
RESEARCH ARTICLE

Meta-analysis of peripheral blood gene

expression modules for COPD phenotypes

Dominik Reinhold1*, Jarrett D. Morrow2, Sean Jacobson3, Junxiao Hu1, Benjamin Ringel4,

Max A. Seibold4,5, Craig P. Hersh2, Katerina J. Kechris1, Russell P. Bowler3

1 Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado

Denver, Aurora, Colorado, United States of America, 2 Channing Division of Network Medicine, Brigham and

Women’s Hospital, Boston, MA, United States of America, 3 Department of Medicine, National Jewish Health,

Denver, Colorado, United States of America, 4 Center for Genes, Environment and Health, Department of

Pediatrics, National Jewish Health, Denver, Colorado, United States of America, 5 Division of Pulmonary

Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado, United

States of America

* dominik.reinhold@ucdenver.edu

Abstract

Chronic obstructive pulmonary disease (COPD) occurs typically in current or former smokers,

but only a minority of people with smoking history develops the disease. Besides environmen-

tal factors, genetics is an important risk factor for COPD. However, the relationship between

genetics, environment and phenotypes is not well understood. Sample sizes for genome-

wide expression studies based on lung tissue have been small due to the invasive nature of

sample collection. Increasing evidence for the systemic nature of the disease makes blood a

good alternative source to study the disease, but there have also been few large-scale blood

genomic studies in COPD. Due to the complexity and heterogeneity of COPD, examining

groups of interacting genes may have more relevance than identifying individual genes.

Therefore, we used Weighted Gene Co-expression Network Analysis to find groups of genes

(modules) that are highly connected. However, module definitions may vary between individ-

ual data sets. To alleviate this problem, we used a consensus module definition based on two

cohorts, COPDGene and ECLIPSE. We studied the relationship between the consensus

modules and COPD phenotypes airflow obstruction and emphysema. We also used these

consensus module definitions on an independent cohort (TESRA) and performed a meta

analysis involving all data sets. We found several modules that are associated with COPD

phenotypes, are enriched in functional categories and are overrepresented for cell-type spe-

cific genes. Of the 14 consensus modules, three were strongly associated with airflow

obstruction (meta p� 0.0002), and two had some association with emphysema (meta p�

0.06); some associations were stronger in the case-control cohorts, and others in the cases-

only subcohorts. Gene Ontology terms that were overrepresented included “immune

response” and “defense response.” The cell types whose type-specific genes were overrepre-

sented in modules (p < 0.05) included natural killer cells, dendritic cells, and neutrophils.

Together, this is the largest investigation of gene blood expression in COPD with 469 cases in

COPDGene, ECLIPSE and TESRA combined, with 6267 genes common to all data sets.

Additional, we have 42 and 83 controls in COPDGene and ECLIPSE, respectively.
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Introduction

Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death in the US,

and it is estimated that it will be the fifth most common cause of morbidity and third leading

cause of mortality by 2020 (see [1] and references therein). Although COPD patients are typi-

cally current or former smokers, only a minority of current or former smokers have COPD.

Besides environmental and behavioral factors, genetics is an important risk factor for the

development of COPD. However, the disease is highly complex with widely heterogeneous

phenotypes, and the relationship between genetics, environment, and phenotypes is not well

understood.

To understand genetic influences on COPD, genome-wide expression studies, which com-

prehensively profile gene transcription, have been performed in lung tissue. However, the

invasiveness of sample collection and resulting small sample sizes (n = 16-75) [2–7] of these

studies have limited the ability to examine subphenotypes. Note that a recent publication [8]

has a larger sample size of 111 severe COPD cases and 40 control smokers, but larger sample

sizes remain rare for lung tissue-based studies. Blood is a less invasive way to collect biosam-

ples. The rationale for using blood to study COPD is increasing evidence that COPD is a sys-

temic disease [9], with several systemic biomarkers associated with exacerbation of COPD (see

[2] and references therein). Several studies of blood from COPD subjects have suggested that

there are genomic signatures associated with COPD (see [2, 10, 11] and references therein).

These studies were limited in that they were also of small sample size, did not have replications,

and tended to examine individual genes in isolation.

The focus of gene expression analysis has shifted in recent years from the detection of indi-

vidually expressed genes to the detection of groups or modules of genes that act together. The

rationale is that individual genes might have small effects on or insignificant associations with

a phenotype, but that a group of interacting genes with individually small effects might have a

more significant association. Moreover, such groups of genes or modules often come from bio-

logically known networks, which makes the interpretation and reproducibility easier—particu-

larly since individually highly ranked genes can be poorly annotated or are often not

reproducible across studies [12, 13].

Finding clinically or biologically relevant groups or modules of genes that interact may give

insight into biologic mechanisms that underlie the pathogenesis of COPD. One approach is

based on the popular Weighted Gene Co-expression Network Analysis (WGCNA) [14, 15]. In

WGCNA, genes belong to the same module (cluster) if, roughly speaking, they are highly con-

nected as measured by the topological overlap (see [16, 17]). Module definitions naturally vary

between data sets, and depending on the comparability of data sets and choice of methods and

parameters within WGCNA, modules are not always preserved between data sets. The limita-

tion to many publications that use WGCNA is that they do not validate their findings in inde-

pendent cohorts.

To alleviate the variability of module definitions between data sets, we used two publicly

available data sets from the COPDGene and ECLIPSE studies (see Materials and methods) to

define consensus modules. This makes the module definitions more robust, making it more

likely to find consistent modules of genes that are co-expressed. We studied these modules and

their relationships with COPD outcomes for airflow obstruction, using spirometry to measure

breathing capacity, and for emphysema, using computed tomography (CT) for lung imaging.

We then used these consensus module definitions on an independent data set (TESRA) and

performed a meta analysis involving all data sets. Next, we compared the module approach to

published results of single gene-phenotype associations in [2]. Finally, we studied overrepre-

sentation of cell-type specific genes in the modules.
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Together, this is the largest investigation of gene blood expression in COPD with 469 cases

in COPDGene, ECLIPSE and TESRA combined, with 6267 genes common to all data sets.

Additional, we have 42 and 83 controls in COPDGene and ECLIPSE, respectively.

Materials and methods

Study populations

All subjects gave informed written consent and individual study protocols were reviewed and

approved by their respective institutional review board (IRB):

COPDGene: This study was reviewed and approved to the IRB at National Jewish Health,

Denver, Colorado.

