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Abstract

The identification of immune correlates that are predictive of disease outcome for tuberculo-

sis remains an ongoing challenge. To address this issue, we evaluated gene expression

profiles from peripheral blood mononuclear cells following ex vivo challenge with Mycobac-

terium tuberculosis, among participants with active TB disease (ATBD, n = 10), latent TB

infection (LTBI, n = 10), and previous active TB disease (after successful treatment; PTBD,

n = 10), relative to controls (n = 10). Differential gene expression profiles were assessed by

suppression-subtractive hybridization, dot blot, real-time polymerase chain reaction, and

the comparative cycle threshold methods. Comparing ATBD to control samples, greater

fold-increases of gene expression were observed for a number of chemotactic factors

(CXCL1, CXCL3, IL8, MCP1, MIP1α). ATBD was also associated with higher IL1B gene

expression, relative to controls. Among LTBI samples, gene expression of several chemo-

tactic factors (CXCL2, CXCL3, IL8) was similarly elevated, compared to individuals with

PTBD. Our results demonstrated that samples from participants with ATBD and LTBI have

distinct gene expression profiles in response to ex vivo M. tuberculosis infection. These find-

ings indicate the value in further characterizing the peripheral responses to M. tuberculosis

challenge as a route to defining immune correlates of disease status or outcome.

Introduction

Globally, 10.4 million incident cases of active tuberculosis (TB) disease (ATBD) and 1.4 mil-

lion TB-related deaths were reported in 2015 [1]. Over the past century, anti-TB drugs, bacille

Calmette-Guérin (BCG) vaccination, and public health strategies such as directly observed

treatment, have contributed to a reduction in TB-related mortality [1]. However, latent TB

infection (LTBI) and recurrent ATBD remain critical issues for global control [1, 2],
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particularly given that previous anti-TB treatment is an established risk factor for drug resis-

tance [3, 4].

Determining the contribution of Mycobacterium tuberculosis re-infection, as opposed to

reactivation, is a challenge for numerous TB control programs, especially in endemic areas [5].

M. tuberculosis re-infection can occur at any time during ATBD and LTBI, and is independent

of relapse [5]. Moreover, the inability of vaccination to protect against M. tuberculosis re-infec-

tion and reactivation represent significant gaps in research and therapeutics [6–8]. The sole

approved vaccine BCG and vaccines in the development pipeline are largely protective against

ATBD [9], and not LTBI or exogenous M. tuberculosis re-infection [8, 10]. Currently there is

no approved and effective vaccine for individuals with LTBI [8, 10].

The assessment of vaccine efficacy hinges on identifying biomarkers predictive of disease

progression and outcomes [8, 11, 12]. Given the numerous constraints for TB vaccine develop-

ment, it has been hypothesized that identification of peripheral correlates of protective immu-

nity against M. tuberculosis may be more realistic, compared to a single biomarker [13–15]. A

unique transcriptional signature has been identified for ATBD; this whole-blood transcript sig-

nature was associated with disease severity and observed to resolve after treatment [16]. The

extent to which this signature is predictive rather than diagnostic still needs to be determined.

Previous studies have argued that differential gene expression was associated with TB disease

recurrence, susceptibility, and host control [17–19]. Little is known regarding transcriptional

biomarkers of post-primary M. tuberculosis re-infection or even enhanced exposure due to

reactivation, despite the public health significance.

Distinguishing gene expression patterns following ex vivo challenge with M. tuberculosis
among individuals with ATBD, LTBI, previous active TB disease (PTBD; after successful treat-

ment) has significance in identifying diagnostic and predictive biomarkers, which are required

for development of vaccines and therapeutics [20, 21]. Our study objective involved delineat-

ing patient responses to the ex vivo challenge of M. tuberculosis through analysis of the relative

gene expression profiles between study participants with ATBD, LTBI, PTBD, compared to

controls.

Materials and methods

Ethical conduct of research

The Institutional Ethics Review Committees at St. John’s Medical College and Hospital

(St. John’s National Academy of Health Sciences; Bangalore, Karnataka, India) and Arogya-

varam Medical Centre (Arogyavaram, Andhra Pradesh, India) approved the study protocol.

Study participants provided voluntary informed consent prior to data collection.

Study population

Study participants (n = 40) were enrolled at a hospital outpatient department (St. John’s Medi-

cal College and Hospital, Bangalore, Karnataka) in India. Participants included four groups of

patients with ATBD (n = 10) and LTBI (n = 10), PTBD (n = 10), and controls (n = 10). Inclu-

sion criteria included TB status (defined below), and BCG vaccination. Exclusion criteria

included: age (� 14 years), HIV infection (GS HIV Combo Ag/Ab EIA; Bio-Rad Laboratories,

Redmond, Washington, United States).

