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Abstract

Lactoferrin (LF), a sialylated iron-binding glycoprotein, performs multiple beneficial functions

including modulating immunity and improves neurodevelopment, health and growth perfor-

mance. Maternal LF intervention for gilts (first parity sows) on the performance of gilts and

their offspring remains unknown. In the current study gilts were fed with a commercial pig

feed supplemented with 1g LF /day (treatment group) or 1g milk casein/day (control group)

from day 1 post mating throughout pregnancy and lactation for about 135 days. The milk

production and body weight gain was monitored. The immunoglobulin concentrations in the

serum of gilts and piglets were measured using ELISA. Our study showed that maternal LF

supplementation to the gilt (1) significantly increased milk production at different time points

(day 1, 3, 7 and 19) of lactation compared to the control (p<0.001); (2) significantly increased

body weight gain of their piglets during the first 19 days of life compared to the control group

(p<0.05); (3) tended to increase pregnancy rate, litter size and birth weight, number of pig-

lets born alive, and decrease the number of dead and intrauterine growth restriction (IUGR)

piglets; (4) significantly increased the concentration of serum IgA in gilt and serum sIgA in

piglet (p<0.05). In summary, maternal Lf intervention in gilts can improve milk production,

pig production and serum IgA and sIgA levels, and therefore plays a key role in shaping the

performance of their progeny.

Introduction

Lactoferrin (LF) is a 80 kD non-haem iron-binding glycoprotein that is part of the transferrin

protein family [1, 2] and consists of ca 703 amino acids with high homology among species.

Multiple sialic acid (Sia) residues are attached to the N- linked glycan chains and the polypep-

tide chain is folded into 2 lobes [3]. LF is first expressed at the two- to four-cell stage of embry-

onic development and continues until the blastocyst stage of pre-implantation. Expression of

LF is again resumed in the latter half of gestation, where it is detected in neutrophils and in epi-

thelial cells of the developing digestive and respiratory tracts [4]. In adult mammalian species
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LF is produced by mucosal epithelial cells. It is found in various mucosal secretions, including

tears, saliva, vaginal fluids, semen [5], nasal and bronchial secretions, bile, gastrointestinal flu-

ids and urine [6]. However the highest concentrations of LF are detected in colostrum (~9.7 g/

L) and mature milk (2–3 g/L) of humans, making it the second most abundant whey protein

in human milk [7]. Bovine mature milk contains approximately one tenth the amount of LF as

human milk, ranging from 0.03–0.1 g/L [8]. In sow milk however, LF concentration in colos-

trum is about 1359 μg/ml and in mature milk is about 408–924 μg/ml [9]. LF is also highly

expressed in secondary neutrophil granules (15μg/106neutrophils) [10] and in bodily fluids

such as blood plasma and amniotic fluid. In addition to constitutive expression at the mucosal

surface, LF is differentially regulated by hormones and transcription factors in a tissue-specific

manner [2]. For instance, in the mammary gland LF expression is under the control of prolac-

tin, whereas in the reproductive tract, the expression of this protein can be induced by the ste-

roid hormone estrogen [11].

LF has several important physiological functions and most research has focused on LF

action as a modulator of immune function and its involvement in the host defence response

against a spectrum of bacteria (Gram+ and Gram−), fungi, yeasts, viruses [12] and parasites

[13], as well as stimulating the growth of probiotic bacteria such as Lactobacillus and Bifido-

bacteria [14]. It also participates in intestinal iron homeostasis, promotes bone growth, and

inhibits the growth of some human cancers [15–17]. LF up-regulates intestinal gene expression

of brain-derived neurotrophic factors (BDNF), ubiquitin carboxy-terminal hydrolase L1

(UCHL1) and alkaline phosphatase activity to alleviate early weaning diarrhea [7] and pro-

motes early neurodevelopment and cognition by upregulating the BDNF signaling pathway

and polysialylation in postnatal piglets [18]. In human clinical studies, LF plays a protective

role in reducing the incidence of invasive fungal infections in low birth weight infants [19] and

late-onset sepsis in pre-term neonates [20]. LF can also prevent the development of necrotizing

enterocolitis in very low birth weight neonates [21]. Its role in controlling immunity extends

to the modulation of inflammation by a dose-dependent inhibition of langerhans cell migra-

tion and the accumulation of dendritic cells within the host’s lymph nodes [22]. Furthermore,

LF is capable of inhibiting the pro-inflammatory activity of cytokines including interleukin 1β
and IL-2 [22].