ECLIPSE: The study is being conducted in accordance with the Declaration of Helsinki and

good clinical practice guidelines, and has been approved by the relevant ethics and review

boards at the participating centers.

TESRA: All subjects provided written informed consent. TESRA was approved by the Institu-

tional Review Boards at all participating centers (see Additional file 1 in [18]).

The studies used include both subjects with COPD as well as smokers without evidence of

COPD. Further details regarding subject recruitment and data collection can be found as fol-

lows: For COPDGene (Genetic Epidemiology of COPD) see [2, 19]; for ECLIPSE (Evaluation

of COPD Longitudinally to Identify Predictive Surrogate Endpoints) see [20]; for TESRA

(Treatment of Emphysema With a Gamma-Selective Retinoid Agonist) see [18, 21].

Clinical data and definitions

COPD case and control definitions were made using forced vital capacity (FVC), which is the

volume that can be blown out after full inspiration; forced expiratory volume in 1 second

(FEV1); FEV1/FVC; and FEV1% (percent predicted), which is FEV1 divided by predicted FEV1

in a population of same gender, race and adjusted for age and height. Values after bronchodila-

tor treatment were used. Cases of COPD have FEV1/FVC< 0.7. COPD severity is further

defined by GOLD Stages I-IV, corresponding to mild (GOLD I) if FEV1%� 80, moderate

(GOLD II) if 50%� FEV1%< 80%, severe (GOLD III) if 30%� FEV1%< 50%, and very

severe (GOLD IV) if FEV1% < 30% [22]. Preserved ratio impaired spirometry (PRISm) is

defined as FEV1/FVC� 0.7 and FEV1% < 80% [23]. We excluded PRISm subjects from the

analyses.

Emphysema was assessed by low attenuation area (LAA) measured by percent voxel density

below -950 or -910 Hounsfield Units (HU). The lower the voxel density, the easier the X-rays

can penetrate the lung, indicating larger airspaces. Not all studies used the same threshold,

therefore whenever -950HU data was available, as in the COPDGene and Eclipse studies, we

used this rather than the -910HU threshold. For TESRA, only -910HU threshold was available,

which could be compared with the -910HU threshold available for COPDGene, but not

ECLIPSE. Exacerbations were defined as an acute worsening of respiratory symptoms charac-

terized by cough, sputum, and shortness of breath associated with either antibiotic or cortico-

steroid use.

We considered the clinical variables FEV1%, FEV1/FVC, and emphysema. However,

instead of studying associations of these clinical variables with the gene modules directly, we

adjusted the clinical variables for covariates using linear and beta regression models and con-

sidered the resulting residuals as outcomes (see S1 Table); we still refer to these variables as
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FEV1%, FEV1/FVC, and emphysema, respectively. We also refer to FEV1% and FEV1/FVC as

spirometry phenotypes and to emphysema as CT phenotype.

Microarray data

Data pre-processing. COPDGene and ECLIPSE The microarray datasets are available

through Gene Expression Omnibus (GEO). The GEO accession numbers are GSE42057 for

COPDGene and GSE54837 for ECLIPSE. Gene expressions were measured using Affymetrix

Human Genome U133 plus 2.0 Gene Array (Affymetrix, Santa Clara, CA). The data were pro-

cessed using Bioconductor packages in R. Data were filtered for present/absent frequency

(only probe sets with present calls in all samples were used) and normalized using the RMA

algorithm (rma function in “affy” package [24]).

TESRA: Gene expression were measured using Affymetrix Human Genome U133 plus 2.0

Array. All 54,675 probes passing quality control were retained regardless of level of variance

across samples. These data were background corrected and quantile normalized using the

robust multiarray average (RMA) method via the R Bioconductor package affy [24]. Of the

270 original subjects (arrays), we studied the 248 subjects that self-identified as Caucasian and

clustered with the Caucasian subjects based on genetic data (see [18] for details).

Note that all the above data sets come from the same platform, Affymetrix. We considered

an additional data set from Lineagen [25]. However, this data set was produced using the Illu-

mina Omni-Express Chip. In general, gene expression levels and their correlations are difficult

to compare between different platforms. We thus did not include this resource in our analysis,

but note the platform dependency as a limitation to our meta-analysis.

Mapping of probes to genes. For comparison purpose, probes were mapped to gene sym-

bol for each dataset using “collapseRows” function provided in R package “WGCNA”, and

genes with multiple probes were represented by the probe with the max arithmetic mean value

[26]. The final expression file for each data set contains only the probe sets with associated

genes; and the selected probe set were reassigned with the name of their corresponding gene

symbol. Our analysis was based on the 6267 genes that were common to all data sets.

Consensus network construction and module definition using WGCNA. All datasets

were analyzed using the R package “WGCNA” [14] among other standard R functions. We

constructed consensus modules based on the two publicly available microarray data sets from

COPDGene and ECLIPSE, and we applied the module definitions to the independent TESRA

microarray data.

The network construction was based on the adjacency matrices of individual data sets. We

used a signed network, where the adjacency matrix, S = (Sij), was of the form

Sij ¼
1þ corðgi; gjÞ

2

� �b

;

where cor(gi, gj) denotes the Pearson correlation between the expression profiles of gene i and

j, respectively, and β is a user-defined parameter to suppress noisy small correlations. We

based the choice of β on a scale free topology criterion of signed R2� 0.8 (see [17] for details

on scale free topology). For COPDGene and ECLIPSE, we chose β = 13 and 21, respectively,

resulting in signed R2 of 0.83 and 0.80, respectively.

Based on each adjacency matrix, the corresponding topological overlap matrix (TOM) was

calculated (using the TOMsimilarity function in the WGCNA package). The consensus TOM

was calculated component-wise as the minimum of the two individual TOM matrices. The

individual TOM matrices were scaled before taking the minima to make them more

comparable.
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The individual and consensus TOMs were then used to define gene trees using

geneTree= hclust(as.dist(1-TOM),method = “average”). The preliminary

modules were then obtained using: cutreeHybrid(dendro= geneTree,
pamStage= FALSE,minClusterSize= 30, deepSplit= 0, distM = 1-TOM).

For each preliminary module, the eigengene was calculated, which were then clustered as

before. At a height of 0.25 in the resulting dendrogram, subtrees below that threshold were

merged to define new clusters. During the clustering visualization, one individual from

COPDGene (24449A) was removed from the analysis, since this expression profile was very

different from the remaining cases.

