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Abstract

To maintain optimal fitness, a cell must balance the risk of inadequate energy reserve for

response to a potentially fatal perturbation against the long-term cost of maintaining high

concentrations of ATP to meet occasional spikes in demand. Here we apply a game theo-

retic approach to address the dynamics of energy production and expenditure in eukaryotic

cells. Conventionally, glucose metabolism is viewed as a function of oxygen concentrations

in which the more efficient oxidation of glucose to CO2 and H2O produces all or nearly all

ATP except under hypoxic conditions when less efficient (2 ATP/ glucose vs. about 36ATP/

glucose) anaerobic metabolism of glucose to lactic acid provides an emergency backup.

We propose an alternative in which energy production is governed by the complex temporal

and spatial dynamics of intracellular ATP demand. In the short term, a cell must provide

energy for constant baseline needs but also maintain capacity to rapidly respond to fluxes

in demand particularly due to external perturbations on the cell membrane. Similarly, longer-

term dynamics require a trade-off between the cost of maintaining high metabolic capacity

to meet uncommon spikes in demand versus the risk of unsuccessfully responding to

threats or opportunities. Here we develop a model and computationally explore the cell’s

optimal mix of glycolytic and oxidative capacity. We find the Warburg effect, high glycolytic

metabolism even under normoxic conditions, is represents a metabolic strategy that allow

cancer cells to optimally meet energy demands posed by stochastic or fluctuating tumor

environments.

Introduction

ATP is the primary energy source for mammalian cells and is produced primarily through

oxidative or non-oxidative (glycolysis) metabolism of glucose. Oxidative phosphorylation pro-

duces up to 36 ATP per mole of glucose while glycolysis results in just 2 ATP [1]. Hence, con-

ventional models of cellular energy dynamics assume that oxygen availability determines the

optimal ATP-producing metabolic pathway so that less-efficient glycolysis serves primarily as

a reserve metabolism for periods of hypoxia [2].

Yet, cancer cells, as well as a variety of normal cells, frequently exhibit high rates of glycolysis

even in the presence of normal oxygen concentrations. This is described as aerobic glycolysis
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and, in cancer, often termed the “Warburg effect” after Otto Warburg who first observed it

almost 100 years ago [3]. Because aerobic glycolysis is inefficient, it maintains adequate energy

supplies through increased glucose flux which can be imaged using F18 labeled deoxy-d-glucose

and Positron Emission Tomography (FdG-PET). In the past decade, clinical application of

FdG-PET has demonstrated that>90% of human cancers exhibit increased glucose uptake indi-

cating aerobic glycolysis is a ubiquitous property of the malignant phenotype. This was recog-

nized in the recent update of cancer hallmarks which now includes “energy dysregulation” [4].

Aerobic glycolysis is difficult to reconcile with the conventional model of carcinogenesis as

“somatic evolution.” The inefficient production of ATP via anaerobic metabolism of glucose

in the presence of oxygen seems inconsistent with maximization of cellular fitness that should

follow from Darwinian dynamics. Presumably, natural selection in a resource-limited environ-

ment would strongly favor maximally efficient energy extraction from the limited supply of

glucose. Though it was initially attributed to some sort of mitochondrial dysfunction, it is

known today that most cancer cells retain functional mitochondrial metabolism and in some

even increase [5]. This puzzle has defied explanation despite over 8 decades of investigation

since Warburg’s initial 1929 observations.

We have addressed this apparent paradox by developing an alternative model of glucose

metabolism, in which the two metabolic pathways serve as complementary mechanisms for

meeting ATP demands [6]. In our model (Fig 1), the speed of ATP production is balanced

against efficiency. Oxidative phosphorylation, while yielding maximal numbers of ATP, is

slow to respond to fluctuations in demand while glycolysis, though less efficient, can increase

flux and ATP production far more quickly. When faced with temporally fluctuating needs for

ATP, a tumor cell can optimize its energy production by maintaining a mix of metabolic

capacities. We, thus, proposed that cells should use efficient but slow-responding aerobic

metabolism to meet baseline, steady energy demands and glycolytic metabolism to meet short-

Fig 1. Schematic representation of the demand-driven metabolic model. ATP demand is composed of

two types of demand; (dark) slow changing base-load demand, primarily for macromolecules synthesis and

(light) peak demand, that rapidly changes primarily to support membrane transporters. In this model oxidative

phosphorylation (high efficiency, slow response time) supplies base-load demand, and glycolytic metabolism

(less efficient, fast response time) supplies peak ATP demand. The later is less efficient but is more highly

responsive.

https://doi.org/10.1371/journal.pone.0185085.g001
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timescale pulses in energy demands, primarily for membrane transport activities. Since almost

every aspect of cancer development, including division [7], migration [8,9] and invasion [10],

requires increased activity of membrane transporters, the Warburg effect is viewed as physio-

logical response to large fluctuations in short-term energy demand that is necessary to main-

tain functions that are inherent in the malignant phenotype.