Definitions of TB status included: ATBD, LTBI, and PTBD. ATBD status was based on

acid-fast bacilli (AFB) sputum smear microscopy, which was performed by standard protocol

(Ziehl-Neelsen staining), or Xpert MTB/RIF (Cepheid, Sunnyvale, California, United States).

Patients with ATBD were newly diagnosed and had not initiated anti-TB treatment (or

received<1 week of treatment). LTBI was diagnosed by QuantiFERON-TB Gold In-Tube
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(QFT-G; Cellestis Limited, Carnegie, Victoria, Australia). Blood samples were collected in

QFT-G tubes, assayed according to manufacturer protocol and by enzyme-linked immunosor-

bent assay. Study enrollment was based on a positive QFT-G diagnostic result. PTBD was

defined as having previous ATBD (pulmonary), anti-TB treatment, and post-treatment spu-

tum conversion. PTBD patients received 6 months of anti-TB treatment for ATBD; study

enrollment occurred between 2–371 days after completing treatment. Controls were consid-

ered individuals with a negative QFT-G diagnostic result.

Sample collection and peripheral blood mononuclear cell isolation

Venous blood samples (8 mL) were collected in mononuclear cell preparation tubes (CPT™;

Becton Dickinson Vacutainer Systems; Franklin Lakes, New Jersey, United States), and pro-

cessed per manufacturer’s instructions.

Peripheral blood mononuclear cells (PBMCs) were isolated from blood samples, based on

manufacturer instructions (CPT™; Becton Dickinson Vacutainer Systems; Franklin Lakes,

New Jersey, United States). PBMCs were suspended at 5 x 106 cells/mL in cryopreservation

medium (45% RPMI 1640, 45% fetal bovine serum, 10% dimethyl sulfoxide), and incubated

overnight at -80˚C (in Mr. Frosty™ freezing container; Nalgene, Rochester, New York, United

States). PBMCs were stored in liquid nitrogen prior to analyses.

Mycobacterium tuberculosis infection

Frozen PBMCs were thawed and incubated overnight (37˚C in a 5% CO2 humidified incuba-

tor) in growth media (RPMI 1640 [Gibco Laboratories; Grand Island, NY] with 2mM gluta-

mine, 10% fetal bovine serum, 10mM 2-[4-[2-hydroxyethyl]-1-piperazinyl] ethanesulfonic

acid, [Antibiotic-Antimycotic solution; Gibco Laboratories; Grand Island, New York, United

States]). Cells (106) were washed and re-suspended in fresh growth media containing 2 μg/ml

whole cell lysate of M. tuberculosis strain H37Rv (Mycobacteria Research Laboratories at Colo-

rado State University, Colorado, United States) for 48 hours (37˚C in a 5% CO2 humidified

incubator). An initial pilot study standardized the lysate concentration required for

stimulation.

Ribonucleic acid isolation

Total ribonucleic acid (RNA) was extracted (RNA Easy Plus Kit; Qiagen, Hilden, Germany)

and quantitated (Qubit1 2.0 fluorometer; Life Technologies, Milan, Italy) for suppression sub-

tractive hybridization (SSH). In two patient groups (ATBD, LTBI), 300 ng total RNA from

each individual were pooled and quantified. Pooled total RNA (300 ng) was used for comple-

mentary deoxyribonucleic acid (cDNA) synthesis (SMARTer™ polymerase chain reaction

[PCR] cDNA Synthesis Kit; Clontech Laboratories, Inc., Palo Alto, California, United States).

Complementary deoxyribonucleic acid subtractive libraries

SSH libraries were created with the PCR-select cDNA subtraction kit (Clontech Laboratories,

Inc.; Palo Alto, California, United States), per the manufacturer instructions. In forward sub-

traction (ATBD-LTBI), cDNA from the ATBD group was the tester and LTBI was the driver.

Conversely, in reverse subtraction (LTBI-ATBD), LTBI cDNA was the tester and ATBD

cDNA was the driver. Real-time PCR (Rotor Gene 6000; Qiagen Inc., Hilden, Germany)

amplified the subtracted, unsubtracted, and control cDNA with M13 primers. Following PCR

(DNA amplification), products were cloned in the PCR 2.1-TA vector (Invitrogen, Carlsbad,

California, United States) and transformed into Escherichia coli Top10 cells. From forward
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subtraction, approximately 200 clones were obtained; in reverse subtraction, about 150 clones

were obtained. Subtraction efficiency was evaluated by comparing glyceraldehyde-3-phosphate

dehydrogenase expression in the subtracted and unsubtracted cDNA.