Eigengene analysis. For each of the final consensus modules, eigengenes were calculated

for each of the data sets and correlated to phenotypes. These p-values were used to calculate a

Z-score and meta p-value (for each module and phenotype) using a weighted version of Stouf-

fer’s method: First, each p-value, pi, was transformed to a Z-score, Zi; a combined Z-score was

then calculated as

Z :¼

Pk
i¼1

wiZiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pk

i¼1
w2

i

q ;

where the weights wi are the square-root transformed sample sizes of the individual data sets.

Module membership analysis. For each module and gene, we calculated the module

membership kME, which is the correlation between the gene and the eigengene of the module

[27]. For modules where the eigengenes were significantly associated with a clinical phenotype,

it is of interest to examine whether specific genes in the modules are positively or negatively

correlated with the phenotype. We restricted this analysis to the case-control control cohort of

COPDGene and ECLIPSE. For each module, we rank the genes in each of the two cohorts

according to kME and calculate the rank sum based on the two cohorts.

Gene-annotation enrichment analysis. We tested for overrepresentation (enrichment) of

genes in each module in the Gene Ontology (GO) [28] categories Biological Processes and

Molecular Function, using PANTHER (Protein ANalysis THrough Evolutionary Relation-

ships) [29]. Identifying such overrepresentations helps determining potential biological pro-

cesses and molecular functions that the modules are involved in. The gene symbols were

mapped to Gene ID and Protein ID prior to analysis; e.g. gene symbol AAK1 was mapped to

Gene ID HGNC:19679 and Protein ID Q2M2I8 before starting the analysis. The background

gene list was based on all 6267 genes studied. We filtered the list of GO terms reported by

PANTHER to only include those that had at least 5 genes in the background gene list. For this

reduced set of GO terms, we calculated FDR (false discovery rate) adjusted p-values according

to Benjamini-Hochberg [30] using the R function p.adjust; FDR adjusted p-values were calcu-

lated on a per module basis across biological processes and molecular function categories com-

bined. We then filtered the GO terms to only include the ones where fold enrichment was >1,

since we were only interested in overrepresentation.

Comparison to previously published results. Comparison to univariate analysis of the

COPDGene cohort. We compared our results with the univariate analysis of [2] in the COPD-

Gene cohort, where the authors found individual genes whose relative abundance was associ-

ated with FEV1% and FEV1/FVC, based on linear model t-tests, correcting for covariates. They

provided a list of genes with FDR adjusted p-values for each of the phenotypes. Those genes

that had adjusted p-values smaller than 0.05 were considered significant. We used the intersec-

tion of these genes and the ones used in our module definition and performed overrepresenta-

tion tests of these genes and the ones in our modules using Fisher’s exact test.
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Comparison to previous ECLIPSE module-phenotype associations. In [31], the authors

applied WGCNA to a subset of the ECLIPSE cohort (discovery cohort), and studied the associ-

ations between the resulting modules and FEV1%. They tested the reproducibility on an inde-

pendent sub-cohort of ECLIPSE (replication cohort). The three most significant modules in

the discovery cohort were also the most significant ones in the replication cohort. We com-

pared their module definitions with our consensus module definition on the genes that are

common to their data and ours. We focused on the modules that were significant in [31] and

in our study. We calculated the significance of the overlaps using Fisher’s exact test.

Comparison to previous TESRA module-phenotype associations. Similar to the compari-

son with ECLIPSE, we compared our results to the ones in [18], where the authors applied

WGCNA to the TESRA cohort. A notable difference to our approach and the one in [31] is

that the authors in [18] used probes rather than genes for their module definition. We thus

first mapped their probes to genes the same way it has been done for the TESRA cohort in the

current study. We then only considered genes that were common to this mapping and our

consensus definition. Often, probes from different modules mapped to the same gene. We

thus omitted genes that had multiple probes from different modules mapped to them. We also

considered an alternative approach as follows. For a probe set that maps to a particular gene,

and for which we have several module assignments, we used a “majority assignment,” in which

we reassigned all probes of that set to the module with the most probes from that set. If there

was a tie for the most probes in a module, we omitted the corresponding gene from compari-

son. We calculated the significance of the overlaps using Fisher’s exact test.

Module—Cell type relationship. We sought to identify gene expression signatures that

exclusively identify immune cell-types. First, we aggregated flow sorted immune cell microar-

ray data (111 samples) from Gene Expression Omnibus (GEO: GSE3982 and GSE22886). We

identified 11 groups of distinct immune cell types consisting of eosinophils (eos), basophils/

mast cells (mast_baso), dendritic cells (dendr), neutrophils (neut), b-cells, t-cells, NK-cells, t-

helper cells (thelp), monocyte Lipopolysaccharides (LPS) day 0 stimulation, monocyte LPS day

1 stimulation, monocyte LPS day 7 stimulation (mono_d0, mono_d1, mono_d7, respectively).

Differential expression analysis (limma) was performed between each cell type and all other

cell types. Genes were selected based upon log-fold changes greater than 2 and an adjusted p-

value less than 0.01. Using the significantly up-regulated genes, a random forest prediction

model (R packages: caret, randomForest) was used to identify the most important subset for

predicting each cell type from all other cell types. Genes with an importance measure greater

than 0 were chosen for our final set of immune cell gene expression signatures. We tested for

overrepresentation of these cell type signature genes in the consensus modules using Fisher’s

exact test.

Results

Demographics

For COPD cases, the three cohorts are almost entirely Non-Hispanic White, and similar with

respect to age, sex, BMI and ATS pack years (Table 1). However, the COPDGene cohort con-

tains current smokers, while the other cohorts do not. The spirometry phenotypes are similar

across the three cohorts. The GOLD stages for COPDGene are slightly higher than those of

ECLIPSE, ranging from 1 to 4, while the TESRA cohort has mostly GOLD 2 and 3 stages. The

controls in COPDGene and ECLIPSE are again almost all Non-Hispanic White, with similar

BMI and age, although ECLIPSE has more males. Compared to the cases, the controls have

better spirometry and CT phenotypes by definition. Furthermore, for both cohorts, controls

have more females and are slightly younger. Note that TESRA does not have controls.
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Consensus modules

Gene co-expression modules were constructed separately for COPDGene and ECLIPSE, and

then using a consensus approach (see Materials and methods). Most of the COPDGene mod-

ules significantly overlapped with only one consensus module (Fig 1). For ECLIPSE modules,

there were more consensus module counterparts—this was partly a result of the lower number

of ECLIPSE modules. The WGCNA method returns generally a module labeled “grey”, which

contains genes that are not clustered with other co-expressed genes into modules—only non-

grey modules represent co-expression modules. The grey module was the largest consensus

module with 3761 genes and had strong overlap with the corresponding individual COPD-

Gene and ECLIPSE grey modules. Besides the grey module, 14 consensus, 13 COPDGene, and

6 ECLIPSE modules were constructed. The largest non-grey module in COPDGene, labeled

turquoise (1015 genes), had a significant overlap with several consensus modules. Note that

the largest consensus module contained 408 genes. In our data, consensus module construc-

tion resulted in smaller modules as compared to constructions based on individual data sets.