Intrauterine growth restriction (IUGR) refers to a condition of the mammalian embryo/

fetus in which it does not reach its growth potential during pregnancy. In both humans and

animals, IUGR neonates are reported to have higher perinatal mortality and morbidity associ-

ated with low efficiency of food utilization, and permanent stunting effects on postnatal

growth and development [23], thus it presents a major problem for human medicine [24] and

animal production [23]. The causes of IUGR in pig includes the first parity, a large litter size

(>12), inadequate nutrition in utero, diseases, environmental stress, or the dysfunction of the

placenta, endometrium, or uterus [24] associated with some physiological and production-

imposed conditions in livestock [25–28]. In pigs, 15–25% of newborns weigh are 1.1 kg or less

compared with a normal birth weight of 1.4 kg [23, 25, 29], thus IUGR is a greater problem in

pigs than in any other domestic mammals [23]. The problems, such as pre-weaning mortality,

reduced growth performance, preterm births and stillbirths, as well as, a high prevalence of

infections are also common within the swine industry, and in particular with primiparous gilts

[30, 31].

We hypothesized that LF have a positive effect on improving pig production. The objectives

of the current study were to investigate the role of maternal LF supplementation during preg-

nancy and lactation in promoting milk production of gilts, growth and development of piglets,

reducing the incidence of IUGR and still births.
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Materials and methods

Animals and diet

Sixty healthy domestic gilts (Sus scrofa), aged ~220 days and body weight of 151.8 kg±15.1 kg,

were randomly selected from five different breed lines at the Pig Improvement Company

(PIC) Grong Grong Farm, New South Wales (NSW), Australia. These included breed line 2

which were pure bred Large Whites, breed line 3 which were pure bred Landrace and breed

lines 4, 7 and 9 which were pure bred Duroc pigs. The gilts were inseminated three times in a

two-day period. From day 1 of mating, the gilts were randomly assigned to treatment (n = 30)

and control (n = 30) groups ensuring the same proportion of each breed line was represented

in each group (S1 and S2 Tables). Nutritional intervention involved top-dressing of 1 g/d of LF

(Tatura Milk Industries Limited) for treatment gilts and 1 g/d of casein (Murray Goulburn

Co-Operative Co. Limited) for control gilts from day 1 post mating throughout gestation and

then until the end of a 21d lactation period (total ~135 days). Pigs were fed a commercial gesta-

tion diet (S3 Table) of 2.4 kg/day from mating to the end of gestation, and then a lactation diet

(S3 Table) of 5.8 kg/day over lactation until weaning. All animals were provided with water ad
libitum and housed in individual stalls once mated throughout the experimental period. On

day 30 post mating, the gilts were subjected to ultrasound (Draminski ANIMAL profi, Poland)

to determine pregnancy. Any gilt confirmed non-pregnant was removed from the trial. At

four days prior to farrowing (gestation length was 114±1 days), all pregnant gilts were trans-

ferred from the gestation shed to the farrowing shed in individual farrowing crates. Farrowing

sheds were maintained at a constant temperature of 27˚C. The study was approved by the Ani-

mal Care and Ethics Committee of Charles Sturt University, Wagga Wagga, NSW, Australia.

Monitoring gilt live weight gain and fecal sample collection

A baseline live weight of gilt was recorded on the first day of mating. Then, gilt live weight was

recorded on days 30, 60, 74, 90 and 104 post mating using Veterinary Scales (Slater Brecknell

VD-1000 Vet Deck). Fecal samples were collected within 105–110 days of gestation from each

gilt and stored at -80˚C pending analysis.

Monitoring pregnancy rate

There were three stages at which pregnancy rate of the treatment and control groups was mon-

itored. The initial pregnancy rate was determined 30 days after the first mating using ultra-

sound. To determine the second pregnancy rate, the gilts that were confirmed negative from

the first pregnancy test and returned to estrus, were mated again and the percentage of gilts

testing positive represented the second pregnancy rate. The third pregnancy rate was gener-

ated from the weaned gilts in each group that were mated again approximately after 134 days

from the commencement of the study.