Here we broadly examine optimization of cellular energy production based on a tradeoff

between efficiency and speed. While the efficiency of the two metabolic pathways is well stud-

ied, there is little information on the response time of glycolytic pathway in the literature.

Available literature generally places the ratio of response times of these two pathways is about

100 [11]. That is, the glycolytic pathway can upregulate ATP production 100 fold faster that

oxidative phosphorylation. However, it has also been hypothesized this ratio is actually higher

due to allosteric regulation of glycolysis and limited diffusion of oxygen [12,13]. In our model

simulations, we used ratios from km = 50 to 10,000

Interestingly, this energy management resembles the optimal operation of power grids in

which different timescales of electricity demand are supplied by different types of power plants

[14]. For example, efficient but expensive to build and maintain facilities, such as nuclear

plants, are used to meet baseline demand while inefficient but fast responding gas turbines

supply peak demand [15].

Here we apply a game theoretic approach to further examine our hypothesis that the Warburg

effect emerges from the tumor cell’s need to balance speed and efficiency in energy production.

A central assumption in our models is that tumor cells temporally exist in a temporally and spa-

tially heterogeneous environment due to often chaotic blood flow within disordered intratumoral

blood vessels. Thus, steep spatial gradients of substrate are common in in vivo cancer [16] as are

cycles of normoxia and hypoxia so that both energy supply and demand may be unstable.

To examine the dynamical interactions between energy production and demand, we con-

sider two scenarios. In the first, the cells must meet a temporally fluctuating demand for ATP.

This fluctuating demand has a fixed baseline component with an additional cycling peak

demand. For this scenario, the goal is to successfully generate the necessary ATP to meet

demand at all times while maintaining the lowest metabolic cost to the cell. In the second

scenario, the needs and opportunities for using ATP fluctuate stochastically. We make a

distinction between production of ATP to maintain the cell survival, and ATP that permits

maximum acquisition of additional substrate such as migration to regions of higher glucose

concentration, or more rapid uptake during periods of glucose availability. Furthermore, we

assume that tumor cells are subject to Darwinian dynamics so that each cell must compete for

limited resources with other individuals within the local tumor population. Thus the optimal

mix of metabolic pathways must balance the efficiency of baseline metabolism, the need for

spare capacity to meet rare but potentially catastrophic events, the value of spare capacity to

pre-emptively uptake resources following flushes of resources, and the costs associated with

maintaining metabolic capacity. The model, for both scenarios, identifies when aerobic glycol-

ysis is favored because it optimizes speed of energy production to ameliorate hazards and pur-

sue opportunities.

Results

Model 1: The efficiency of multiple ATP production modes in varying

energy demand

We consider the two modes of energy production: oxidative phosphorylation and glycolysis.

Each has different efficiencies for ATP production and response times. To determine the opti-

mal mix of energy production pathways, we first consider the metabolic capacity required to
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meet all energy demands. Then we calculate the cost of meeting these demands in terms of glu-

cose consumption, damage from excessive levels of intra-cellular ATP, and the cost of main-

taining the glycolytic enzymes. The goal is to identify optimal combination of energy strategies

that minimize costs under variable environmental conditions. This model uses three coupled

differential equations to model intracellular ATP concentrations, consumption, and produc-

tion assuming variable demand and the two modes of ATP synthesis, glycolytic (g) and oxida-

tive (o):

dUATP

dt
¼
�
cgPg þ coPo

��
1 � UATP

�
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{
ADP availability

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
ATP production

� dðtÞ ð1Þ

dPg

dt
¼ kg 1 �

UATP

ð1 � UATPÞspg

 !

