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Abstract

Paulownia tomentosa is a fast-growing tree species with multiple uses. It is grown world-

wide, but is native to China, where it is widely cultivated in saline regions. We previously

confirmed that autotetraploid P. tomentosa plants are more stress-tolerant than the diploid

plants. However, the molecular mechanism underlying P. tomentosa salinity tolerance has

not been fully characterized. Using the complete Paulownia fortunei genome as a reference,

we applied next-generation RNA-sequencing technology to analyze the effects of salt stress

on diploid and autotetraploid P. tomentosa plants. We generated 175 million clean reads

and identified 15,873 differentially expressed genes (DEGs) from four P. tomentosa libraries

(two diploid and two autotetraploid). Functional annotations of the differentially expressed

genes using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes data-

bases revealed that plant hormone signal transduction and photosynthetic activities are vital

for plant responses to high-salt conditions. We also identified several transcription factors,

including members of the AP2/EREBP, bHLH, MYB, and NAC families. Quantitative real-

time PCR analysis validated the expression patterns of eight differentially expressed genes.

Our findings and the generated transcriptome data may help to accelerate the genetic

improvement of cultivated P. tomentosa and other plant species for enhanced growth in

saline soils.

Introduction

Plants, as sessile organisms, must cope with a multitude of biotic and abiotic stresses through-

out their life cycle. Among the abiotic stresses (e.g., high salinity, extreme temperatures,

drought, heavy metal contamination, and nutrient deficiency), salt stress is the most serious

threat to sustainable agricultural productivity worldwide, but especially in developing coun-

tries [1]. High salinity affects more than 800 million ha of land, which represents more than

6% of the total global land area. This area includes 45 million ha (i.e., approximately 20%) of

the 230 million ha of irrigated land [2]. Soil salinity affects plants in two ways: One, high salt
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concentrations make it difficult for roots to take up enough water; and two, high intracellular

salt concentrations can be toxic to plants.

Paulownia tomentosa is indigenous to China, where it grows in the plains and at altitudes

up to 2000 m [3]. This tree species has been introduced to Japan and Southeast Asia, Australia,

Brazil, Europe, and North and Central America. P. tomentosa is an economically important

tree species in the family Scrophulariaceae. It is used to make aircraft parts, toys, musical

instruments, plywood, furniture, and medicinal compounds [4]. Paulownia species are also

useful as fertilizers and fodder [3]. Its benefits to the environment are partly based on the fact

it can grow in nutrient-poor soil and has a deep root system [5, 6]. These characteristics make

P. tomentosa potentially useful for reforestation of areas with nutrient-poor soils [7]. P. tomen-
tosa trees can adapt to different soil conditions and climates [8, 9], and are planted mainly in

salinized soil, saline-alkali soil [10], or in regions with limited irrigation water [11]. This sug-

gests that this tree species may be genetically adapted to saline conditions and other stresses.

Thus, the molecular mechanisms regulating the adaptation of P. tomentosa to salt stress should

be characterized.

An autotetraploid P. tomentosa line has been generated from a diploid line using colchi-

cines [12]. Compared with diploid P. tomentosa plants, the autotetraploid plants exhibit higher

net photosynthetic rates and better wood physical properties [13, 14]. We previously analyzed

the morphology and physiology of P. tomentosa trees, and confirmed that autotetraploid

P. tomentosa trees are more stress resistant than the diploid trees [15–17].

Before the Paulownia fortunei genome was sequenced, several studies of the P. tomentosa
transcriptome [9, 18–20], miRNAs [21–23], and proteome were conducted [24]. These studies

were focused mainly on diploid and autotetraploid P. tomentosa, Paulownia witches’ broom

disease, and drought, and salt stress against the background of the transcriptome data. The

genomes of many plant species have now been sequenced, including Phoenix dactyliferaL.

[25], Malus × domesticaBorkh [26], and Populustrichocarpa [27], and the increasing availability

of sequenced plant genomes has encouraged researchers to analyze non-model plants using

high-throughput sequencing techniques. Sequenced genomes also improve the accuracy of

gene annotations. However, until now, there have been no published investigations focused on

Paulownia species, including P. tomentosa, based on the P. fortunei genome. Additionally,

there has been very little research into the effects of salt stress on P. tomentosa [20], and the

mechanism regulating salt tolerance has not been elucidated.

In this study, we used an RNA-sequencing (RNA-Seq) technique based on the P. fortunei
genome to analyze the transcript profiles of salt-stressed and control diploid and autotetra-

ploid P. tomentosa lines. The diploid and autotetraploid P. Tomentosa trees were acquired

from the same tissue culture, and may represent biological replicates. The autotetraploid

P. tomentosa line was considered to be more appropriate for investigating plant responses to

salt stress than the natural diploid line. The Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) databases were used to analyze the differentially expressed

genes (DEGs) among four pairwise comparisons. The expression patterns of eight DEGs

were confirmed with a quantitative real-time polymerase chain reaction (qRT-PCR) assay.