Monitoring piglets

On the day of farrowing, the total numbers of piglets born, and those born alive, dead and

IUGR were recorded. The weight of the whole live litter at birth, individual weights of piglets

at birth and at postnatal day 19 was recorded using a digital weighing scale. (Slater Brecknell

ElectroSamson Digital Hand Held Scale, USA). All piglets were graded based on individual

birth live weight into either >1000 g, 1000–900 g, 900–800 g, 800–700 g and< 700 g to deter-

mine the incidence of IUGR piglets.

In commercial farming systems, fostering piglets from one gilt/sow to another is an estab-

lished swine husbandry practice. The purpose of this cross fostering is to reduce within-litter
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weight variation among piglets and to match more evenly the number of piglets with the

dam’s ability to nurse them. In our study, the farm administration started cross fostering to

ensure nursing of 10–11 piglets by each gilt after we recorded piglet ID and birth weight. Some

of the piglets from our treatment and control group were cross-fostered to gilts/sows not

enrolled in our study, while some piglets from non-experimental gilts/sows were fostered

within our experimental groups. Only those piglets, which remained within the respective

treatment (n = 114) or control (n = 80) group till weaning were weighed to record the weaning

weight. Similarly, any piglets that were cross fostered into our experimental groups were

excluded from recording the weaning weight.

Measuring milk production of the gilts

Milk production of the gilts was measured at postnatal day 1, 3, 7 and 19 of lactation respec-

tively. On each day, the piglets were separated from the gilt using a partition board for 60 min-

utes. After 60 minutes, the piglets were weighed using the digital weighing scales (Slater

Brecknell ElectroSamson Digital Hand Held Scale) and then were allowed to suckle their dam

by removing the partition. When it was confirmed that milk let down had occurred and the

piglets had suckled for about 15 minutes, they were weighed again using the same scale and

the weight gain of the litter was used as a direct indication of gilt milk production per suckling

episode (weigh-suckle-weigh method).

Weighing of piglets post suckling was completed promptly to decrease the incidence of uri-

nation and defecation, which was recorded. But any urination or defecation of piglets whilst

suckling or weighing was taken into account and the process was repeated in such cases when

determining milk production. Thus, the majority procedure of weighing post suckling piglets

was repeated at least for 4 times to confirm no defecation or urination by piglets occurred

through calculating the mean of two weigh-suckle-weigh repetitions. Milk production per

suckling episode was determined twice at each time point to allow accurate determination of

gilt milk production. However, before postnatal day 19, 5 gilts from LF group and 7 gilts from

control group failed to lactate satisfactorily and thus were eliminated from the shed with their

litters before determined 19 days milk production (S4 Table). The causes of these cases of aga-

lactia were not diagnosed.

Immunoglobulin assay

Blood samples (2 ml) were collected from treatment and control gilt and 3 piglets selected ran-

domly from each litter at day 19 of lactation via the jugular vein. Each blood sample was col-

lected in a serum clot activator tube (Greiner bio-one, Australia) and centrifuged at 3000g for

10 minutes at 4˚C. The serum samples were collected and stored at -800 C pending analysis.

Fecal sample preparation for secretory immunoglobulin A (sIgA) analysis was carried out fol-

lowing the instruction of the ELISA Kit (My Biosource, USA, Catalog no CSB-E12063p).

Briefly, 100 mg of fecal sample was mixed with 5 ml of wash buffer on a vortex mixer until the

mixture was homogenous. One ml of the mixture was transferred into an Eppendorf tube and

was centrifuged for 10 min at 10000xg. The supernatant was diluted at 1:250 with wash buffer

(4 μl + 996 μl wash buffer). 100 μl of the dilution was used in the test per well.

Pig immunoglobulin M (Ig M) ELISA Kit (Life Diagnostics, Inc. USA, Catalog no 5015–9),

Immunoglobulin G (IgG) and Immunoglobulin A (IgA) ELISA Kit (Bethyl Laboratories, Inc.