ð2Þ

dPo

dt
¼ ko 1 �

UATP

ð1 � UATPÞspo

� �

ð3Þ

Eq (1) describes the dynamics of ATP levels within the cell, UATP. For convenience, the

model normalizes this value to a range of between 0 and 1. The production of ATP is influ-

enced by the overall capacity for glycolytic and oxidative metabolism, cg and co, respectively,

and the rate at which a unit of each of these pathways can produce ATP, Pg and Po, respec-

tively. The rate at which each unit of capacity can produce ATP is limited by the availability of

ADP = (1-ATP). Noting this, the dynamics of these production rates, Pg and Po, can be written

as declining functions of ATP. In our simulations the ATP level must exceed a minimum hold,

U
�

ATP to maintain cell viability [1]. We assume that at this level AMPK is activated as a stress

response to low ATP level. The ATP demand term, d(t) = BL+PL(t) is the sum of a constant

base-load demand, BL, and a peak-load term, PL(t), which fluctuates temporally. Detailed

description on the construction of the fluctuating demand function is shown in S1 Appendix.

Peak load may result from cyclical or unpredictable needs to pump excess metabolites out of

the cell, external stressors to the cell that require active cell membrane responses, or the need

to actively move from an increasingly depleted or less favorable spot to another more favorable

place.

Eqs (2) and (3) describe the dynamics governing the rates at which glycolytic and oxidative

capacity can supply ATP [17]. The first terms, kg/o, are the response times of the production

modes, where we assume that kg>>ko. The response time of the glycolytic production mode is

significantly larger than the oxidative mode. The terms in the brackets are logarithmic mass-

action terms, which determine the change in the rate of the two production modes. Crucially,

there are pathway specific set-points spg/o. These set-points determine the ATP to ADP ratio

at which the production rate will increase versus the ratio at which production rates will

decrease. When ATP to ADP ratio equals the set-point value there will be no change in the

production rate. Each pathways rate of change in production rate increases with its set-point.

In our model, the cell manages its ATP supply and level by modulating the set-points. For a

given base-load demand, in the absence of fluctuations, system will converge to a production

rate that will maintain ATP to ADP ratio equal to the set point. To insure that there is no use

of the less efficient glycolytic pathway under constant ATP demand, the optimal set point

for glycolysis will always be smaller than the oxidative set point. We insured this by making
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spg = 0.995spo. However, there will be some maximum rate of ATP production per unit of gly-

colytic capacity, Pg
max, and we use this value anytime Eq (2) results in a value above this. For

convenience, and without loss of generality, we set the oxidative capacity to co = 1. In this way,

the cell increases oxidative metabolism by raising spg/o.
To determine the optimal investment by the tumor cell in glycolytic capacity, cg, we began

by considering all combinations of cg and spg that permit the cell to meet PL by insuring that

UATP � U�ATP . To find a given combination, we seed the simulation with a given cg and a start-

ing value of spo ¼ U�ATP=ð1 � U�ATPÞ. At the end of a run, we evaluate whether intra-cellular

ATP ever dropped below the temporally fluctuating demand level. If UATP < U�ATP at any given

time, we increase the oxidative set point, spo (and as a result the glycolytic set point, spg) until

UATP remains above the threshold. Repeating this process, establishes the minimum oxidative

set point, spo, for each value of cg. This can be done for a range of base, BL, and peak, PL, ATP

demands.

Fig 2 shows typical dynamics of the system for different values of glycolytic capacity, cg.
When there is no glycolytic ATP production (cg = 0), oxidative phosphorylation must meet all

ATP demands. Due to the long response time of the oxidative production mode, cells must

maintain high concentrations of ATP at low ATP demand to avoid falling below the ATP

threshold when peak-demand increases to its maximum. With the introduction of glycolytic

capacity, some of the peak ATP demand is produced by glycolysis. However, this production

can be no greater than cg Pg
max. In this manner, low levels of glycolytic capacity will be run at

maximum capacity, and so ATP production from glycolysis increases linearly with capacity.

Eventually, glycolytic capacity, cg, reaches a level at which ATP production is no longer limited

by the maximum ATP production per unit of glycolytic capacity, Pg
max. At this point, ATP

from glycolysis no longer changes with capacity. We denote this capacity as the critical glyco-

lytic capacity, c
�

g. At higher glycolytic capacity, there are no significant changes in the glyco-

lytic and oxidative ATP productions and no change in the maximal ATP level. Any glycolytic

capacity above this critical level is excess. Hence, this critical glycolytic capacity and associated

oxidative set point, are the optimal metabolic pathways for a cell faced with fluctuating needs

for ATP.