Additionally, bioinformatics analyses helped to elucidate plant hormone signal transduction

pathways (abscisic acid and cytokinin) and photosynthetic activities. Furthermore, some

transcription factors (TFs), such as bHLH, MYB, and NAC, were observed to be associated

with salt stress responses or ploidy levels. To the best of our knowledge, this is the first

report comparing the diploid and autotetraploid P. tomentosa lines based on the whole

genome sequence of P. fortunei. The genetic basis of P. tomentosa salt tolerance was also

investigated.
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Materials and methods

Plant materials and salt treatments

All plant materials used in this study were obtained from the Institute of Paulownia, Henan

Agricultural University, Zhengzhou, Henan Province, China. The tissue-cultured diploid and

autotetraploid P. tomentosa seedlings were grown for 30 days at 25 ± 2˚C on half-strength

Murashige and Skoogmedium [28] with a 16-h photoperiod (light intensity: 130 μmol m−2

s−1). The test-tube plantlets were then transferred outdoors into nutritive bowls containing

normal garden soil supplemented with 0.11% (quality score) NaCl solution, and grown for

another 30 days. Consistently growing healthy seedlings were transferred to larger nutritive

bowls with trays underneath. After 50 days, the uniformly growing seedlings were irrigated

with 0% (control) or 0.4% (quality score) NaCl solutions. For the salt treatment, NaCl was

weighed and divided into three equal parts, which were dissolved in water and poured into the

bowls. The water that accumulated in the trays below the bowls was poured back into the

bowls. The seedlings were treated with the control or salt solution every 3 days. After all of the

salt water was added back into the bowls, the plants were watered every 2 days to maintain the

soil moisture content at 75%. After 15 days, the second pair of leaves (fully expanded leaves)

from the apex shoot of the control and salt-treated diploid and autotetraploid P. tomentosa
plants were collected and immediately frozen in liquid nitrogen. The samples were stored at

−80 ± 2˚C. The control diploid and autotetraploid P. tomentosa samples were named PT2 and

PT4, respectively, while the salt-treated diploid and autotetraploid samples were named PT2S

and PT4S, respectively.

RNA extraction, cDNA library preparation, and sequencing

Total RNA was extracted from PT2, PT4, PT2S, and PT4S leaf samples using the Plant RNA

Isolation Kit (AutoLab, Beijing, China) and concentrated using an RNeasy MinElute Cleanup

Kit (Qiagen, Valencia, CA, USA). The RNA was then treated with DNase I to eliminate any

contaminating genomic DNA. Oligo-d(T) magnetic beads were used to isolate mRNA from

the purified total RNA. The mRNA was fragmented in fragmentation buffer (Life Technolo-

gies, Beijing, China), and then used as the template for cDNA synthesis. Short fragments were

purified and resolved with ethidium bromide buffer for the subsequent end-repair and A (ade-

nine)-tailing. The short fragments were linked to adapters, and analyzed by agarose gel electro-

phoresis. The suitable fragments were selected as templates for qRT-PCR. The quality and

quantity of the sample libraries were analyzed using an Agilent 2100 Bioanalyzer (Agilent

Technologies, Palo Alto, CA, USA). The qRT-PCRs were conducted using an ABI StepOne-

Plus Real-Time PCR System (ABI, New York, NY, USA). Finally, the libraries were sequenced

on an IlluminaHiSeq™ 2000 platform.

Quality control and alignment/mapping of clean reads

The original image data were transformed into sequence data via base calling. These raw reads

were filtered using the SOAPnuke program, as previously described [20], and the remaining

“clean” reads were used in the downstream bioinformatics analyses. The quality of the clean

reads data was assessed using base composition and quality distribution charts. The remaining

reads were aligned to the P. fortunei genome and gene sequences using BWA and Bowtie,

respectively. The statistics of alignment results will be presented for each reference. During the

RNA-sequencing experiment, transcripts were chemically fragmented and then sequenced.

The distribution of reads on the genes was used to evaluate the randomness of the RNA frag-

mentation associated with the constructed libraries [29].

Genome-wide expression analysis of salt-stressed Paulownia tomentosa
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Gene expression analysis

Gene expression levels were determined with the RSEM (RNA-Seq by Expectation Maximiza-

tion) software package. The FPKM method (fragments per kb per million fragments) was used

to calculate expression levels and to identify DEGs [30]. In multiple tests, the false discovery

rate (FDR) was applied to determine the threshold p-value [31]. FDR� 0.001 and absolute log2

ratio� 1 were used as the threshold to evaluate the significance of gene expression differences.

Correlations between two samples were assessed based on the FPKM result. Ideally, the

squared correlation value should be� 0.92 according to the standard recommended by the

ENCODE. The distances between expressed genes were calculated according to the Euclidean

method. The sum of squared deviations algorithm was used to calculate the distance between

samples so that a cluster tree could be built. The DEGs between two libraries were identified

using the Audic-Claverie statistic [32]. The DEGs were functionally annotated based on GO

terms and KEGG pathways.

Analysis of differentially expressed genes

The DEGs were first mapped to GO terms in the GO database, and the number of genes for

each term was calculated. Then, the hypergeometric test was used to identify significantly

enriched GO terms (http://www.geneontology.org/). The calculated p-values were adjusted

using the Bonferroni correction [33], with a corrected p-value� 0.05 used as the threshold.

GO terms that fulfilled, this condition were defined as significantly enriched, and were consid-

ered to describe the main biological functions of the DEGs. The WEGO program [34] was

used to functionally classify the DEGs and to assess the distribution of gene functions in

P. tomentosa at a macro level. The KEGG database was used to identify enriched pathways

associated with the DEGs [33].

TFs generally contain a DNA-binding domain and a trans-acting functional domain [35].

We used the hmmsearch program to search the HMMS database for domain characteristics,

and to predict if a gene encoded a TF. Additionally, the TopHat program was used [36] to ana-

lyze the various types of alternative splicing (AS)-related clean reads mapped to the P. fortunei
reference genome in the four samples. The AS events that were identified in both replicates

were considered as stable events.

