connectivity Maps and using those from picked

5 electrodes—featured no cases of false-positives. This is an indication that the Connectivity

Maps’ features are powerful for discriminating between the healthy subjects and the Schizo-

phrenia patients with less disease severity, that were the main source of false-positives in previ-

ous work [15][24][31]. It shall be also noted that while “Leave One Out” is a standard cross-

validation technique, it is known to be relatively optimistic [35] and more likely statistically to

converge with lower false positives, especially when analyzing relatively small data sets.

II. Time windows in which a substantial difference in connectivity is

observed yet in which brain activity is highly correlated

As presented in section 3.3, connectivity features were not necessarily correlated with brain

activity. Between 400 and 425 ms post stimulus, when brain activity was most similar between

healthy individuals and schizophrenia patients, connectivity features differed significantly.

Maximal classification accuracy was obtained in the time window of 200 ms-450 ms, sug-

gesting that the P300 area is most able to discriminate between patients and health individuals,

as was suggested previously [33]. There is also a ‘latency recovery’ effect, in which schizophre-

nia patients’ response times to a stimulus improved during the recording when the stimulus

was followed by a visual analysis task. Such an effect is evident in a number of psychiatric ill-

nesses [33][36].

Our connectivity maps features demonstrated strong connectivity in both the posterior and

the prefrontal/frontal areas within healthy subjects, while strong connectivity was only

observed in the posterior area within the patients with schizophrenia. As this observation is
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consistent with previous findings of posterior-frontal differences [24], it provides clear evi-

dence of the independence of the features obtained in relation to more common brain activity

measurements used as input for feature classification. Methodology results demonstrated sig-

nificantly superior results to the standard latency-based methodologies [30][31].

III. Fisher-based analysis to obtain connectivity maps using the most

significant connections

In the results in section 3.4, one can see that the most significant results in the aggregated

Fisher score matrix (as presented in Fig 8) involve the posterior electrodes and the frontal

electrodes.

Delving into the data more deeply (such as in the zoomed area shown in Fig 7) reveals that

the most significant connections are long-distance ones (connections between posterior elec-

trodes and frontal electrodes, instead of close connections). Fig 8 also reveals that the smallest

number of electrodes with such significant connections can be observed in the central/central

parietal area, between Cz and CPz, for example.

There are two implications to these findings. First, they support the claim that measuring

the connectivity strength between the most posterior electrode and the frontal electrode is a

strong tool for classifying and predicting schizophrenia.

Secondly, these findings help us to understand that although the maximal differences are

observed for the longest distances, the bigger picture is that an examination of degrading con-

nectivity features in schizophrenia patients shows us that changes in the flow of information

occur in their most significant form in prefrontal areas.

IV. The accuracy of the discrimination methodology based on its ability to

predict schizophrenia

As observed in the results presented in Table 1, it is evident that connectivity maps were able

to discriminate between healthy subjects and schizophrenia patients. As the data used for this

analysis was acquired from each subject in only the first minute of testing (the optimal number

of repetitions from the beginning of the recording was in the range of 8–12, depending on the

set of electrodes used), these results can be considered to be firm. The best analysis configura-

tion used all bands of frequencies (up to 30Hz as filtered in the preprocessing phase); using all

frequency bands produced better results than using only a subset of the frequencies.

These results are clearly powerful in comparison with standard ANOVA methodologies

[24] and latency-based feature analyses [30]. There is also a significant improvement com-

pared to optimization-based methodologies with a strong machine-learning focus [15].

Table 1. Discrimination accuracy for each tested methodology.

Methodology Discrimination Accuracy Specificity Rate Sensitivity Rate Significance P-Value

Connectivity Maps (All Maps) 93.8%±4% 100% 87.6%±5.1% 0.0041

Connectivity Maps (Best 5) 92.4%±3.8% 100% 84.8%±4.7% 0.005

TFFO [15] 88.7%±4% 100% 77.4%±5% 0.0078

Connectivity Maps—Direct Connectivity Only [21][22] 88.7%±5.5% 96.5%±2.5% 81%±5.8% 0.0089

P300-Derived Features–Reaction Time [24] 73.9%±4.3% 87.3%±3.1% 60.6%±4.6% 0.043

P300-RF-Latency [31] 68.1%±4.8% 82%±3.9% 54.2%±6.9% 0.0919

PE-Latency [30] 64.5%±5.5% 74.2%±4.2% 54.8%±6.4% 0.1746

https://doi.org/10.1371/journal.pone.0185852.t001
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Results of section 3.5 regarding the use of 5 electrodes to obtain classification accuracy just

shy to the one achieved when using all the data, reaffirm results of past research [15] of ability

to achieve strong discrimination using a small subset of the original input electrodes.

Using direct connectivity only and achieving significantly less accurate classification results

in comparison with the full list of features clearly indicates the orthogonal added value of the

three-electrode approach, in which the connectivity between a pair of electrodes is measured

with respect to a third electrode rather using input from that pair alone. Approaches consider-

ing only direct connectivity and related differences have been described previously. [21][22]

Results also indicate that robust discrimination can be achieved with an analysis of about a

minute of playing a certain game with a strategically placed set of only 4–6 electrodes. The rela-

tively short time needed to acquire data for this analysis can be an enabling feature as patients

with psychiatric disorders have difficulty completing tasks as recording sessions get longer.

5 Conclusion and further work

We have presented a novel tool for the analysis of connectivity termed ‘Connectivity Maps’.

We have demonstrated that features identified using these maps, which were acquired using

only a small number of strategically-placed electrodes and a relatively short length of recording

time, can predict and classify schizophrenia using EEG data with high accuracy.

We are aware that the results we have presented may merely be distinguishing between sub-

jects who are taking anti-schizophrenia medications and those who are not. Further studies

should determine whether our findings are more correlated with the schizophrenia condition

or schizophrenia medications.

The described method is relatively efficient as the total number of created maps is n3. In

case number of nodes is high, further efficiency can be gained by adding a distance function D

between nodes and limiting features computed only to nodes that meet a distance threshold

from the relevant reference node. Such modification can dramatically reduce the size of the

connectivity maps.

The method we describe here is very suitable for describing changes in connectivity

between groups of subjects. Unlike other connectivity methods, this method also suggests the

physical location (or the electrode closest to it) at which observed changes in connectivity are

best exemplified.

Because results using this method can be easily interpreted, they can aid research into the

origin of schizophrenia and serve as a good diagnostic tool. This method can also be used to

provide neurofeedback. Portable, fast and inexpensive EEG, together with such effective analy-

sis tools, can therefore result in new diagnostic and treatment alternatives, especially for

mobile health, which is used to verify the effectiveness of medication, allowing real-time treat-

ment decision-making via medicine pumps, among other possibilities. All of these benefits can

be applicable to other pathological conditions, as well, including disorders affecting emotions

and attention, as the Connectivity Maps method is very general.

Embedded machine learning mechanisms can help devices to assist or even replace tradi-

tional medical and diagnostic procedures in the future, as accuracy and the methods for ana-

lyzing the severity of psychiatric disorders may be improved to the point where their

credibility surpasses that of existing approaches. It may be possible to use this method for

brain-computer interface applications as well.
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