Dot blot hybridization

PCR product (5 μl) were transferred to two nylon membranes. The two identical membranes

were hybridized with a tester and driver probe. Digoxigenin (DIG)-labeled probes (DIG-High

Prime Labelling and Detection kit; Roche Diagnostics; Mannheim, Germany) visualized

hybridization by a color reaction. The detected (differentially expressed) clones were

sequenced (ABI 3730 DNA Analyzer; Applied Biosystems, Foster City, California, United

States). Sequences were compared with the National Center for Biotechnology Information

(NCBI; National Institutes of Health) reference database (Basic Local Alignment Search Tool

[BLAST]).

PCR quantification of gene expression

Gene expression of the identified sequences (from hybridization) were further assessed with

real-time PCR (Rotor Gene 6000; Qiagen Inc., Hilden, Germany) in replicate. Primers were

designed with NCBI Primer-BLAST (S1 Table). Each PCR reaction included: 0.3 μg cDNA,

200 nM primers, 12.5 μL 2x KAPA SYBR FAST quantitative polymerase chain reaction

(qPCR; KAPA Biosystems; Boston, Massachusetts, United States). PCR cycling conditions

were: 1 cycle (95˚C for 3 minutes); 35 cycles (95˚C for 30 seconds, 60˚C for 1 minute). Human

acidic ribosomal protein (HUPO) was the internal control gene. Cycle thresholds (CT) were

calculated through the Rotor Gene software (version 1.7.87).

Statistical analysis

Relative gene expression was reported as fold-change, based on the comparative cycle thresh-

old (2-ΔΔCT) method [22] with HUPO as the internal control gene. Specifically:

Fold‐change ¼ 2� DDCT; ð1Þ

where

2� DDCT ¼ 2� ðð½CT target gene� CT HUPO� sample AÞ� ð½CT target gene � CT HUPO� sample BÞÞ ð2Þ

[22]

For each comparison, fold-change was reported as the average of the fold-changes of the

two replicates (Table 1).

Table 1. Pairwise comparison groupsa.

ATBD Controls

LTBI Controls

PTBD Controls

ATBD LTBI

ATBD PTBD

LTBI PTBD

aAbbreviations: active TB disease (ATBD), latent TB infection (LTBI), previous active TB disease (PTBD;

after successful treatment)

https://doi.org/10.1371/journal.pone.0185640.t001
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For sociodemographic characteristics, the normality assumption of the age variable was

assessed by the Kolmogorov-Smirnov test. Comparisons between the four study participant

groups were evaluated by Kruskal-Wallis and Fisher’s exact tests. Statistical analysis was con-

ducted with SAS (version 9.4; SAS Institute, Inc., Cary, North Carolina, United States); statisti-

cal significance was based on alpha value< 0.05 and two-tailed tests.

Results

Study population

Among the study participants, 65.0% were male (Table 2). The proportion of men differed

across TB status (ATBD, LTBI, PTBD, controls) (p = 0.03). The median age was 31.5 years

(interquartile range [IQR] 27.0–40.5; Table 2), and ranged between 18–65 years. Median age

was similar in the four study participant groups (p = 0.32).

Active TB disease associated with increased cytokine gene expression

After M. tuberculosis infection, ATBD patient samples had increased gene expression of che-

motactic factors (chemokine [C-X-C motif] ligand 1 [CXCL1], 3 [CXCL3], 8 [CXCL8 or inter-

leukin [IL]-8]; chemokine [C-C motif] ligand 2 [CCL2; monocyte chemotactic protein [MCP]

1; macrophage inflammatory protein [MIP] 1α] compared to controls (Fig 1, S2 Table). The

fold-increases in chemokine expression were also greater among ATBD samples (2.7-fold

CXCL1, 2.8-fold CXCL2, 3.1-fold CXCL3, 3.5-fold CXCL8, 2.2-fold CCL2, 1.6-fold MIP1α),

compared to LTBI (Fig 1, S3 Table). In contrast, CCL8 (MCP2) gene expression was similar in

comparing ATBD versus LTBI 1.1-fold (S3 Table).

Relative to controls, ATBD was associated with higher gene expression of ILs (2.1-fold

IL1B; Fig 1; S2 Table), which regulate the T helper 2 (Th2) response. In comparison to LTBI,

ATBD samples had elevated IL1B (2.6-fold) and IL-12R (2.1-fold) gene expression (Fig 1).

Latent TB infection versus previous active TB disease

In comparing LTBI against PTBD groups, several chemotactic factors were elevated (1.7-fold

CXCL2, 2.0-fold CXCL3, 1.7-fold CXCL8 [IL-8]) although others were similar (1.1-fold CCL2

[MCP1]; Fig 1).

Table 2. Study participant characteristics (n = 40)a.