Comparison of gene expression profiles among different samples

The following pairwise comparisons of DEGs were evaluated (Fig 1): Comparison A: co-up-

and co-down-regulation in PT2S vs. PT2 and PT4S vs. PT4; Comparison B: down-regulation

in PT2S vs. PT2, and up-regulation in PT4S vs. PT4 as well as up-regulation in PT2S vs. PT2,

and down-regulation in PT4S vs. PT4; Comparison C: up-regulation in PT4 vs. PT2 and PT4S

vs. PT2S as well as down-regulation in PT4 vs. PT2 and up-regulation in PT4S vs. PT2S; and

Comparison D: up-regulation in PT4 vs. PT2, and down-regulation in PT4S vs. PT2S as well as

down-regulation in PT4 vs. PT2 and PT4S vs. PT2S.

PT2 and PT4 represent the diploid and autotetraploid P. tomentosa with salt-untreated,

PT2S and PT4S represents the diploid and autotetraploid P. tomentosa with salt-treated (0.4%

Nacl).(1) Differentially expressed genes (DEGs) were co-up-regulation between the PT2S vs.
PT2 and PT4S vs. PT4 comparison to screen for gene from both diploid and autotetraploid

P. tomentosa after salt treatment were strengthened. (2) DEGs co-down-regulation in the PT2S

vs. PT2 and PT4S vs. PT4 comparison. (3) DEGs down-regulation in the PT2S vs. PT2 compar-

ison, but up-regulation in the PT4S vs. PT4 comparison. (4) DEGs up-regulation in the PT2S

vs. PT2 comparison, but down-regulation in the PT4S vs. PT4 comparison. (5) DEGs were co-

up-regulation between the PT4 vs. PT2 and PT4S vs. PT2S comparison. (6) DEGs down-
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regulation in the PT4 vs. PT2 comparison but up-regulation in the PT4S vs. PT2S comparison.

(7) DEGs up-regulation in the PT4 vs. PT2 comparison but down-regulation in the PT4S vs.
PT2S comparison. (8)DEGs co-down-regulation in the PT4 vs. PT2 and PT4S vs. PT2S com-

parison. Comparison A: (1) and (2). Comparison B: (3) and (4). Comparison C: (5) and (6).

Comparison: from (7) and (8).

Quantitative real-time polymerase chain reaction analysis of differentially

expressed genes

Total RNA that was extracted from the PT2 and PT4 leaf samples as described above. Three

independent biological samples of each were employed in this analysis. The SsoAdvanced™
SYBR1 Green Supermix (Bio-Rad, Hercules, CA, US) was used for the qRT-PCRs. The ampli-

fication reactions were performed as follows: 95˚C for 3 min, followed by 40 cycles of 95˚C for

10 s and 55˚C for 30 s, and derived melting curves were obtained. The reactions were per-

formed on a CFX96™ Real-Time System (Boi-Rad, Hercules, CA, USA) and all reactions were

run in triplicate. 18S rRNA was used as an internal reference gene. The relative expression lev-

els were calculated using the 2-ΔΔCt method. The primers used for the qPCR reactions were

listed in Table 1.

Results

Sequencing of mRNA and alignments with the reference genes and

genome

Approximately 187 million raw reads were generated for the four sequenced libraries (PT2,

PT2S, PT4, and PT4S). Low-quality reads as well as reads with adapter sequences or several

Fig 1. Comparison schemes of the four samples.

https://doi.org/10.1371/journal.pone.0185455.g001
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unknown bases were eliminated. The quality of the remaining clean reads was assessed using

base composition and quality distribution charts. We observed a balanced base composition,

with a T curve that was in accordance with the A curve, as well as a satisfactory base composi-

tion, high quality sequences, and base ratios that were mostly> 20 (Fig 2). The clean reads

were evenly distributed on the genes as indicated by the assessment of the randomness. A total

of 175 million clean reads (43,592,404 from PT2, 52,337,180 from PT2S, 33,909,164 from PT4,

and 45,725,468 from PT4S) were generated with Q20 of 98.2% (PT2), 96.86% (PT2S), 98.17%

(PT4), and 97.24% (PT4S), and Q30 of 95.1% (PT2), 93.12% (PT2S), 95.16% (PT4), and

93.17% (PT4S). The GC content was 44.7% (PT2), 45.15% (PT2S), 44.68% (PT4), and 43.29%

(PT4S). These results suggested that high-quality sequencing data were obtained. The clean

reads were mapped to the P. fortunei genes and genome with mapping means of 48.92% and

71.63% respectively (Table 2). We observed that 8.95–17.62% of the total mapped clean reads

were aligned to two or more positions, and were considered multi-position matches. Multi-

position matches can be problematic during transcriptome-level studies, because they are

affected by read complexity and length, Therefore, we excluded the multi-position reads from

subsequent analyses to decrease the error rate. The unmapped reads may represent novel

genes.

Overall analysis of gene expression

The correlation value for PT4 and PT4S was > 0.86, indicating the molecular factors respon-

sive to salt stress partially overlapped. The correlations among the other samples are indicated

in Fig 3A and S1 Table. The correlation values were close to 1 for the same samples in almost

every experiment, indicating that our sequencing data were reliable and the selected samples

were reasonable. The clustering of the expression profiles for the salt stress and control treat-

ments of the four samples is presented in Fig 3B. The dendrogram revealed that PT2S and

PT4S sequences tended to cluster together. We detected 4,423 DEGs between PT2S and PT2,

and 4,104 DEGs between PT4S and PT4. Additionally, 2,946 and 4,400 DEGs were observed

for the comparisons between PT4S and PT2S and between PT4 and PT2, respectively (Fig 4A,

S2 Table).

In the pairwise comparisons of specific sets of DEGs, we detected 1,717 DEGs for Compari-

son A, which may be related to P. tomentosa responses to saline conditions (Fig 4B, S3 Table);

and 160 DEGs for Comparison B, which may be relevant to the differences in the salt-induced

responses of PT2 and PT4. Furthermore, Comparisons C and D revealed 589 (17.50%) and

900 (26.74%) DEGs, respectively (Fig 4C, S3 Table), which may help to explain why PT4 is

more salt-tolerant than PT2.

