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Abstract

Introduction

Variability in red blood cell volumes (distribution width, RDW) increases with age and is
strongly predictive of mortality, incident coronary heart disease and cancer. We investigated
inherited genetic variation associated with RDW in 116,666 UK Biobank human volunteers.

Results

A large proportion RDW is explained by genetic variants (29%), especially in the older group
(60+ year olds, 33.8%, <50 year olds, 28.4%). RDW was associated with 194 independent
genetic signals; 71 are known for conditions including autoimmune disease, certain cancers,
BMI, Alzheimer’s disease, longevity, age at menopause, bone density, myositis, Parkin-
son’s disease, and age-related macular degeneration. Exclusion of anemic participants did
not affect the overall findings. Pathways analysis showed enrichment for telomere mainte-
nance, ribosomal RNA, and apoptosis. The majority of RDW-associated signals were intro-
nic (119 of 194), including SNP rs6602909 located in an intron of oncogene GAS6, an eQTL
in whole blood.

Conclusions

Although increased RDW is predictive of cardiovascular outcomes, this was not explained
by known CVD or related lipid genetic risks, and a RDW genetic score was not predictive of
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incident disease. The predictive value of RDW for a range of negative health outcomes may
in part be due to variants influencing fundamental pathways of aging.

Introduction

Increased variation in a person’s Red Blood Cell (RBC) volumes (RBC distribution width
(RDW), also termed anisocytosis) is strongly predictive of a range of incident cardiovascular
conditions, cancers and mortality [1-3]. Although RDW is routinely measured in clinical
hematology reporting-it is calculated by dividing the standard deviation of mean cell volume
(MCV) by the MCV and multiplying by 100, to yield a RDW percentage [4]-it is only used
clinically for diagnosis of anemia subtypes. Understanding the mechanisms involved in the
links between increased RDW and negative health outcomes could provide clues to potential
interventions to improve prognosis in those with high RDW who are not anemic, particularly
in older people.

Established clinical causes of increased RDW include anemia and other iron or folate defi-
ciencies [5], dyslipidemia [6] and other metabolic abnormalities, and inflammation [7]. Pro-
posed mechanisms for increased RDW also include impaired erythropoiesis (the generation of
new RBC) perhaps due to effects of inflammation or senescence of erythropoietic cells in the
bone marrow, plus variations in RBC survival [8]. A previous analysis of 36 blood cell traits
identified genetic variants [9], but the genetic signals for RDW were not investigated in depth
in relation to the mechanisms that might explain the predictive value of RDW for negative
health outcomes in people with normal hemoglobin levels.

We aimed to investigate RDW (overall and excluding anemia) using genetic analysis in a
large population cohort, to identify underlying mechanisms. This involved genome-wide anal-
ysis of associations to find independent signals, investigations of biological pathways impli-
cated by the results, and overlap with known risk alleles. We also examined associations
between RDW and known variant genetic risk score analysis for conditions predicted by
RDW, including cardiovascular disease. For this analysis, we used the exceptionally large UK
Biobank volunteer sample with standardized measures of RDW across the cohort.

Results

We included 116,666 UK Biobank participants of white/British descent with complete hema-
tology measures, covariate data, and genetics data from the interim data release (May 2015) in
our analyses. The mean age was 57 years (SD: 7.9, min = 40, max = 70), with 52,541 aged 60 to
70 years old, and the majority (52.6%) were female: Table 1.

Variance explained by genotypes

We estimated that 29.3% (SE = 0.5%) of the variance in RDW was accounted for by 457,643
directly genotyped variants with MAF>0.1%. In a secondary analysis we estimated the propor-
tion explained in two groups: those aged >60 years (n = 52,541), and those aged <50 years
(n =24,988). The proportion of variance in RDW explained by the genetic variants was greater
in the older group (33.8%, SE = 1.0%) compared to the younger group (28.4%, SE = 2.0%), and
this difference is statistically significant (p = 0.012).

In sensitivity analyses including only those directly genotyped SNPs associated with RDW
(at 2 separate p-value cut-offs: p<5x10~° and p<5x10%; n SNPs = 4,110 and 2,095 respectively)
we observed a reduction in the variance in RDW explained, as expected, but the conclusions
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Table 1. Summary statistics for 116,666 UK Biobank participants.

Trait Mean (SD) Min—Max
Age (years) 56.92 (7.94) 40-70
RDW (%) 13.49 (0.95) 11.1-38.3
Mean Cell Volume (fL) 91.39 (4.45) 54.5-160.3
Hemoglobin conc. (g/dL) 14.23 (1.23) 0.14-20.5
Sex N %
Females 61,306 52.55
Males 55,361 47.45
Anemia
No 98,871 84.75
Yes * 17,795 15.25
RDW (%)
<125 8,703 7.46
12.5-12.9 24,559 21.05
13.0-13.4 33,804 28.97
13.5-13.9 25,413 21.78
14.0-14.4 12,967 11.11
14.5-14.9 5,460 4.68
>15.0 5,761 4.94

* = either hospital diagnosis or raised hemoglobin (WHO definition, see methods)

https://doi.org/10.1371/journal.pone.0185083.t001

remained consistent: in all participants the variance in RDW explained by the included SNPs
was 18% (SE = 0.6%) and 14.2% (SE = 0.7%) for the 2 p-value thresholds respectively. There
was still a marked difference in the variance explained between the older group (19.6%,

SE = 0.8%; and 15.4%, SE = 0.8%) and the younger group (17.3%, SE = 0.9%; and 13.5%,

SE = 1%).