USA, Catalog no E101-104 and Catalog no E100-102) and pig sIgA ELISA kit were used to

determine the blood serum IgM, IgG and IgA concentrations respectively. Pig sIgA kits were

used to detect sIgA concentration in blood serum samples for both gilts and piglets as well as

faecal samples of gilts only. All samples were analysed in duplicate. An automated plate washer
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(ELx50 Washer, BioTek) was used to wash the plates. A microplate spectrophotometer (Spec-

traMax, Bio-strategy) was used to measure the optical density of serum samples at a wave

length of 450 nm. Only those serum samples, which were devoid of any haemolysis were used

for analysis. The intra and inter coefficient of variation for the assay was less than 5%.

Statistical analysis

Generalized linear mixed models (and binomial generalized mixed models where appropriate)

were used to evaluate the effect of LF on gilt weight gain during gestation, milk production,

piglet growth and development and immunity during lactation. Breed line was used as the ran-

dom effect and group (or group and days where appropriate) were used as fixed effects. Resid-

ual plots were used to ensure that the model assumptions were met for all models. Differences

in incidence of IUGR piglets between groups were compared using the Kaplan-Meier survival

analysis. The differences between LF and control groups were considered significant at p<

0.05. Data are presented as means ±SEM. The analysis was conducted using GenStat statistical

software (17th Edition).

Results

Live weight gain of gilts

The mean live weight gain of gilts during gestation is shown in Fig 1. There was no significant

difference in gilt live weight gain between the treatment and control groups (p>0.05), although

live weights recorded on days 74, 90 and 104 of gestation were ~2–3% higher in the treated

than control gilts at the same time point.

Pregnancy rate

The pregnancy rate of gilts from the treatment and control groups for three different stages is

summarised in Table 1. Out of 30 animals from each group 21 gilts from the treatment‘group

(73%) and 18 gilts from the control group (60%) became pregnant after the first mating. The

non-pregnant gilts (9 from the treatment group and 12 from the control group) were subjected

to a second mating after oestrus and a further 6 treatment gilts (69%) and 7 control gilts (58%)

became pregnant. The same trend for a higher pregnancy rate was also observed when the

weaned first parity sows were re-mated. Pregnancy rate was 86% (18/21) and 78% (14/18) for

Fig 1. The effect of maternal oral lactoferrin supplementation (1g/day) during pregnancy (~114 days)

on gilt live weight gain. Mean live weight of gilts during days1, 30, 60, 74 and 104 of pregnancy between

treatment (LF 1g/day) and control (casein 1g/day). Values are mean ± SEM.

https://doi.org/10.1371/journal.pone.0185817.g001
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the treatment and control groups became pregnant respectively. However, no significance dif-

ference in pregnancy rates was found between the two groups (p>0.05).

Production related to litter

The mean number of piglets in litters of treatment and control gilts is shown in Table 2. There

was no difference (p>0.05) in the litter size, nor in the number of born alive, stillborn, and

total dead piglets between the maternal LF treatment and control groups (Table 2). Maternal

LF supplementation tended (P = 0.09) to reduce the incidence if IUGR in piglets. We could

not record the actual number of piglets at weaning for each treatment and control gilt, because

of the need for cross fostering. However, we recorded the number of treatment and control

piglets which remained with their dam until weaning (S1 Table).

Incidence of IUGR

LF supplementation during pregnancy and lactation in gilts tended to reduce (p = 0.09) the

incidence of IUGR in piglets. Around 12% of the alive newborn piglets in the LF group and ~

20% in the control group were IUGR piglets (Fig 2).

Early postnatal growth of piglets until weaning

The birth weight, weaning weight and live weight gain of piglets from day 1 to weaning (day

19) are presented in Fig 3. There was no significant difference in body weight of newborn pig-

lets between LF treated (1.41±0.06 kg) and control (1.24±0.08 kg) groups, however piglets

from LF treated gilts were significantly (p = 0.02) heavier (5.34±0.21 kg) at weaning compared

with the control group (4.46±0.27 kg). This translated into a significant improvement in mean

live weight gain per day from day 1 to day 19 in the LF treatment group (0.21 ± 0.01 kg) com-

pared to the control group (0.17 ± 0.01 kg) (p<0.05, Fig 3).

Table 1. Incidence of pregnancy in lactoferrin (1g/day) supplemented and control groups.