Table 1. Primers of qRT-PCR for validation of the selected genes.

Gene ID Description Primers (5’-3’)

PAU016338.1 predicted protein F: GCTAACAAGGAACTGAAT: AATTGAACTGTGTATGCT

PAU023935.1 phosphoinositide phospholipase C 2 isoform 1 F: GCCACAATTCTTATCTGA: CAATAACTCTTACACCTCTA

PAU024013.1 zinc finger A20 and AN1 domain-containing F: CTATGAAGCAAGAACAAG: ATAACGATAGCAACATCT

PAU022560.1 fructose 1,6 bisphosphate aldolase class 1 F: GATATTATTGGATGGTGAACA: CTCAGCAAGGTAGAAGAA

PAU015218.1 probable serine/threonine-protein kinase Cx32 F: TTGCTGTTAAGAAGTTGAA: CACCAGATTAGGATGAGA

PAU018076.1 hypothetical protein PRUPE_ppa005569mg F: TTGAGGATGGAAGTGATA: AATACTGACCTTATGCTTAG

PAU000558.1 putative receptor-like serine-threonine protein kinase F: GCTGCTTCTTATTCTTAT: AATGATTCCAACTATTCC

PAU011992.1 hypothetical protein PRUPE_ppa005598mg F: AGCCAAGAAGGTTATTATTAC: GAGAGTAGTCCTGTTCATT

https://doi.org/10.1371/journal.pone.0185455.t001
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Fig 2. Sequencing data assessment. Base composition of clean data in PT2 (a1), PT2S (b1), PT (c1), and PT4S (d1); base

quality of clean data in PT2 (a2), PT2S (b2), PT4 (c2), and PT4S (d2); reads distribution on PT2 (a3), PT2S (b3), PT4 (c3), and

PT4S (d3) genes.

https://doi.org/10.1371/journal.pone.0185455.g002
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Analysis of differentially expressed genes using the GO and KEGG

databases

The DEGs detected in Comparisons A, B, C, and D (Fig 1) were categorized into the three

main GO categories using the Blast2GO program. Comparisons A, B, C, and D comprised

1,117, 116, 395, and 614 DEGs classified into 40, 27, 36, and 36 functional groups, accounting

for 65.02%, 72.50%, 66.95%, and 68.15% of the total DEGs, respectively (S1 Fig, S3 and S4

Tables). Under the biological process category, metabolic process consisted of 561, 64, 179,

and 283 DEGs, and cellular process included 467, 50, 146, and 235 DEGs for Comparisons A,

B, C, and D, respectively. Under the cellular component category, cell and cell part each con-

sisted of 504, 47, 204, and 299 DEGs for Comparisons A, B, C, and D, respectively. Under the

molecular function category,catalytic activity and binding contained the highest numbers of

DEGs.

Table 2. Statistics of alignment (map to reference gene and genome) from the four libraries (exposed to salt stress for 15 days).

Mapping

Type

PT2 PT2S PT4 PT4S

map to

reference

gene

map to

reference

genome

map to

reference

gene

map to

reference

genome

map to

reference

gene

map to

reference

genome

map to

reference

gene

map to

reference

genome

Total clean

Reads

43592404 43592404 52337180 52337180 33909164 33909164 45725468 45725468

Total

BasePairs

4402832804 4402832804 5286055180 5286055180 3424825564 3424825564 4618272268 4618272268

Total Mapped

Reads

20876540

(47.89%)

33862719

(77.68%)

26809022

(51.22%)

36218429

(69.20%)

17561062

(51.79%)

25551420

(75.35%)

20476884

(44.78%)

29388276

(64.27%)

Perfect Match 11357231

(26.05%)

18314073

(42.01%)

13019282

(24.88%)

17207067

(32.88%)

9174493

(27.06%)

13318604

(39.28%)

9426154

(20.61%)

12806562

(28.01%)

Mismatch 9519309

(21.84%)

15548646

(35.67%)

13789740

(26.35%)

19011362

(36.32%)

8386569

(24.73%)

12232816

(36.08%)

11050730

(24.17%)

16581714

(36.26%)

Unique Match 13702658

(31.43%)

28050402

(64.35%)

17735298

(33.89%)

31131225

(59.48%)

11585642

(34.17%)

22045482

(65.01%)

13482456

(29.49%)

25295986

(55.32%)

Multi-position

Match

7173882

(16.46%)

5812317

(13.33%)

9073724

(17.34%)

5087204

(9.72%)

5975420

(17.62%)

3505938

(10.34%)

6994428

(15.30%)

4092290

(8.95%)

Total

Unmapped

Reads

22715862

(52.11%)

9729685

(22.32%)

25528156

(48.78%)

16118751

(30.80%)

16348100

(48.21%)

8357744

(24.65%)

25248582

(55.22%)

16337192

(35.73%)

https://doi.org/10.1371/journal.pone.0185455.t002

Fig 3. Heatmap of all correlation values (a) and cluster tree of the four accessions (PT2, PT2S, PT4,

and PT4S) (b).

https://doi.org/10.1371/journal.pone.0185455.g003
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The DEGs detected in Comparisons A, B, C, and D were analyzed using the KEGG database

to identify associated pathways. A KEGG enrichment analysis of DEGs from Comparisons A,

B, C, and D involved 1,062, 103, 364, and 581 DEGs, accounting for 61.82%, 63.98%, 61.69%,

and 64.48% of the total DEGs, respectively. The enriched pathways for the top 20 DEGs from

Comparisons A, B, C, and D are provided in Fig 5. The top 20 DEGs were associated mainly

with metabolic pathways (ko01100) and the biosynthesis of secondary metabolites (ko01110),

as well as plant hormone signal transduction (ko04075), photosynthesis (ko00195), isoflavo-

noid biosynthesis (ko00943), and nitrogen metabolism (ko00910).