Males, n (%) 26 (65.0)

Age (years), median (IQR) 31.5 (27.0, 40.5)

TB, n (%)

ATBD b 10 (25.0)

LTBI c 10 (25.0)

PTBD d 10 (25.0)

No TB (control) e 10 (25.0)

aAbbreviations: active TB disease (ATBD), latent TB infection (LTBI), previous active TB disease (PTBD;

after successful treatment).
bAcid-fast bacilli [AFB] sputum smear microscopy
cIndividuals with a positive QuantiFERON Gold In-tube and negative AFB diagnostic
dIndividuals with previous ATBD who recently received anti-TB treatment for pulmonary TB (2–371 days

prior to study enrollment), and post-treatment sputum conversion (based on AFB)
eControls were considered individuals with negative QFT-G and AFB diagnostic results.

https://doi.org/10.1371/journal.pone.0185640.t002
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Discussion

In summary, the gene expression profiles in ATBD, LTBI, PTBD, and control human study

participants exhibit distinct patterns. These data provide a foundation for characterizing bio-

marker panels as correlates of protective immunity, which would serve as valuable surrogates

in future development of TB vaccines and therapeutics.

Our findings are consistent with previous literature that observed elevated innate immune

responses to M. tuberculosis, as well as M. tuberculosis evasion tactics in ATBD [23–28]. Similar

to our results, other studies have established the importance of cytokines (including constitu-

tive and stimulated chemokine gene expression such as MCP-1, IL-8, MIP1α) in host protec-

tion against M. tuberculosis [24–28]. M. tuberculosis has been shown to induce IL1B in

dendritic cells, which upregulates the host Th2 response and dampens the protective Th1

response [23].

Additionally, similar to our results other data indicated that the gene expression of chemo-

kines (including MIP1α) may differ during ATBD. Studies have identified a role for microbial

lipoproteins in stimulating cytokine production (such as IL-12) in macrophages (via Toll-like

receptors) [29]. MIP has also been found to be present in infectious pathogens, such as Chla-
mydial trachomatis [30].

Broadly, other studies have also highlighted the potential of biomarker panels (including

host protein biosignatures) as indicators of the immune response against M. tuberculosis that

could have diagnostic and/or predictive value [14–16, 31]. Furthermore, prior studies contend

that differential gene expression was associated with increased risk of TB disease progression

and relapse [17–19]. One study with whole-blood microarray analysis reported differential

gene expression between patients with ATBD and LTBI, and identified gene expression pro-

files associated with host control of M. tuberculosis (specifically apoptosis and natural killer cell

activity) [17]. Two studies indicated that differential gene expression profiles could associate

with TB relapse [18, 19]. These studies show that biomarker profiles have potential to be more

robust than single biomarkers of TB immunity. Interferon (IFN)-gamma, for example, is per-

haps the most utilized candidate TB biomarker for a protective immune response against M.

tuberculosis [32–35]; however IFN-gamma has low accuracy and predictive power, especially

as a biomarker of protection or disease outcome [33].

Our study has several limitations. Firstly, PBMCs were cryopreserved prior to M. tuberculo-
sis stimulation and RNA extraction, which could affect transcriptional processes. Secondly, the

interpretation of gene expression in biological function remains preliminary [36].

Fig 1. Relative gene expression among patients with ATBD, LTBI, PTBD, and controlsa. a

Abbreviations: active TB disease (ATBD), chemokine (C-X-C motif) ligand: (CXCL), cluster of differentiation

(CD), ferritin light chain (FTL), gamma-interferon-inducible protein (IP30), interleukin (IL), latent TB infection

(LTBI), mitogen activated protein kinase kinase (MAP2K), macrophage inflammatory protein (MIP), monocyte

chemotactic protein (MCP), previous active TB disease (PTBD; after successful treatment), Ras-related

nuclear protein (RAN).

https://doi.org/10.1371/journal.pone.0185640.g001

Gene expression after M. tuberculosis re-challenge

PLOS ONE | https://doi.org/10.1371/journal.pone.0185640 October 4, 2017 6 / 9

https://doi.org/10.1371/journal.pone.0185640.g001
https://doi.org/10.1371/journal.pone.0185640


Additionally, given the use of 2-ΔΔCT as a relative gene expression quantitation method [22],

the findings need to be confirmed and extended with additional housekeeping controls [37].

Due to the pooling of samples in each group, there was no variance data, which restricted sta-

tistical analyses and corrections for multiple hypothesis testing. Further confirmatory studies

could alternatively utilize groupwise comparisons.

Future studies are needed to elucidate the role of transcriptional signatures as immune cor-

relates (including via single cell analysis [38, 39], prior to any claims that such profiles are pre-

dictive of clinical morbidities (ATBD, LTBI) and treatment outcomes. Studies to date have

assessed cross-sectional data and therefore have not allowed for causal inference, which we

could potentially address in a human cohort. Furthermore, studies need to account for other

potential confounding factors, including the heterogeneity of patient immune response [40,

41]. Nonetheless, these data provide a useful platform in defining initial immunological

themes that allow us to differentiate between human patients that fall into the active (ATBD),

latent (LTBI), and active-treated (PTBD) disease classes.
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