Lactoferrin group Control group

Mating time point Total number Success (no.) Pregnancy rate Total number Success (no.) Pregnancy rate

1st mating 30 21 73% 30 18 60%

2nd mating (returned gilts) 9 6 67% 12 7 58%

3rd mating (weaned sows) 21 18 86% 18 14 78%

https://doi.org/10.1371/journal.pone.0185817.t001

Table 2. The effect of lactoferrin supplementation (1g/day) to the gilts during pregnancy and lactation

(135 days) on the prolificacy of gilts and the fate of their piglets at farrowing.

Item Lactoferrin Group

(n = 21)

Control Group

(n = 18)

P value

Litter Size 11.14 ± 3.58 10.22 ± 3.34 0.37

Alive piglets 10.14 ± 0.69 9.13 ± 0.75 0.26

IUGR piglets 1.14 ± 0.23 1.75 ± 0.33 0.09

Dead piglets 1.00 ± 0.21 1.25 ± 0.28 0.47

Total newborn body weight for whole litter

(Kg)

14.38 ± 1.35 12.76 ± 1.47 0.16

Mean piglet body weight (kg) 1.41 ± 0.05 1.24 ± 0.07 0.08

Values are Mean ± SEM.

IUGR: Intrauterine growth retardation

https://doi.org/10.1371/journal.pone.0185817.t002
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Milk production

Maternal Lf supplementation in gilts throughout pregnancy and lactation significantly in-

creased milk production compared with the control at four time points of lactation (p<0.001,

Fig 2. The effect of maternal lactoferrin (1g/day) supplementation during pregnancy and lactation

(~135 days) on the incidence of intrauterine growth restricted piglets. n = 213 in LF group, n = 146 in

control group (n = total number of alive piglets).

https://doi.org/10.1371/journal.pone.0185817.g002

Fig 3. The effect of maternal lactoferrin supplementation during pregnancy and lactation (total ~ 135

days@1g LF /day) on piglet live weight gain. Newborn live weight, weaning weight and weight gain of

piglets per day, *p<0.05. Values are mean ± SEM. (n = 114 in LF group, n = 80 in control group). Only those

piglets which were retained with treatment or control gilts from birth to weaning were included.

https://doi.org/10.1371/journal.pone.0185817.g003
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Fig 4). In the present study, after day 1, the cross fostering of piglets to equalize litter sizes

across treatment and control group (n = 9.375 piglets in the LF group, and n = 9.309 in the

control group) to ensure the suckling stimulus in terms of piglet numbers was the same in

each gilt during milk production measurement on days 3, 7 and 19 of lactation. The measure-

ment of milk production on day 1 were compromised by the uneven litter sizes (S4 Table).

Serum immunoglobulin concentrations in gilts

Mean concentrations of four different classes of circulating immunoglobulin in the serum col-

lected from gilts at weaning are shown in Fig 5. The concentrations of IgM, IgG and sIgA were

not significantly different between the treatment and control groups (p>0.05). However, a sig-

nificantly higher concentration of IgA was found in the LF treated gilts (2.11 ± 0.33 mg/ml)

compared to the control group (0.8 ± 0.45 mg/ml; p = 0.031).

sIgA concentration in the faecal sample of gilts

The mean sIgA concentration in the fecal sample of gilts collected during the last week of ges-

tation is showed in Fig 6. The concentrations of fecal sIgA for the LF treatment and control

group was the same as 0.27 ± 0.006 mg/ml.

Immunoglobulin concentration in the serum of piglets

Mean concentrations of IgM, IgG, IgA and sIgA in the serum of piglets from the treatment

and control groups at weaning are shown in Fig 7. A significantly higher concentration of sIgA

was detected in the serum of piglets from the LF group (0.54 ±0.01 mg/ml) compared to the

piglets from the control group (0.48 ± 0.01 mg/ml; p = 0.001). There was no significant differ-

ence between the two groups in the concentrations of IgM, IgG, IgA (p> 0.05).