The gene module memberships are listed in S1 File.

Module—Trait relationship

Using the cases-based consensus module definitions, we correlated phenotypes to module

eigengenes (eigengene analysis) based on cases only or, where available, on cases and controls.

Table 1. Demographics.

COPDGene cases ECLIPSE cases TESRA cases COPDGene control ECLIPSE control

n 83 138 248 42 83

Age (mean (sd)) 64.70 (8.28) 64.92 (5.35) 66.4 (7.9) 60.42 (9.07) 61.29 (8.46)

Sex (number (%) males) 49 (59.04) 93 (67.4) 170 (68.6) 22 (52.38) 53 (63.86)

BMI (mean (sd)) 27.77 (6.07) 26.93 (5.27) 26 (4.7) 27.98 (5.00) 28.02 (3.89)

Ethnicity/Race

White 82 (98.80) 137 (99.28) 248 (100) 42 (100) 81 (97.59)

Black 1 (1.20) 0 (0) 0 (0) 0 (0) 2 (2.41)

Other 0 (0) 1 (0.72) 0 (0) 0 (0) 0 (0)

Current smoker (%) 17 (20.48) 0 (0) 0 (0) 13 (30.95) 0 (0)

Pack Years (mean (sd)) 49.58 (24.64) 47.14 (29.33) 47 (24.3) 44.47 (28.49) 29.96 (26.97)

Percent Emph; -950 HU (mean (sd))† 13.58 (11.12) 18.59 (11.95) NA 1.36 (1.51) 4.31 (3.79)

Percent Emph; -910 HU (mean (sd))† 39.80 (18.26) NA 41.65 (16.2) 20.86 (11.74) NA

FEV1% (mean (sd)) 50.62 (21.13) 50.31 (16.68) 48.8 (9.3) 97.87 (13.80) 110.29 (14.58)

FEV1/FVC (mean (sd)) 0.49 (0.14) 0.44 (0.12) 0.43 (0.09) 0.77 (0.04) 0.80 (0.06)

GOLD stage†† (%)

GOLD 0 0 (0) 0 (0) 0 (0) 42 (100) 83 (100)

GOLD 1 6 (7.23) 3 (2.17) 0 (0) 0 (0) 0 (0)

GOLD 2 35 (42.17) 67 (48.55) 105 (42.3) 0 (0) 0 (0)

GOLD 3 25 (30.12) 55 (39.85) 139 (56.0) 0 (0) 0 (0)

GOLD 4 17 (20.48) 13 (9.42) 4 (1.6) 0 (0) 0 (0)

Exacerbation Freq. (mean (sd)) 0.75 (1.16) 0.91 (1.57) 0.60 (0.65) 0.29 (0.86) 0 (0)

† Seven and nine cases in COPDGene and ECLIPSE, respectively, did not have emphysema data. In the controls of ECLIPSE, 13 individuals had no

emphysema data.
†† Cases of COPD all have FEV1/FVC < 0.7, and are further classified in GOLD Stages 1-4, corresponding to mild (FEV1%�80), moderate (50%� FEV1%

< 80%), severe (30%� FEV1% <50%), and very severe (FEV1% < 30%) COPD [22].

https://doi.org/10.1371/journal.pone.0185682.t001
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The rationale for the latter is that eigengenes based on cases and controls represent a more

diverse cohort.

For COPDGene and ECLIPSE, we had control subjects defined by normal levels of spirom-

etry. For these case-control cohorts, we performed eigengene analyses (S1 and S2 Figs), fol-

lowed by a meta-analysis (Fig 2). Based on the meta-analysis, the most significant modules

were black for FEV1% (p = 0.0002) and FEV1/FVC (p = 0.0001), red for FEV1% (p = 0.00002)

and FEV1/FVC (p = 0.00003) and greenyellow for FEV1% (p = 0.0008) and FEV1/FVC

(p = 0.002). The best candidate module for correlation with emphysema was the salmon mod-

ule (p = 0.06). We saw good consistency between the two cohorts for these modules (S1 and S2

Figs).

For TESRA, we only had cases, and so we performed eigengene analyses using only cases

from COPDGene, ECLIPSE, and TESRA (S3–S5 Figs), followed by a meta-analysis (Fig 3).

Based on the latter, the most significant associations were between module eigengenes and

FEV1/FVC, and the most significant modules for this trait were labeled lightcyan (p = 0.006),

turquoise (p = 0.03), and yellow (p = 0.03). For correlation with emphysema, the most signifi-

cant modules were greenyellow (p = 0.02) and salmon (p = 0.07). The best candidate module

for correlation with FEV1% was lightcyan (p = 0.08).

Although the strength of correlations between individual genes and phenotypes or eigen-

genes varied between the cohorts, the genes with the highest module membership, based on

the sum of ranks of kME (highest correlation with eigengene), tended to have the same gene-

phenotype correlation direction. In particular, for the black, salmon, red, and greenyellow

modules, we saw this consistency of top kME gene-phenotype relationships as well as

Fig 1. Correspondence of individual and consensus modules. Left (right, respectively) panel shows the correspondence between consensus

modules and COPDGene (ECLIPSE, respectively) modules. The row labels give the color (label) of the consensus modules and the number of

genes in the module. The columns represent in an analogous way the modules for COPDGene and ECLIPSE. The number in each cell gives the

number of genes common to the modules in the corresponding row and column; the heatmap colors represent the −log10 transformed p-values

(truncated at 50), which are based on Fisher’s exact test based on the hypergeometric distribution. Note that the module colors have no meaning,

they simply represent consensus modules or modules in the individual data sets.

https://doi.org/10.1371/journal.pone.0185682.g001
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moderate consistency in the kME ranking between the two cohorts (Table 2; see also (S2 File)

for a complete list of module memberships and gene-phenotype correlations). Note that eigen-

genes of the black, red, and greenyellow modules were associated with the spirometry pheno-

types, while the salmon module had the strongest (negative) association with emphysema

among all modules, based on the COPDGene and ECLIPSE case-control cohorts. In the

Salmon model we saw that out of the top 10 kME genes, only one was significantly associated

with emphysema at the α = 0.05 level, namely XAF1 (p = 0.037).