In these simulations the production cost (total cost over a complete cycle) is the sum of

three terms:

p ¼ � aA � cC � fF ð4Þ

Where:

• A ¼ maxðUATP � U�ATPÞ is greatest harmful excess of ATP level in the cell during a fluctua-

tion, and a is the per unit cost of that excess [18,19].

• C = cg is the glycolytic capacity, and c is the per unit cost of having the glycolytic machinery

[20,21].

• F ¼ fg=oPtotalg þ Ptotalo is the amount of glucose consumed over a cycle, and f is the unit cost

of glucose to the cell. Critical to total consumption of glucose is the production efficiency

ratio, fg/o, of oxidative versus glycolytic ATP production. This ratio determines the additional

burn rate of glucose via glycolysis to achieve the same ATP output as oxidation. If oxidation

produces 6 times more ATP per glucose molecule than glycolysis then fg/o = 6.

To simplify the calculations and the presentation of results, we normalize the glycolytic

capacity by the critical capacity, c
�

g, and then by the magnitude of the peak demand, PL(t). Fig

3 shows the normalized excessive ATP term, Anorm, and fuel consumption term, Fnorm.
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Normalization process payoff terms is detailed in the S2 Appendix. Thus, for a given peak-load

magnitude and glycolytic capacity we can calculate the production cost by transforming to the

normalized cost equation:

pnorm ¼ � aAnorm � cCnorm � fFnorm ð5Þ

Using Eq (5) we obtain the optimal proportion of glycolytic and oxidative ATP production,

for any given peak-load magnitude, by calculating the normalized glycolytic capacity, cgnorm,
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Fig 2. Typical dynamics of the system for different values of glycolytic capacity, cg. The optimal level of glycolytic

capacity occurs where the curves in Panels E, F and G become flat. The left panels show the temporal dynamics of (A) ATP

demand, d(t), (B) glycolytic ATP production, cgPg, (C) oxidative ATP production, copo, and (D) ATP level UATP. Dash line

denotes the minimum ATP level that is allowed in the system, U*
ATP. Higher glycolytic capacity allows more glycolytic ATP to

supply peak demand and reduces the maximum ATP level that is needed to ensure that UATP�U*
ATP. The right panels show (E)

total glycolytic ATP production over one period, Pg
total, (F) total oxidative ATP production over one period, Po

total, and (G)

maximum ATP level over the period max(UATP). Parameters used in this simulation: Demand parameters: f = 10Hz, period = 4,

BL = 5, km = 50, kg = 10000, U*
ATP = 0.745, Pg

max = 5 and cm = 1.

https://doi.org/10.1371/journal.pone.0185085.g002
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that minimizes the normalized production cost, πnorm. The value of the optimal cgnorm indicates

the peak demand that is produced by glycolysis, where cgnorm = 0 means all ATP comes from

oxidative phosphorylation and at cgnorm = 0.85 about 99% of peak demand is supplied by gly-

colysis. Fig 4 demonstrates the results of these calculations for different values of the produc-

tion efficiency ratio, fg/o (higher value corresponds with less efficient glycolysis), and the three

costs associated with excess ATP, a, maintaining glycolytic capacity, c, and unit cost of glucose,

f. Each panel shows the optimal production mode for meeting peak demand as a function of

the coefficient in the normalized production cost equation (Eq 5). As expected, oxidative phos-

phorylation is always the cheapest means for meeting base-load demand. A striking results

concerns how peak demand is met. Rather than using a mix of metabolic pathways, it is almost

always optimal to meet peak demand solely through one pathway or the other. The model

shows that it is least costly to supply peak-demand either by glycolysis or by oxidative phos-

phorylation, but it is not profitable to supply peak demand by both production modes simulta-

neously. This can be attributed to concave shape of the glucose consumption payoff term and

the excess ATP term (Fig 3).

Making the fuel demand of glycolysis less (decreasing fg/o) encourages the cell to meet

essentially all of its peak demand through glycolysis (cgnorm = 0.85). When the glycolysis is 50%

(fg/o = 2) to 20% (fg/o = 5) less efficient then for almost all parameter ranges peak load is met

through glycolysis. For higher values of fg/o, the cell’s use of glycolysis depends strongly on the

other cost parameters.