Differentially expressed genes encoding transcription factors

The important roles of TFs in plant defenses against abiotic stresses in various species have

been reported [37, 38]. In this study, we detected 202, 315, 273, and 364 DEGs encoding 237,

371, 323, and 446 TFs in the PT4S vs. PT2S, PT2S vs. PT2, PT4 vs. PT2, and PT4S vs. PT4 com-

parisons, respectively (S5 Table). These TFs were classified into 36, 42, 44, and 44 TF families

in the four comparisons, including the AP2-EREBP, bHLH, GRAS, MYB, NAC, and WRKY

TF families (Table 3). The PT4S vs. PT4 and PT2S vs. PT2 comparisons had the highest num-

bers of TFs and TF families. Interestingly, S1Fa-like and TIG, which may be salt-sensitive TFs,

were detected only in the PT4S vs. PT4 and PT2S vs. PT2 comparisons. Additionally, GRF and

Fig 4. (a) The differently expressed genes in PT4S vs. PT2S, PT2S vs. PT2, PT4 vs. PT2, and PT4S vs. PT4. (b, c) Details of the

comparison schemes, up: up-regulated, down: down-regulated.

https://doi.org/10.1371/journal.pone.0185455.g004
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Fig 5. Scatter plot of KEGG pathway enrichment statistics of the comparison schemes. Top 20 statistics of

pathway enrichment for Comparison A (a), Comparison B (b), Comparison C (c), Comparison D (d), respectively.

https://doi.org/10.1371/journal.pone.0185455.g005
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Table 3. The number of DEGs in transcription factor families in response to salt stress treatments.

TF family Number of genes

PT4S vs.PT2S PT2S vs.PT2 PT4 vs.PT2 PT4S vs.PT4

Number Up Down Number Up Down Number Up Down Number Up Down

ABI3VP1 2 0 2 3 2 1 3 0 3 6 3 3

Alfin-like 0 0 0 2 1 1 0 0 0 0 0 0

AP2-EREBP 24 7 17 33 7 26 32 9 23 38 14 24

ARF 7 3 4 5 5 0 12 8 4 5 4 1

ARR-B 3 1 2 4 2 2 2 0 2 3 3 0

BES1 0 0 0 3 3 0 1 0 1 2 2 0

bHLH 15 11 4 34 21 13 19 14 5 27 16 11

BSD 1 0 1 0 0 0 2 1 1 0 0 0

bZIP 0 0 0 6 4 2 3 1 2 6 4 2

C2C2-CO-like 4 3 1 7 6 1 7 3 4 8 7 1

C2C2-Dof 6 5 1 6 4 2 2 1 1 9 8 1

C2C2-GATA 1 0 1 5 4 1 5 4 1 4 1 3

C2C2-YABBY 0 0 0 0 0 0 0 0 0 2 1 1

C2H2 8 5 3 11 11 0 10 3 7 15 14 1

C3H 6 4 2 9 6 3 11 4 7 14 11 3

CAMTA 0 0 0 6 5 1 1 1 0 3 0 3

CPP 1 1 0 2 2 0 1 1 0 1 1 0

DBP 0 0 0 0 0 0 0 0 0 1 0 1

E2F-DP 0 0 0 1 1 0 0 0 0 0 0 0

EIL 0 0 0 2 0 2 3 0 3 0 0 0

FAR1 1 1 0 0 0 1 0 1 5 5 0

FHA 1 0 1 4 3 1 3 2 1 2 1 1

G2-like 7 5 2 12 7 5 7 2 5 15 11 4

GeBP 0 0 0 0 0 0 0 0 0 2 2 0

GRAS 13 8 5 15 8 7 11 4 7 23 19 4

GRF 2 2 0 0 0 0 1 1 0 0 0 0

HB 0 0 0 2 2 0 1 0 1 4 4 0

HSF 5 4 1 14 2 12 8 1 7 12 7 5

LIM 1 1 0 3 1 2 3 3 0 3 1 2

LOB 4 0 4 5 3 2 5 0 5 4 4 0

MADS 1 0 1 3 3 0 2 1 1 2 2 0

mTERF 6 3 3 5 5 0 8 8 0 1 0 1

MYB 33 18 15 52 29 23 48 32 16 77 40 37

MYB-related 26 12 14 35 18 17 40 29 11 57 25 32

NAC 22 11 11 18 12 6 19 4 15 19 17 2

PBF-2-like 0 0 0 0 0 0 1 1 0 0 0 0

PLATZ 1 0 1 2 1 1 2 0 2 2 2 0

PWP-PK 4 3 1 3 1 2 2 0 2 5 5 0

S1Fa-like 0 0 0 1 1 0 0 0 0 1 1 0

SBP 2 1 1 3 2 1 1 1 0 3 2 1

sigma70-like 1 1 0 6 2 4 4 3 1 3 0 3

SRS 0 0 0 0 0 0 1 1 0 0 0 0

TA2 2 1 1 4 1 3 1 0 1 3 1 2

TCP 2 0 2 2 1 1 3 0 3 4 3 1

Tify 1 0 1 5 0 5 3 2 1 5 1 4

TIG 0 0 0 4 3 1 0 0 0 3 3 0

(Continued )
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BSD, which may be salt-tolerant TFs in the autotetraploid P. tomentosa, were identified only in

the PT4S vs. PT2S and PT4 vs. PT2 comparisons.