Gene-annotation enrichment analysis

Based on the module-trait relationship analysis of the case-control cohorts COPDGene and

ECLIPSE, the red, black, greenyellow, salmon modules were most significantly associated with

Fig 2. Consensus module−trait relationships across COPDGene and ECLIPSE for cases and controls. Meta-analysis Z-

scores and p-values were based on cases and controls from COPDGene and ECLIPSE. The sign and magnitude of the Z-score

give information about the overall direction and magnitude of association.

https://doi.org/10.1371/journal.pone.0185682.g002
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the phenotypes. These phenotype-related modules were overrepresented in GO categories of

biological processes (Table 3 and S3 File). Example of enriched GO terms include “immune

response,” “defense response,” and signaling related terms in the red module; “regulation of

natural killer cell activation” and “positive regulation of natural killer cell mediated cytotoxic-

ity” as well as terms related to cell cycle and DNA checkpoints in the black module; “immune

response” and several interferon related terms in the salmon module; “multicellular organis-

mal response to stress” and energy related terms in the greenyellow module. Other modules

not as strongly associated with the phenotypes considered might be of independent interest

for other smoking related diseases. These modules were also overrepresented in GO terms of

molecular function (S2 Table and S3 File).

Fig 3. Consensus module-trait relationships across COPDGene, ECLIPSE, and TESRA for cases only. Z-scores and

meta p-values for FEV1% and FEV1/FVC were based on COPDGene, ECLIPSE, and TESRA cases. The meta p-value for

emphysema was based on COPDGene and ECLIPSE only, since the definition of emphysema in TESRA differed (see Materials

and methods). As in Fig 2, the relationship information is given in terms of Z-scores rather than correlations.

https://doi.org/10.1371/journal.pone.0185682.g003
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Table 2. Top 10 module membership genes. The module membership of a gene (kME) is the correlation between the gene and the eigengene of the mod-

ule. For the black, salmon, red and greenyellow modules, we list the top 10 kME genes based on the sum of ranks in the COPDGene and ECLIPSE cohort.

The ranks were based on kME. For COPDGene and ECLIPSE, the correlation direction between the gene and the phenotypes are represented by “+” and “-”,

if the correlation is significant at α = 0.05.

Module Genes Rank COPDGene ECLIPSE

COPDGene ECLIPSE Sum FEV1% FEV1/FVC Emph. FEV1% FEV1/FVC Emph.

red

163 genes

FCGRT 5 4 9 - - - -

TALDO1 8 10 18 - -

NFAM1 11 15 26 - -

TYROBP 2 28 30 - - - -

PFKFB4 18 14 32 - - - -

ZNF467 21 11 32 - -

FES 12 21 33 - - - -

CFP 3 32 35 - - - -

LTBR 6 29 35 - - - -

TKT 20 17 37 - - - -

black

163 genes

KLF12 2 1 3 + + +

PLEKHA1 9 2 11 + + + +

OXCT1 10 7 17 + + +

SLAIN1 3 20 23 + + + +

PSIP1 23 3 26 + + + +

RASGRP1 32 4 36 + + + +

CDC42SE2 27 11 38 + + + +

DDHD2 36 12 48 + + + +

ITK 25 23 48 + + + +

TC2N 13 37 50

greenyellow

97 genes

EIF4EBP1 7 1 8 - -

PYCARD 2 6 8 - - - -

TMEM205 8 2 10 - -

FAM127A 10 5 15 -

AGTRAP 4 12 16 - - - -

AP2S1 13 3 16 -

KIAA0930 5 15 20 - - - -

NRM 17 7 24 -

TSPO 3 22 25 - -

ZNF385A 9 16 25 - -

salmon

68 genes

IFI35 3 2 5 - -

XAF1 5 1 6 -

IFIT3 7 3 10 - -

HERC5 4 7 11

RSAD2 2 9 11 - -

MX1 13 5 18

IFI6 6 13 19 - -

UBE2L6 1 18 19

IFI44L 9 11 20

OASL 14 6 20 - -

https://doi.org/10.1371/journal.pone.0185682.t002
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Table 3. Panther results for biological processes. For each of the salmon, red, greenyellow, and black module, the top 10 enriched biological processes

GO terms are presented. The reference list consists of the 6322 genes that were mapped by PANTHER and were common to all data sets and used for mod-

ule construction. The # Hits denotes the number of genes in the module that are in the GO term. Fold Enrichment gives the overrepresentation. The p-values

were calculated by the PANTHER software based on the binomial distribution. They were adjusted based on the Benjamini-Hochberg procedure on a per

module basis, considering all tests for biological processes and molecular function (see S2 Table for molecular function GO term results).

Module Top Biological Processes Ref. list

6322 genes

# Hits Fold

Enrich.

p-value p.adjust

red

168 genes

immune response (GO:0006955) 441 33 2.82 6.1E-08 3.6E-05

defense response (GO:0006952) 454 31 2.57 1.2E-06 3.4E-04

actin polymerization or depolymerization (GO:0008154) 21 7 12.54 1.9E-06 3.6E-04

single organism signaling (GO:0044700) 1613 70 1.63 3.6E-06 3.6E-04

signaling (GO:0023052) 1615 70 1.63 3.8E-06 3.6E-04

signal transduction (GO:0007165) 1555 68 1.65 4.2E-06 3.6E-04

actin filament organization (GO:0007015) 75 11 5.52 6.4E-06 4.7E-04

immune system process (GO:0002376) 864 44 1.92 1.3E-05 7.7E-04

actin filament polymerization (GO:0030041) 11 5 17.1 1.3E-05 7.7E-04

cell communication (GO:0007154) 1649 69 1.57 1.7E-05 9.0E-04

black

164 genes

mitotic cell cycle checkpoint (GO:0007093) 78 8 3.95 1.1E-03 2.6E-02

regulation of natural killer cell activation (GO:0032814) 10 3 11.56 2.4E-03 3.6E-02

mitotic DNA integrity checkpoint (GO:0044774) 54 6 4.28 3.0E-03 4.0E-02

DNA integrity checkpoint (GO:0031570) 78 7 3.46 4.5E-03 4.3E-02

cell cycle checkpoint (GO:0000075) 103 8 2.99 5.8E-03 4.3E-02

negative regulation of mitotic cell cycle (GO:0045930) 107 8 2.88 7.2E-03 4.3E-02