As would be expected, increasing the cost of having excess ATP, a, or decreasing the cost of

maintaining glycolytic capacity, c, will encourage using glycolysis. One can consider all combi-

nations of a and c such that the cell should switch from an oxidative to glycolytic metabolism

for peak demand. In the state space of a (x-axis) and c (y-axis), this a-c isoleg (line of equal

choice, [22,23]appears as a straight line with positive slope (Fig 4). The upper left corresponds

to oxidative metabolism and the lower right to glycolysis. As the number of glucose molecules

required to glycolytically producing the same number of ATPs as oxidatively increases, the iso-

leg retains roughly the same slope but the c-intercept declines. The intercept begins positive

meaning that c = a = 0 favors peak-load glycolysis, and then becomes negative indicating
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Fig 3. Normalized cost terms. (A) Normalized excessive ATP, Anorm, and (B) normalized glucose consumption,

Fnorm, as function of normalized glycolytic capacity, cg
norm, for efficiency ration of fg/o = 2. Dots are overlay of all

values between PL = 1, 1¼, 1½, . . ., 5. Red lines are quadratic polynomial fit, which is used for calculating

production cost for any value of peak-demand and glycolytic capacity. Whether presented as panel (A) or (B), the

optimal level of glycolytic capacity that minimizes costs occurs at the point where normalized excess ATP or

normalized glucose consumption reaches 0.

https://doi.org/10.1371/journal.pone.0185085.g003
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oxidative phosphorylation is favored at c = a = 0. Hence, as fg/o increases the region of glycoly-

sis declines (Fig 4).

While it would seem intuitive that making glucose more available would favor glycoloysis,

but the effect of the cost of glucose, f, is more nuanced and interacts strongly with the effi-

ciency of oxidation relative to glycolosis, fg/o, and the cost of excess ATP, a. The slope of the f-a
isoleg in the state space of f (y-axis) and a (x-axis) has negative slope that becomes increasingly

vertical in going from fg/o = 2 to fg/o = 6. At fg/o = 7 the slope becomes positive and near vertical

and then the slope remains positive and declines at fg/o = 10. The positive x-intercept of this

isoleg remains roughly independent of fg/o. Hence, with increasing fg/o the isoleg pivots from a

positive to a negative slope in a clockwise direction (Fig 4). Regardless, to the left of isoleg is

the region of oxidative metabolism and to the right is the region of using glycolysis to meet

peak damand. When the isoleg has negative slope, increasing the cost of glucose can counter-

intuitively shift metabolism from oxidative to glycolytic. When the isoleg has a positive slope,

increasing the cost of glucose can shift optimal metabolism from glycolytic to oxidative.

The cost of glycolytic capacity, c, and the cost of glucose, f do not interact. The c-f isoleg in

the state space of c (y-axis) and f (x-axis) is a horizontal line with a positive y-interecept. Above

the isoleg, the optimal metabolism is oxidative and below glycoloysis is best for meeting peak

ATP demand. The isoleg shifts to lower values of c as the glucose utilization efficiency of oxida-

tion versus glycolysis, fg/o, increases. As expected, increasing the cost of a unit of glycolytic

capacity can shift the cell metabolism from glycolysis to oxidative (Fig 4).
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indicate how the cost parameters interact. Increasing the production efficiency ratio, fg/o, decreases the region over which

glycolysis is optimal. Decreasing a or c generally favors glycolysis. The effect of f on the optimal metabolism for meeting peak

demand depends on the relative glucose efficiency of oxidation versus glycolysis, fg/o. The values for all other parameters are the

same as those in Fig 2.

https://doi.org/10.1371/journal.pone.0185085.g004
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Model 2: Glycolytic capacity

From model 1, cells should employ glycolysis to supply peak demand. However, in model 1,

the magnitude of that peak demand was constant, and it occurred as a regular and predictable

cycle. In reality energetic demand vary constantly and erratically. Uncertainty in the timing

and magnitude of cellular ATP likely characterize the reality of most tumor cells. In our second

model we assume stochastic fluctuations in energy demand, d(t). We distinguish between two

types of energetic demands:

• Demands that are required to exploit opportunities, such as temporary fluxes of nutrients.

• Demands that are required to avoid hazards, such as changes in extracellular osmolarity.