Fig 4. The effect of maternal lactoferrin supplementation (1g/day) during pregnancy and lactation

(~135 days) on milk production of the gilts. Milk production by the gilts of treatment and control groups

during days 1, 3, 7 and 19 of lactation, ** p < 0.001. Values are mean ± SEM. n = 21 in LF group, n = 18 in

control group for day 1, 3 and 7 and n = 16 in LF group and n = 11 in control group for day 19.

https://doi.org/10.1371/journal.pone.0185817.g004
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Discussion

Maternal bLF supplementation is a beneficial nutritional intervention which increases hemoglo-

bin and total serum iron in pregnant women [32] and reverses some of the IUGR-induced

Fig 5. The effect of maternal lactoferrin supplementation (1g/day) during pregnancy and lactation

(~135 days) on serum immunoglobulin concentration of gilts. Concentration of Immunoglobulin IgM,

IgG, IgA and sIgA in serum samples of gilts collected before weaning on day 19 of lactation. *p<0.05. Values

are mean ± SEM.

https://doi.org/10.1371/journal.pone.0185817.g005

Fig 6. The effect of maternal lactoferrin supplementation (1g/day) during pregnancy and lactation

(~135 days) on fecal sIgA concentration of gilts. Concentration of Immunoglobulin sIgA in the fecal sample

of gilts collected before farrowing. Values are mean ± SEM.

https://doi.org/10.1371/journal.pone.0185817.g006
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sequelae, including brain hippocampal changes [33]. In this study, we demonstrated that maternal

oral administration of LF to gilts during gestation and lactation did not increase gestational weight

and the birth weight of piglets, but significantly increased milk production throughout 4 stages of

lactation which resulted in an increased live weight gain of piglets to weaning. The mechanism of

LF supplementation on the physiological effects of gilt milk production is not well understood.

However, the total milk production capacity of the mammary gland is determined by the mam-

mary epithelial cell population and its biosynthetic capacity [34, 35]. In an earlier study Hagiwara,

Shinoda [36] found that LF stimulates the epithelial cell growth in rat intestinal cell line. Thus,

increased milk production in LF treatment gilts resulting in increased growth of their piglets

implies that LF may stimulate proliferation and differentiation of the mammary epithelial cell

population and enhances the central component of secretory mammary gland growth in first

pregnancy mammals. The fact that the mammary epithelial cell population may not be fully devel-

oped in gilts, where LF may contribute to mammary gland maturation.

The significant increase in milk production in LF treated gilts may also be due to the

increased litter size, with an additional piglet available to provide a greater suckling intensity

[37, 38]. This may have influenced the initiation of lactation on day 1 prior to the rationalisa-

tion of litter size on day 2 in the current study. Suckling intensity is a major determinant of

both mammary development and milk yield of sows. The effect of suckling intensity on poten-

tial milk yield and piglet growth has been extensively investigated [37–40]. In pigs, there are

several sow-litter interactions including suckling intensity, litter size, suckling frequency and

age and size of piglets that influence the potential milk yield of the sow. Milk production is the

key factor in determining the rate of piglet growth and development. Milk removal from the

mammary gland is of critical importance in sustaining milk secretion [38]. Treatment piglets

tended to exhibit an increased mean birth weight and a significant weaning weight (1.41 kg

and 5.34 kg respectively) compared to control piglets (1.24 kg and 4.45 kg respectively).

Heavier piglets are able to stimulate increased milk flow and may empty out mammary glands

Fig 7. The effect of maternal lactoferrin supplementation (1g/day) during gestation and lactation

(~135 days) on serum immunoglobulin concentrations in piglets. Concentration of Immunoglobulin IgM,

IgG, IgA and sIgA in the serum sample of piglets collected at weaning. *p<0.001. Values are mean ± SEM.

https://doi.org/10.1371/journal.pone.0185817.g007
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completely during feeding, unlike lighter weight piglets. Increased stimulation leads to greater

oxytocin release and greater milk let-down and therefore increased piglet live weight gain [38,

39]. Milk yield peaks were found at day nine of lactation in sows [38]. In the present study, we

estimated milk production at 4 time points during 19 days of lactation. The LF group displayed

a higher milk production compared with the control group gilts throughout the lactation. In

particular, on lactation day 7, the LF group gilts produced more than double the volume of

milk than that of the control group gilts (LF: 629.76 g; Control: 207g).