We detected 159, 8, 29, and 51 DEGs encoding 193, 9, 34, and 57 TFs from 37, 6, 18, and 21

families in Comparisons A, B, C, and D, respectively (S6 Table). The four common TF super-

families among these comparisons were AP2/EREBP, bHLH, MYB, and NAC. Of these, the

bHLH, MYB, and NAC TFs were mostly up-regulated in response to increased salt stress and

ploidy level, whereas AP2/EREBPwas mostly down-regulated.

Differentially expressed genes involved in alternative splicing

AS affects many plant physiological processes, including responses to abiotic and biotic

stresses [39]. There are seven main types of AS: Exon skipping (ES), Intron retention (IR),

Alternative 50 splice site (A5SS), and Alternative 30 splice site (A3SS), Alternative first exon

(AFE), Alternative last exon (ALE), and Mutually exclusive exon (MEX) (Fig 6). The AS of

eukaryotic genes mainly involves the first four types. The last three types were excluded in this

study because of the potential for considerable false-positive results. Among the four included

AS categories, we observed that IR was the most common (73,460), followed by A3SS (33,961),

A5SS (20032), and ES (13500) (Fig 7). That IR was the primary AS category was consistent

with the findings of previous studies [40, 41]. Of the four main AS types, A5SS, A3SS, and IR

were significantly enhanced in response to saline conditions. Furthermore, IR was especially

enhanced in the PT4S vs. PT2S and PT4 vs. PT2 comparisons. These results implied that IR is

influenced by the ploidy level.

Differentially expressed genes involved in plant hormone signal

transduction

Plant hormone signal transduction is crucial for plant responses to adverse environmental

conditions. We detected 157 DEGs related to plant hormone signal transduction. In Compari-

son A, 90 DEGs were related to signal transductions involving several hormones, including

ABA, GA, IAA, CK, ET, JA, SA, and BR, and in Comparisons B, C, and D 7, 20, and 40 DEGs

were related to plant hormone signal transduction, respectively (S7 Table).

Differentially expressed genes involved in photosynthesis

Exposure to high-salt conditions impairs osmotic homeostasis as well as the cellular ionic and

redox balance, and also inhibits photosynthetic activities. In this study, the “photosynthesis,

light reaction”, “photosynthetic membrane”, “chloroplast”, and “chloroplast part” GO terms

were enriched in Comparisons A, B, C, and D. The GO analyses indicated that 228 DEGs were

Table 3. (Continued)

TF family Number of genes

PT4S vs.PT2S PT2S vs.PT2 PT4 vs.PT2 PT4S vs.PT4

Number Up Down Number Up Down Number Up Down Number Up Down

Trihelix 3 3 0 8 7 1 7 3 4 12 11 1

TUB 0 0 0 2 1 1 3 1 2 3 3 0

VOZ 2 1 1 0 0 0 1 0 1 2 2 0

WRKY 17 7 10 22 8 14 22 3 19 28 16 12

zf-HD 2 2 0 2 2 0 1 1 0 2 2 0

Total 237 124 113 371 207 164 323 153 170 446 279 167

https://doi.org/10.1371/journal.pone.0185455.t003
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associated with “photosynthesis”. The KEGG pathway analyses revealed that photosystem II

P680 reaction center D1 protein (psbA), photosystem II oxygen-evolving enhancer protein 3

(psbQ), photosystem I P700 chlorophyll a apoprotein A1 (psaA), photosystem I subunit PsaN

(psaN), ferredoxin (petF), and ferredoxin-NADP+reductase (petH) were significantly enriched

in the four comparisons (S8 Table).

Validation of differentially expressed genes by quantitative real-time

polymerase chain analysis

To further validate the reliability and reproducibility of the gene expression results from the

RNA-Seq data, eight DEGs from the four libraries were selected for qRT-PCR analysis. The

qRT-PCR results for the eight DEGs reflected the same trends (up- and down-regulation

trends) as those acquired from the RNA-Seq data using the FPKM method (Fig 8A). The

disaccord between the transcriptome and qRT-PCR results is likely because transcriptome

data better reflect small changes in gene expression and better detection of low-abundant than

qRT-PCR, as reported previously [42]. Overall, the qRT-PCR results support the reliability of

the relative values provided by the RNA-Seq analysis.

The qRT-PCR results are related to the DEG data. The expression trends of all 8 genes from

RNA-Seq and qRT-PCR analyses were largely consistent, demonstrating the correlation analy-

sis of DEGs under salt stress based on RNA-Seq and qRT-PCR data (Fig 8B).

Fig 6. Alternative splicing events “Exp. Level” of Y-axis equals to log2 (Reads number).

https://doi.org/10.1371/journal.pone.0185455.g006
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Discussion

Salinity is a major environmental stressor that constrains tree growth in arid and semi-arid

regions [43]. High-salt conditions can induce morphological and physiological changes in P.

tomentosa leaves [20]. Currently, only limited information is available regarding the mecha-

nism underlying the salt tolerance of P. tomentosa. In this study, the second pairs of leaves

from the apex shoot of PT4S, PT4, PT2S, and PT2 seedlings were analyzed by RNA-Seq to elu-

cidate the complex mechanisms that regulate the responses of diploid and autotetraploid P.

tomentosa to salt-stress conditions. The transcriptome data yielded 175 million clean reads,

many of which were differentially expressed. Overall, the control plants had fewer total

mapped reads than the salt-treated plants (i.e., PT2< PT2S and PT4< PT4S) (Table 2). Addi-

tionally, some overlapping DEGs were detected. A comparison of the control and salt-treated

P. tomentosa plants of different ploidy levels decreased the number of DEGs. This increased

the likelihood that the identified genes were related to plant responses and adaptations to

saline conditions. “Plant hormone signal transduction” (ko07075) and “Photosynthesis”

(ko00195) were considerably enriched metabolic pathways. The enriched TFs may be useful

for clarifying the molecular mechanism underlying the salt tolerance of the diploid and auto-

tetraploid P. tomentosa lines.