While meeting the first type of demand increases the fitness of a cell, failure to supply the

latter leads to fitness reductions. Meeting peak-demand requires glycolytic capacity, i.e. glyco-

lytic enzymes. However, maintaining this capacity requires a fixed cost, which is linear with

the capacity. Thus, our second model addresses the optimal capacity cells must maintain

under uncertain peak-demand.

To find the optimal glycolytic capacity, cg, we used an evolutionary algorithm that repre-

sents a discrete version of Cohen’s evolutionary distributions [24–26]. We begin the simula-

tions with 100 sub-populations each with a unique glycolytic capacity uniformly spread from

i = 1 to 100. This gives a broad range of extant phenotypes among the cancer cells from which

natural selection can “choose”. We let xi denote the population size of each clonal subpopula-

tion i. We use the following to describe the population dynamics of each discreet sub-popula-

tion:

dxi

dt
¼ ð1þ aoppDðtÞÞ 1 �

X

i
xi

xmax

 !

� ahazSðtÞ þ afixcgi � m

 !

xi þ drift ð6Þ

drift ¼
dxi� 1 ¼ dxi� 1 þ kdriftdxi

dxiþ1 ¼ dxiþ1 þ kdriftdxi

; dxi ¼ ð1 � 2kdriftÞdxi ð7Þ

(

αopp, αhaz and αfix are opportunistic, hazardous and fixed cost coefficients respectively. We also

allow a small mutation rate. If a sub-population has a positive growth rate, dxi>0, then a frac-

tion of that growth mutates into the phenotype of the adjacent sub-populations, dxi-1 and dxi+1

as shown in Eq 7. This represents an incremental mutation that either increase or decreases

the individuals phenotype by one step.

For a given level of ATP demand, d(t), the supplied demand, D(t), and capacity shortage S
(t), are:

DðtÞ ¼
dðtÞ dðtÞ � cgi
cgi dðtÞ > cgi

; SðtÞ ¼
0 dðtÞ � cgi

dðtÞ � cgi dðtÞ > cgi
ð8Þ

8
<

:

8
<

:

The entire population has a single carrying capacity so the different sub-populations nega-

tively impact each other whether intra- or inter-population. All individuals interact ecolog-

ically. There are two sources of evolutionary change. The first represents changes in the

frequency of each clad via different fitnesses, and the second comes from the mutations of

individuals from one heritable strategy to another. The former dynamic favors the subpopula-

tions with more successful glycolytic capacities, while the second creates variability in glyco-

lytic capacity for natural selection to operate.
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In the simulations we track the dynamics of each subpopulation in time (coupled ODEs

equations) and fit the end-population to a Gaussian (S3 Appendix). To avoid stochastic artifact

we repeated the simulations 30 times for each parameter.

We generated the peak-demand as spikes of demand with amplitude distribution of power

law, p. The time between the demand spikes was Poisson distributed with parameter λ. Fig 5

illustrates the influence of these two parameters on the population distribution, showing the

mean of the Gaussian function for the amplitude distribution, p, and the mean time between

events of demand, λ. Increasing the power of the amplitude distribution and increasing the

typical time between demands selects for low glycolytic capacity.

The influence of opportunity and hazard on the population is presented in Fig 6, which

shows mean population distribution as function of the opportunities coefficient, αopp, and the

hazards coefficient, αhaz. When opportunity and hazard events occur more frequently, selec-

tion for high glycolytic capacity is increased. Interestingly, at zero hazard, the optimal glyco-

lytic capacity is almost zero, which was also observed when fixed-cost coefficient, αfix, was

reduced by a factor of 2. This suggests that maintaining glycolytic capacity is more important

for fending off hazards rather than exploiting opportunities.

Discussion

The observation of high rates of aerobic glycolysis in cancer and some normal cells is inconsis-

tent with the conventional model of glucose metabolism in which oxidative phosphorylation is

viewed as the optimal pathway in all normoxic conditions. We introduced an alternative meta-

bolic model in which glycolysis and oxidative phosphorylation are complementary modes of

ATP production that trade-off efficiency and speed for meeting energetic demands. Oxidative
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Fig 5. Influence of peak-demand parameters on the steady-state population distribution. Mean of population distribution as function power

of the amplitude distribution, p, (bottom) and the mean time between events of demand, λ (left). The graph demonstrates that short time between

bursts of peak-demand and high probability of high-amplitude demand results with a selection of population with high glycolytic capacity. Simulation

parameters: kdrift = 0.05, Αhaz = 1, Αopp = 1, Αfix = 1 and m = 0.01. Detail description of the simulation process can be found in S3 Appendix.