snoRNA localization (GO:0048254) 5 2 15.42 7.7E-03 4.3E-02

pos. regul. of lymphocyte mediated immunity (GO:0002708) 31 4 4.97 9.0E-03 4.3E-02

regulation of interleukin-10 production (GO:0032653) 17 3 6.8 1.0E-02 4.3E-02

neural tube patterning (GO:0021532) 6 2 12.85 1.1E-02 4.3E-02

greenyellow

100 genes

multicellular organismal response to stress (GO:0033555) 17 4 14.88 1.7E-04 4.5E-03

hexose metabolic process (GO:0019318) 77 7 5.75 2.4E-04 6.0E-03

monosaccharide metabolic process (GO:0005996) 81 7 5.46 3.2E-04 6.6E-03

hexose catabolic process (GO:0019320) 21 4 12.04 3.7E-04 6.6E-03

glutathione derivative biosynthetic process (GO:1901687) 9 3 21.07 4.2E-04 6.6E-03

glutathione derivative metabolic process (GO:1901685) 9 3 21.07 4.2E-04 6.6E-03

monosaccharide catabolic process (GO:0046365) 22 4 11.49 4.4E-04 6.6E-03

glucose metabolic process (GO:0006006) 62 6 6.12 4.8E-04 6.8E-03

regulation of endopeptidase activity (GO:0052548) 146 9 3.9 5.4E-04 7.3E-03

regulation of peptidase activity (GO:0052547) 151 9 3.77 6.8E-04 7.7E-03

salmon

68 genes

type I interferon signaling pathway (GO:0060337) 38 19 46.49 1.6E-26 2.3E-24

cellular response to type I interferon (GO:0071357) 38 19 46.49 1.6E-26 2.3E-24

response to type I interferon (GO:0034340) 42 19 42.06 1.0E-25 9.9E-24

cytokine-mediated signaling pathway (GO:0019221) 195 27 12.87 3.2E-23 2.3E-21

innate immune response (GO:0045087) 239 28 10.89 3.4E-22 1.9E-20

defense response to virus (GO:0051607) 80 20 23.24 5.1E-22 2.4E-20

response to virus (GO:0009615) 125 22 16.36 5.4E-21 2.2E-19

immune response (GO:0006955) 441 33 6.96 1.6E-20 5.9E-19

response to cytokine (GO:0034097) 316 29 8.53 3.7E-20 1.2E-18

cellular response to cytokine stimulus (GO:0071345) 264 27 9.51 7.3E-20 2.1E-18

https://doi.org/10.1371/journal.pone.0185682.t003
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Comparison to previously published results

Comparison to univariate analysis of the COPDGene cohort. Of the 6267 genes used in

the module definition, 523 (or 8.34%) were previously found to be significant in a univariate

analysis for FEV1% and FEV1/FVC in the COPDGene cohort [2]. Those genes were overrepre-

sented in two modules: 25 of the 163 red module genes (or 15.34%) were significant in the uni-

variate list (Fisher’s exact p = 0.002 for overrepresentation), and 116 of the 408 turquoise

module genes (or 28.43%) were significant in the univariate list (Fisher’s exact p< 2.2 × 10−16).

Comparison to previous ECLIPSE module-phenotype associations. In the ECLIPSE

study [31], module associations with FEV1% were considered, with the most significant ones

labeled in their study as yellow, green and brown, in both their discovery and replication

cohorts. While we calculated the overlap between all modules (S6 Fig), we focused on the sig-

nificant consensus modules for FEV1% discovered in our work (black, red and greenyellow).

Our black module significantly overlaps with ECLIPSE’s blue (p = 2.4E-13) and brown

(p = 2.9E-06), based on Fisher’s exact test. Note that ECLIPSE’s blue module shows some evi-

dence of association with FEV1% as well (FDR corrected p = 5.97E-02 in discovery cohort).

Our red module overlaps with green (p = 4.9E-06) and yellow (p = 7.0E-84) in ECLIPSE, and

our greenyellow module overlaps with magenta (p = 4.1E-04), red (p = 3.0E-07), and yellow

(p = 4.4E-11). Note that ECLIPSE’s magenta and red modules show some evidence of associa-

tion with FEV1% as well (FDR corrected p = 9.31E-02 and p = 1.52E-01 for the magenta and

red modules, respectively, in discovery cohort).

Comparison to previous TESRA module-phenotype associations. In the TESRA study

[18], module associations with FEV1/FVC were considered, with the most significant ones

labeled in their study as darkturquoise, purple, saddlebrown, and cyan, with FDR adjusted p-

values 0.19, 0.19, 0.19, and 0.2, respectively. Note that they did not consider associations with

FEV1% or emphysema. We thus considered the overlap between the above mentioned TESRA

modules and the three consensus modules with the strongest association with FEV1/FVC in

our work, which are the same as for FEV1%—black, red and greenyellow. TESRA’s modules

were defined on the probe level rather than gene level, and we used the two approaches dis-

cussed in Materials and methods. The significance of the overlap were quite similar between

methods, so we only present the results from the first approach (S7 Fig). There was no overlap

between any of our three significant modules and TESRA’s darkturquoise, purple, saddle-

brown, and cyan modules.

Module—Cell type relationship

For some modules, there was overrepresentation of cell type specific genes, based on a signifi-

cance level of α = 0.05 using Fisher’s exact test (Table 4 and S3 Table). Some cell types were

overrepresented in only one non-grey module (monocyte Lipopolysaccharides day 1 and day 7

stimulation, dendritic cells), while others were overrepresented in two or more modules

(monocyte Lipopolysaccharides day 0 stimulation, NK-cells, neutrophils). T-cells, b-cells,

eosinophils, basophils/mast cells, and t-helper cells were not overrepresented in any of the col-

ored modules; however, t-cells and t-helper cells were overrepresented in the grey module. On

the other hand, for each module, except for the turquoise and grey modules, there was at most

one cell type that is overrepresented.

Discussion

COPD is a highly complex disease with widely heterogeneous phenotypes, and the relationship

between genetics, environment, and phenotypes is not well understood. Previous work has

suggested that COPD is a systemic disease [9] and that there may be genomic signatures in the
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blood [2]. We focused on the construction and analysis of consensus modules in blood to find

groups of genes that as a group have significant disease associations and biological significance.