Transcription factors involved in salt stress responses

Transcription factors are important for the acclimation of plants to extreme environmental

stresses, including high-salt conditions. In this study, members of the bHLH, MYB, NAC,

GRAS, WRKY, and AP2/EREBP families were the most abundant stress- or ploidy-related

Fig 7. Classification of the four main AS events in this study.

https://doi.org/10.1371/journal.pone.0185455.g007
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TFs. Some calcium-dependent TFs are regulated by the direct binding of a Ca2+ ion or the

Ca2+/calmodulin (CaM) complex or by post-translation modifications mediated by Ca2+ or

the Ca2+/CaM complex [44]. AtNIG1 (Arabidopsis thaliana NaCl-inducible gene 1), which is a

basic helix–loop–helix (bHLH) TF, was the first identified salt stress-responsive Ca2+-binding

TF involved in salt stress signaling in plants according to a suppression subtractive hybridiza-

tion analysis [45]. In the current study, we identified 62 up-regulated and 33 down-regulated

bHLH genes that were induced by salt stress, which is consistent with the results of a previous

study in A.thaliana [46]. The MYB super family, which includes MYB and MYB-related TFs,

Fig 8. Expression pattern confirmation of selected genes by qRT-PCR. (A) Quantitative Real-Time PCR (qRT-PCR) analysis of

8 selected differentially expressed genes. 18S rRNA was used as the internal reference gene. For each group, the PT2 (S-0)

expressed level was considered as 1.00, and other samples were normalized accordingly. Standard error of the mean for three

technical replicates is represented by the error bars. S-0, S-10, S-15, and S-20 (0, 10, 15, and 20 days), 0.4% NaCl salt-treated for

PT2 and PT4, respectively. (B) Changes in the relative expression levels of 8 selected genes as determined by RNA-Seq.

https://doi.org/10.1371/journal.pone.0185455.g008
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was the largest TF family in our study. MYB TFs have regulatory roles in plant developmental

processes and defense responses [47]. A two-repeat MYB (i.e., MYB2), which contains a Ca2

+-dependent CaM-binding domain, regulates the expression of dehydration- and salt-respon-

sive genes in A. thaliana [48]. Additionally, the over-expression of OsMYB3R-2 in A. thaliana
[49] and OsMYB48-1 in rice [50] reportedly enhanced tolerance to high-salt conditions. We

detected 203 up-regulated and 165 down-regulated MYB genes in our transcriptome data. The

NAC TFs, which form one of the largest plant-specific TF families, are essential for responses

to various abiotic stresses. A NAC domain-containing TF was identified as a CaM-binding

protein. Analyses of transcriptional regulation mediated by a CaM-binding NAC protein

helped characterize the function of the Ca2+/CaM complex [51]. The over-expression of

TaNAC2 in A. thaliana plants led to increased tolerance to salt, drought, and freezing stresses

[52]. We observed that NAC expression levels were mostly up-regulated in salt-stressed P.

tomentosa plants. This is consistent with the results of a previous study in cotton [53]. These

DEGs may be relevant for future studies of P. tomentosa salt tolerance.

Plant hormone signal transduction pathways involved in salt stress

responses

Phytohormones influence plant responses to abiotic stresses. For example, to optimize the

chance of survival, phytohormone production may be altered to decrease plant growth,

enabling the plant to divert additional resources to maintain responses to environmental

stresses [54]. Indeed, the perception of a stress signal causes the phytohormone-related signal

transduction cascades in plants to decrease to baseline levels [55, 56].

ABA is a lipophilic plant hormone with key roles in signaling and adaptation to abiotic

stresses, such as drought and high salinity [57]. The ABA signal transduction pathway involves

the activities of PP2C (Proteinphosphatases 2C), PYR/PYL (abscisic acid receptor PYR/PYL

family), SnRK2 (serine/threonine-protein kinase SRK2), and ABF (ABA responsive element

binding factor). This pathway is initiated when ABA binds to the pyrabactin resistance-like/

regulatory component of ABA receptors (RCAR). Which results in the inactivation of protein

phosphatase PP2C and activation of SnRK2-type kinases, ultimately inducing stomatal closure

[58]. As a positive regulator of ABA signaling, SnRK2 is crucial for abiotic stress responses in

plants [59]. In this study, SnRK2 expression was up-regulated in the PT4 vs. PT2 and PT4S vs.
PT4 comparisons (S7 Table), similar to the results of a previous study of maize [60]. There is

genetic evidence that A-type PP2Cs are negative regulators of ABA signaling in A.thaliana
[61]. Under saline conditions, ABF2 expression is reportedly up-regulated in grape leaves and

roots in response to increasing salt concentrations [62]. Thus, the expression of salt-responsive

genes may be related to the down-regulation of PP2C and up-regulation of ABF associated

with ABA signal transduction. In this study, PP2C expression (PAU005151.1, PAU008363.1,

and PAU024054.1) was down-regulated in the PT4 vs. PT2 and PT4S vs. PT2S comparisons.

In contrast, ABF (PAU013700.1, PAU023164.1, and PAU013700.1) expression levels increased

in salt-stressed PT2S and PT4S plants.