https://doi.org/10.1371/journal.pone.0185085.g005
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phosphorylation is highly efficient in converting glucose to ATP but slow to responds to fluc-

tuations in energy demand. Glycolysis is less efficient than oxidative phosphorylation but its

response time is much greater than oxidative phosphorylation and, thus, well-suited to supply

fluctuating demand, such as ion transporters on the cell membrane that are necessary for

changes in the cell geometry during motion and invasion. In our model, optimal glucose

metabolism is determined by both the availability of oxygen and the dynamics of energy

demand.

Here we present two game-theoretic models that investigate optimal ATP-from-glucose

production strategies for given energy demand conditions. In the first model we examined

optimal ATP production strategies when cells experience periodic short-time increases in

demand superimposed on a constant base-line demand. We note that this model is designed

to study efficiency of ATP production for supplying short-term energy demand. As such, it

does not address the interaction between the two pathways [27], such as initial ATP produc-

tion by mitochondrial to support glycolytic metabolism [28]. Our results indicate the existence

of two metabolic regimes, based on three critical parameters: the cost of excessive ATP level,

the cost of uptaking glucose, and the cost of maintaining glycolytic capacity. We demonstrate

that in normal, healthy tissue in which physiological conditions are spatially and temporally

homogenous and demand fluctuations are small, it is optimal to produce all ATP by oxidative

phosphorylation so that little or no glycolytic capacity is necessary. However, as the amplitude

or frequency of demand spikes increases, the optimal metabolic strategy requires metabolic

switching in which the constant component of ATP demand is supplied by oxidative phos-

phorylation and the fluctuating component by glycolysis (Fig 3).

The second model we investigate the trade-off between cost and benefit dynamics that gov-

erns the cell’s glycolytic capacity in typical cancer environments in which peak demand fluctu-

ates due to alterations in local conditions caused by chaotic blood flow or host response. We

studied two types of short-term ATP demands. The first one is generated by an opportunity to

increase substrate acquisition in the event, for example, of a sudden increase in blood flow. We

assume optimal response must be rapid because the opportunity diminishes with time either

due to diffusion into adjacent tissue or consumption by other cells (scramble competition
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Fig 6. Influence of opportunistic and hazardous coefficient on the steady-state population distribution. Mean capacity that is selected

as function of the opportunistic coefficient, αopp, and the hazardous coefficient, αhaz for fixed-cost coefficient, αfix = 1 (a) and αfix = 0.5 (b). The

graphs demonstrate that hazard is more influential in selection of high glycolytic capacity than opportunity

https://doi.org/10.1371/journal.pone.0185085.g006
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[29]). The second type is a demand that is required to avoid hazard (e.g. the sudden appear-

ance of predator-like host anti-tumor T cells) and therefore must be met immediately to main-

tain survival. Our modeling results demonstrate that optimization of the glycolytic capacity

includes an “acceptance” of the risk that a rare event provided there is long-term benefit to the

population gained by reduction in the cost required to maintain sufficient energy capacity to

overcome this rare threat. This results is supported by a recent study showing that adaptation

to doxorubicin drug by expression of P-glycoprotein (PGP) transporters is followed by

increase of glycolytic capacity[30], where the energy for these transporters is primarily sup-

plied by glycolysis [6]. In contrast, there is little benefit in maintaining excess capacity to

exploit uncommon spikes in environmental opportunities that would improve the energy sta-

tus of the cell. From a broader perspective, our results demonstrate that “fear” is a stronger

motivator for glycolytic capacity than “hunger”, which has been also observed in other ecologi-

cal studies[31–33]. From a generic view this model address the fundamental economic ques-

tion of capacity investment under uncertain demand [34–36], and therefore can be used in

such studies.

In summary, our modeling results demonstrate that normal mammalian cells subject to a

near constant environment will require limited glycolytic capacity. Normal cells that may be

subject to frequent perturbations (on the skin or colon mucosa, for example) will probably

have a higher capacity. Tumor cells in a benign, stable lesion (such as a fibroid) will likely have

a low glycolytic capacity while cells in an invasive cancer with spatially and temporally hetero-

geneous blood flow and subject to immune attack, will likely need to maintain a high glycolytic

capacity.
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