This analysis included the largest collection of blood gene expression profiles in COPD to-date

with nearly 600 subjects across three cohorts. The consensus modules were defined based on

gene co-expression (WGCNA) in COPD cases from the COPDGene and ECLIPSE cohorts to

give us stable disease related modules, which were then validated on an independent cohort

(TESRA). From this work, we were able to uncover networks of co-expressed genes that show

consistent phenotype associations across multiple cohorts.

The advantages of gene module analysis compared to a univariate analysis is that individual

genes might have small effects on or insignificant associations with a phenotype, but that a

group of interacting genes with individually small effects might have a more significant associ-

ation. Moreover, such groups of genes often come from biologically known networks, which

makes the interpretation and reproducibility easier—particularly since individually highly

ranked genes can be poorly annotated or are often not reproducible across studies [12, 13].

Indeed, genes that were previously found to be associated with spirometry phenotypes [2]

were overrepresented in specific modules (red and turquoise), which indicates that we can par-

tially recover genes that can be found in a univariate analysis. However, not all genes present

in the significant modules were found in the univariate analysis, and, vice versa, not all signifi-

cant genes from the univariate analysis were found in significant modules. Thus, the module

approach gives an alternative view to univariate gene-phenotype relationships, with potential

benefits, particularly in Gene-annotation enrichment analysis. Testing each gene indepen-

dently is prone to decreased power due to the large multiple testing burden resulting in false

negatives. Moreover, in any univariate analysis false positives are also of major concern. We

alleviated the problems of false positives and negatives through the module approach by reduc-

ing the multiple testing burden (recall that we tested module-phenotype associations rather

than gene-phenotype associations), incorporating dependencies between genes, and using two

cohorts for robust module definition. Moreover, we found several of our modules

Table 4. Overrepresentation of cell-type specific genes in modules. Only overrepresentations significant at level α = 0.05 are displayed for readability.

For a complete table of p-values, see S3 Table. The 11 groups of distinct immune cell types considered consist of eosinophils (eos), basophils/mast cells

(mast_baso), dendritic cells (dendr), neutrophils (neut), b-cells, t-cells, NK-cells, t-helper cells (thelp), monocyte Lipopolysaccharides (LPS) day 0 stimulation,

monocyte LPS day 1 stimulation, monocyte LPS day 7 stimulation (mono_d0, mono_d1, mono_d7, respectively).

mono_d0 mono_d1 mono_d7 NK-cell t-cell b-cell neut dendr eos mast_baso thelp

turquoise 6.3E-03 3.0E-02

blue 1.5E-02

midnightblue

tan 2.4E-03

black 9.1E-03

cyan

salmon 2.1E-02

lightcyan

green 1.7E-02

pink

magenta 1.8E-02

yellow

red 7.9E-06

greenyellow 1.3E-03

grey 1.8E-02 2.7E-05

https://doi.org/10.1371/journal.pone.0185682.t004
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overrepresented for different known GO terms, which gave us an alternative view on overrep-

resentation as compared to univariate analyses. In the WGCNA module approach, we first

grouped genes into modules, and then looked for overrepresentation of these module-genes.

Overrepresentation was tested within each module as opposed to within all genes that are sig-

nificant at an individual level.

When studying module-trait relationships, we first considered the COPDGene and

ECLIPSE case-control cohorts, followed by an analysis based on the cases of all cohorts. While

the associations in the cases-cohorts are not as strong as in the complete cohorts due to the

smaller sample size and a narrower range of outcomes, our results show relatively consistent

association among different independent cohorts (COPDGene, ECLIPSE, and TESRA) and in

the sub-populations (cases only versus cases and controls). We focused on two of the primary

COPD phenotypes, airflow obstruction (FEV1% and FEV1/FVC) and CT assessed

emphysema.

The modules that were most significantly associated with airflow obstruction in the two

case-control cohorts (COPDGene and ECLIPSE) were the red, greenyellow, and black mod-

ules. The genes in the modules that were most correlated with the eigengenes had also con-

sistent associations with airflow obstruction: these genes in the red and greenyellow

modules were negatively correlated, while the genes in the black module were positively cor-

related. The trends were of similar magnitude and direction for spirometry measurements,

for which FEV1% and FEV1/FVC tend to be highly correlated. In these three modules, the

results were consistent in the case-control cohorts from COPDGene and ECLIPSE, and

nearly consistent when considering their cases-only subpopulations, albeit with less signifi-

cant associations. Out of the three modules, the TESRA cohort was consistent with the other

two cohorts only for FEV1% in the black module. A possible reason for this is that the net-

work definition was based only on the COPDGene and ECLIPSE cohorts, and the three

modules were selected based on the association of the modules in these case-control cohorts.

This suggests that the network approach could benefit from including more cohorts in the

module definition. This can be seen as strength of the WGCNA approach when considering

multiple cohorts, but it is also a limitation when considering only one cohort, which is often

the case when using WGCNA. Another likely reason for less consistency between TESRA

and COPDGene/ECLIPSE is that we get more reliable associations between modules and a

phenotype when considering the whole spectrum of the phenotype across cases and

controls.

We compared our consensus modules that had significant association with FEV1% (black,

red, and greenyellow), with modules defined previously for ECLIPSE [31] and TESRA [18].

There was strong overlap of our three significant modules with ECLIPSE’s three most signifi-

cant modules with respect to this phenotype, as well as with other ECLIPSE modules that

showed evidence of association with FEV1%. This is despite the fact that in [31] more modules

were defined than in our analysis. This could be expected to a certain degree given that we also

used ECLIPSE in the consensus module definition. However, it is reassuring that independent

analysis approaches using WGCNA gave consistent results.

There was little overlap between the modules of interest of our study and the previously

published TESRA modules [18]. This may be a result of not using TESRA in the consensus

module definition, and TESRA’s module definitions being defined using probe sets which we

then mapped to genes in the overlap analysis. It could well be that both approaches lead to dif-

ferent views on the data, that are not quite comparable.

Gene ontology enrichment analysis provided information on functional categories that

may be represented by the modules. The red module was overrepresented in GO terms such as

“immune response,” “defense response,” and “immune system process.” Moreover, cytokine
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related terms were overrepresented; in a previous study using the COPDGene a cohort, COPD

patients had a diminished cytokine response as compared to controls [32].