Part of the growth response to maternal LF supplementation may be the result of the immu-

nomodulatory effects of LF in significantly increasing the concentration of serum sIgA levels

in their piglets. Yang et al reported [7] increased expression of mRNA for some non- specific

immune factors like the antimicrobial peptide 39- residue proline-arginine- rich peptide (PR-

39) and protegrin-1 in LF supplemented piglets, resulting in improved intestinal morphology

post weaning. Therefore, maternal LF supplementation from postnatal day one may improve

gut mucosal immunity resulting in a decreased incidence of E.coli infection [41–43]. This can

potentially improve piglet feed intake, with a consequent increase in live weight gain during

lactation. The significant increase in piglet live weight gain matches the increased milk avail-

ability associated with maternal LF supplementation. Marshall, Hurley [38] demonstrated that

milk production is a significant limiting factor in the growth and development potential of pig-

lets. The increased supply of functionally important minor proteins and immunoglobulins in

milk most likely provided increased immunoprotection and antimicrobial factors to the neo-

nate [44]. Furthermore, piglet birth live weights affect mortality rates and future growth and

development (33). This was attributed to a lower colostrum intake, which subsequently com-

promised health and increased mortality rates in the first week post farrowing [45]. The more

vigorous suckling piglets in litters from LF treated gilts may have consumed more colostrum,

which would have assisted in developing mucosal immunity relative to piglets from the control

group and therefore improved their growth potential.

Mammalian milk is rich in lipids, carbohydrates, proteins and non-nutritional products,

which are of functional significance to the growth physiology of the developing offspring [39,

46]. Among the non-nutritional products immunoglobulin A, LF, macrophages and lysosomes

help in protecting the digestive tract against potential pathogens [46]. LF exhibited an immu-

nomodulatory effect on the gilts and their piglets as documented by a significant increase in

the concentration of IgA in gilt serum and sIgA in piglet serum. It was documented from the

earlier studies that dietary LF supplementation to weaning piglets enhanced serum concentra-

tion of IgA, IgG and IgM [41, 47]. In the current study, we demonstrated if maternal LF sup-

plementation to gilts during pregnancy and lactation can produce a similar immune response

in gilts themselves, as well as in piglets. Various immunomodulatory effects of orally adminis-

tered LF have been documented in a variety of mammalian species. Debabbi et al [48] reported

increased concentrations of IgA and IgG in intestinal fluids of mice after oral LF administra-

tion. Butler [49] reported that pig serum IgA levels ranged from 1.32–1.56 mg/ml, which is

consistent with the concentrations recorded in LF treated (2.11 ± 0.33 mg/ml) and control

gilts (0.8 ± 0.45 mg/ml). The significant response in LF supplemented gilts may be due to LF’s

positive charge which facilitated its binding to the surface of various cells within the host

immune system. This in turn has been shown to trigger signalling pathways that can regulate

cellular responses, including differentiation, activation and proliferation of immune cells [50].

The significant increase in serum sIgA in piglets on day 19 of lactation with LF treatment in

the present study may have been due to increased proliferation of B- lymphocytes in the gut

[42, 43, 51].

Despite the significant difference found in gilt serum IgA and piglet sIgA concentration in the

LF treatment group compared with the control, no significant differences in immunoglobulin
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concentration for gilt serum IgM, IgG, sIgA and piglet IgM, IgG and IgA were detected between

two groups. sIgA, a subclass of IgA, which is the predominant immunoglobulin in mucosal sur-

faces produced by B-lymphocytes adjacent to the mucosal cells. These are transported to the inte-

rior of these lymphocytes and released into their secretions. The level of faecal sIgA antibody is

correlated with higher virus neutralizing capacity and increased viral clearance [52]. The high

sIgA in piglet serum implies that maternal LF supplementation plays a key role in protecting vul-

nerable areas such as the oral cavity, lungs, and gut of its offspring from invading pathogens.

However the limitation of this study is that we were not able to determine any anti- or pro-

inflammatory cytokines in the piglets, due to the limited volume of blood samples were allowed

to be collected from the piglets at the commercial pig farm. Future studies should be carried out

to confirm the role of LF on anti- or pro-inflammatory cytokines in pregnant gilts and sows [53].

Conclusion

First pregnancy mammals contribute a large proportion of progeny to any growing commer-

cial herd. LF supplementation during pregnancy and lactation in gilts significantly improved

milk production and increased serum IgA levels in gilt, as well as piglets’ growth and serum

sIgA concentration. There is, therefore, potential for the use of LF as a functional ingredient in

the feed of pregnant gilts and sows to boost the health status and productivity of their litters.
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