Cytokinins (CKs) are a class of phytohormones involved in various physiological events,

including responses to environmental stresses. Recently, CKs were revealed to regulate plant

adaptations to salt stress during growth and development [63], and increased CK levels in

seeds were observed to increase plant tolerance to salt stress [64]. The CRE1 histidine kinase

(the cytokinin response 1), which contains an extracellular domain called CHASE, is a CK

receptor. The CK signaling pathway involves several steps [65]. First, CRE1 is activated when

CK binds to the CHASE domain and isauto-phosphorylated. Then, histidine-containing phos-

photransfer proteins (AHPs) are phosphorylated by the activated CRE1,and migrate from the
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cytoplasm to the nucleus, where they transfer the phosphate group to (the response regulator

proteins) ARRs. The expression of CRE1 (one of the receptor histidine kinases) is induced by

various stresses, suggesting that the histidine kinase CK receptors are crucial for CK and

stress responses in A. thaliana [66]. In this study, CRE1 expression (PAU010104.1 and

PAU010665.1) was up-regulated in the PT2S vs. PT2 and PT4S vs. PT4 comparisons, which is

in agreement with the aforementioned results. Furthermore, CRE1 expression (PAU021126.1)

was also up-regulated in the PT4 vs. PT2 and PT4S vs. PT2S comparisons, which may be

related to differences in ploidy levels. Nishiyama et al. [67] reported that among genes related

to CK signaling, the expression of a type-B ARR gene was down-regulated, whereas AHP4 was

up-regulated in response to salt treatments. This implies that CK signaling might be inhibited

by salt stress. We observed that type-B ARR expression (PAU012990.1) levels were down-regu-

lated in the PT2S vs. PT2 and PT4S vs. PT4 comparisons, which is consistent with the afore-

mentioned findings. Type-B ARR expression (PAU003823.1, PAU001788.1, PAU022082.1,

and PAU022609.1) was down-regulated in the PT4 vs. PT2 and PT4S vs. PT2S comparisons,

which may be related to the variability in ploidy levels. The expression of AHP (PAU029211.1)

was up-regulated in the PT2S vs. PT2 and PT4S vs. PT4 comparisons, which is consistent with

the previously described results.

In this study, we identified 157 DEGs related to plant hormone signal transduction. The

results of this study along with previously reported findings revealed that autotetraploid

P. tomentosa was more salt-tolerant than diploid P. tomentosa. We observed that all the ana-

lyzed plant hormones were directly or indirectly involved in regulating plant responses to salt

stress. The activities of plant genes and hormones are strongly linked, as indicated by the fact

that some plant genes, which are essential for activating plant hormones and other genes, are

activated by phytohormones.

Photosynthetic activities involved in salt stress responses

Salt stress decreases plant growth and productivity by disrupting physiological processes [68],

especially photosynthetic activities [69]. In this study, several DEGs were involved in photo-

synthesis, including genes encoding the photosystem II P680 reaction center D1 protein

(psbA), photosystem II oxygen-evolving enhancer protein 3 (psbQ), photosystem I P700 chlo-

rophyll a apoprotein A1 (psaA), ferredoxin (petF), and ferredoxin-NADP+ reductase (petH).

Thylakoid membrane proteins were influenced by salt stress in Synechococcus sp.PCC 7942

[70]. The photosystem II D1 protein in thylakoid membranes is encoded by a gene in the plas-

tid genome (cpDNA). This protein transforms radiant energy via the oxidation of water and

reduction of plastoquinone. In Synechocystis sp., salt stress suppresses the repair of photosys-

tem II by inhibiting the activities of the transcriptional and translational machinery [71]. Addi-

tionally, the D1 protein is sensitive to environmental stresses [72]. We observed that the

expression of the gene (PAU015578.1), which encoded a D1 protein, was down-regulated in

the PT4S vs. PT4 and PT2S vs. PT2 comparisons (S8 Table). This is consistent with the previ-

ous observation that D1 levels decreased because of salt stress-induced photoinhibition in

Brassica juncea [73]. The psbQ peripheral protein is an important part of the photosystem II

complex. It is also the most diverse extrinsic photosystem II protein in higher plants, and can

maintain the integrity of photosystem II under high-salt conditions [74]. The psaQ expression

level was up-regulated in the PT4 vs. PT2 and PT4S vs. PT2S comparisons, which may be

closely related to the differences in ploidy. The psaA gene encodes photosystem I P700 chloro-

phyll a apoprotein A1, which is one of two large core subunits of photosystem I. It carries a set

of cofactors required for a functional electron transport chain through photosystem I. In this

study, the abundance of the psaA transcript (PAU029948.1) was up-regulated in the PT2S vs.
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PT2 comparison. This is in agreement with the results of a previous study of Salicorniabigelovii
Torr [75]. Electrons derived from water by the oxygen-evolving complex of photosystem II are

transferred to NADP+, leading to the production of NADPH. The electrons are passed along

the photosynthetic electron transport chain via the plastoquinone, cytochrome b6f complex,

plastocyanin, photosystem I, ferredoxin, and ferredoxin-NADP+oxidoreductase [76].

Conclusions

Here we report for the first time, comparisons of the effects of salt stress on diploid and auto-

tetraploid P. tomentosa plants using Illumina sequencing technology based on the P. fortunei
genome as a reference. Overall, 85.7 and 125 million clean reads were mapped to P. fortunei
gene and genome sequences, respectively. We identified 15,873 million DEGs among the con-

trol and salt-stressed P. tomentosa plants. Some DEGs were functionally associated with plant

hormone signal transductions, photosynthesis, and other metabolic pathways. Notably, some

TF genes, including NAC, MYB, bHLH, GRAS, WRKY, and AP2/EREBP, were responsive to

salt stress and/or ploidy levels. We also identified several DEGs related to AS which were

affected by salt stress or ploidy levels. Our results may be useful for future efforts to elucidate

the molecular mechanisms underlying salt tolerance as well as the gene regulatory networks of

P. tomentosa plants.
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