An additional module we considered was the turquoise module, whose associations with

the spirometry phenotypes were not as consistent and strong, except for a strong association

in the COPDGene case-control cohort. However, the turquoise module was the largest one, it

showed evidence of phenotype association, and it was overrepresented in the significant genes

from the univariate analysis in [2], which made it worth examining. The most significant over-

representation in the turquoise module was for homeostatic process, which is a more general

GO term. However, there were also more specific GO terms involving lipids and sphingolipids

in the turquoise module (e.g., lipid metabolic process, cellular lipid metabolic process, sphin-

golipid metabolic process). Sphingolipids have been implicated in the pathogenesis of COPD

(see [33] and references therein). Finally, when comparing our results to the list of significant

genes for FEV1% and FEV1/FVC from the univariate analysis in [2], both the red and turquoise

module were overrepresented in this list.

For emphysema, in the case-control cohorts of COPDGene and ECLIPSE, the salmon mod-

ule was the best candidate module (meta p = 0.06), which was overrepresented in several

immune response GO terms, and in particular, cytokine and interferon related terms; both

cytokine response and interferon gamma levels were associated with COPD outcomes [32].

Note that the dendritic cell-specific genes were overrepresented in this module, which further

points to its immune role. In the cases-only cohorts, the greenyellow module was associated

with emphysema (meta p = 0.02). In this module, sphingolipid terms were overrepresented;

sphingolipids have been associated with emphysema [33].

While including genomic data from three cohorts was a strength of this study, there were

challenges presented by some of the heterogeneity of the cohorts. For instance, the TESRA

cohort had only COPD subjects. In these sub-cohorts, we saw less significant results than in

the case-control cohorts, which is likely due to the smaller sample sizes and a narrower range

of outcomes, yielding less power. However, there was good consistency between the cohorts

with respect to module-phenotype relationships. Another challenge to our meta-analysis was

the platform dependency. We considered an additional data set from Lineagen [25]. However,

this data set was produced using the Illumina Omni-Express Chip while the other sets used

Affymetrix. In general, gene expression levels and their correlations are difficult to compare

between platforms. We thus did not include this resource in our analysis. Despite these limita-

tions, the consensus module approach demonstrated that we can identify gene modules that

are significantly associated with COPD phenotypes. Some of these modules were enriched

with genomic signatures identified in univariate analyses of spirometry associated genes [2,

33], but also included novel genes that fit in similar GO categories. This indicates that a combi-

nation of cases-based consensus modules and case-control based eigengene analysis can con-

sistently find biologically relevant groups of genes, and that this approach might be more

robust than univariate analyses that often cannot be reproduced in independent cohorts. The

modules might serve as biomarkers, and provide insight into new targets for therapy. In sum-

mary, since the consensus gene modules were replicated in multiple cohorts and are highly

connected, they are stronger candidates (compared to genes discovered using single gene

approaches in only one cohort) for testing as biomarkers in additional cohorts or cohorts with

different ethnic background, or mechanistically in cell or tissue functional studies.

Supporting information

S1 Fig. Module-trait relationships in COPDGene cases and controls. Module-trait relation-

ship using consensus module definition for COPDGene cases and controls data.
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Correlations were calculated between module eigengenes and phenotypes; p-values are pro-

vided in brackets.

(TIFF)

S2 Fig. Module-trait relationships in ECLIPSE cases and controls. Module-trait relationship

using consensus module definition for ECLIPSE cases and controls data. Correlations were

calculated between module eigengenes and phenotypes; p-values are provided in brackets.

(TIFF)

S3 Fig. Module-trait relationships in COPDGene cases. Module-trait relationship using con-

sensus module definition for COPDGene cases data. Correlations were calculated between

module eigengenes and phenotypes; p-values are provided in brackets.

(TIFF)

S4 Fig. Module-trait relationships in ECLIPSE cases. Module-trait relationship using con-

sensus module definition for ECLIPSE cases data. Correlations were calculated between mod-

ule eigengenes and phenotypes; p-values are provided in brackets.

(TIFF)

S5 Fig. Module-trait relationships in TESRA cases. Module-trait relationship using consen-

sus module definition for TESRA data. Correlations were calculated between module eigen-

genes and phenotypes; p-values are provided in brackets.

(TIFF)

S6 Fig. Overlap between consensus modules and ECLIPSE module definitions in [31]. This

overlap analysis is performed similarly to the one in Fig 1. The row labels give the color (label)

of the consensus modules and the number of genes in the module. The columns represent in

an analogous way the modules for the ECLIPSE modules from [31] (recall that we filtered the

genes as described in Materials and methods). The number in each cell gives the number of

genes common to the modules in the corresponding row and column; the heatmap colors rep-

resent the −log10 transformed p-values (truncated at 50), which are based on Fisher’s exact test.

Note that the module colors have no meaning, they simply represent consensus modules or

ECLIPSE’s modules.

(TIFF)

S7 Fig. Overlap between consensus modules and TESRA module definitions in [18]. This

overlap analysis is performed analogously to the one in S6 Fig, but with the TESRA cohort

instead of the ECLIPSE cohort. See also Materials and methods for a filtering of the genes.

(TIFF)

S1 File. Module definitions. This file provides a list of all modules and their genes.

(CSV)

S2 File. Module membership (kME) and gene-phenotype correlations. These files provide

the results from correlating genes with phenotypes as well as the genes’ module memberships

kME, i.e. eigengene (EG) correlation.

(ZIP)

S3 File. Panther results. This Microsoft Excel file lists the results from the enrichment analysis

using PANTHER. The file contains one sheet for each module, listing the GO terms along

with enrichment statistics and p-values.

(XLSX)
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S1 Table. The outcomes for the data sets from the COPDGene, ECLIPSE, and TESRA stud-

ies are adjusted for covariates using linear and beta regression.

(PDF)

S2 Table. Panther results for molecular function. The structure of this table is the same as of

Table 3. The difference is that we considered molecular function GO terms rather than biologi-

cal processes terms.

(PDF)

S3 Table. Module—Cell relationship. Overrepresentation of cell type specific genes in con-

sensus modules was calculated using Fisher’s exact test. The 11 groups of distinct immune cell

types considered consist of eosinophils (eos), basophils/mast cells (mast_baso), dendritic cells

(dendr), neutrophils (neut), b-cells, t-cells, NK-cells, t-helper cells (thelp), monocyte Lipopoly-

saccharides (LPS) day 0 stimulation, monocyte LPS day 1 stimulation, monocyte LPS day 7

stimulation (mono_d0, mono_d1, mono_d7, respectively).

(PDF)
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