We estimated the proportion of variance in CHD (10,280 cases in 116,666 participants)
accounted for by the variants to be 5.95% (SE = 0.45%). The proportion of the variance shared
between RDW and CHD attributable to genetics is 6.62% (SE = 2.69%: 95% ClIs = 1.35 to
11.9%).

Genome-wide association study

Of the 16,832,071 genetic variants included in this GWAS, 30,988 were significantly (p<5x10'8)
associated with RDW (Fig 1; full results available to download here: https://doi.org/10.6084/m9.
figshare.5395504.v1) after adjustment for age, sex, assessment center and array type (genetic
relatedness is accounted for in the linear mixed models approach so no PCs are included-see
methods). A quantile-quantile plot shows clear inflation (S1 Fig; Lambda = 1.15), consistent
with polygenic inheritance of many causal variants of small effects which can now be discovered
using large sample sizes [10]. The 30,988 variants were mapped to 141 loci (runs of variants sep-
arated by <2Mb) on the genome, and included 194 independent signals after conditional analy-
sis (“conditional SNPS”) (S1 Table).

After excluding 17,795 participants with anemia the GWAS of RDW was repeated on the
98,871 remaining participants; all 194 conditional SNPs remained nominally associated with
RDW (p<0.001), but 24 were no longer genome-wide significant (p<5x10°®), possibly due to
reduced power in the smaller sample size. All subsequent analyses are based on the results
from the analysis of all participants.
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Fig 1. Genetic variants associated with RDW in GWAS of 116,666 UK Biobank participants. The variants are grouped into 194 independent
signals, colored blue if a variant in the signal is associated with any trait in the NHGRI-EBI GWAS catalog of known associations, otherwise colored in
red. The y-axis (—logo p-values) is limited to 30 for clarity, as the max value is 200. See S1 Table for RDW associations for each signal, and S4 Table
for mapping to the catalog. Horizontal line p = 5x1 08.

https://doi.org/10.1371/journal.pone.0185083.9001

Functional implications of RDW-associated genetic variants

We utilized the UCSC Variant Annotation Integrator (http://www.genome.ucsc.edu/cgi-bin/
hgVai) and the Ensembl Variant Effect Predictor (http://grch37.ensembl.org/Homo_sapiens/
Tools/VEP) to interrogate a number of genomic annotation databases for the conditional
SNPs. The majority (119 out of 194 total) were intronic, and 12 were located in the 3’ or 5’ un-
translated regions (see S2 Table for complete variant annotation output). We found that 37 of
194 independent RDW-associated signals are known eQTLs (i.e. affect the expression of a
gene) in whole blood (http://genenetwork.nl/bloodeqtlbrowser): 15 of these affect the gene
predicted by the variant annotation integrator, including rs6602909, located in an intron of
oncogene GAS6 [11] (see S3 Table for complete matching of RDW-associated signals to eQTL
data). SNP rs7775698 is an trans-eQTL for more than 30 genes.

Fifteen of the RDW-associated signals were exonic: 11 missense, 3 synonymous, and a 17
base-pair exonic deletion in gene SMIM1. The missense and deletion variants are shown in
Table 2. PolyPhen-2 predicted that three missense variants are “probably damaging” to the
protein function of genes TRIM58, PLD1 and PNPLA3. Variant rs2075995 was predicted to
be “possibly damaging” to the protein function of gene E2F2. TRIM58 is a ubiquitin ligase
induced during late erythropoiesis [11]; PLD1 is a phospholipase implicated in processes
including membrane trafficking [11]; PNPLA3 is a triacylglycerol lipase in adipocytes and vari-
ant rs738409 is associated with susceptibility to Non-alcoholic Fatty Liver Disease [12]. Gene
SMIM1 is involved in RBC formation [11] and a 17 base-pair deletion (rs566629828) causing
an exonic frameshift is strongly associated with increased RDW.

GWAS catalogue of known genetic associations

Of the 194 conditional SNPs associated with RDW, 77 mapped to at least one trait in the catalogue
of published GWAS (downloaded 13" March 2017). This was arrived at by; filtering the 33,005
SNP-trait associations to those with p<5x10™® (leaving 14,148 SNP-trait pairs for analysis); match-
ing the positions to the UK Biobank results (13,146); filtering to those with significant RDW asso-
ciation in our analysis (p<5x10"®), leaving 923 SNP-trait pairs (420 unique SNPs; some SNPs are
associated with multiple traits). These 420 unique SNPs mapped to 77 of the 194 conditional
SNPs associated with RDW. These are shown in Fig 1; see S4 Table for further detail.

Traits also associated with the individual RDW variants included iron metabolism and sev-
eral other red cell measures. Variants present were also associated with BMI, several lipids,
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Table 2. Four RDW-associated conditional genetic variants may have damaging effects on proteins.

Variant
SNP *
rs2075995
rs3811444
rs143845082
rs149535568
rs10479001
rs2578377
rs1799945
rs368865
rs556052
rs855791
rs738409
Deletion ¥
rs566629828

CHR: POS

1:23847464
1:248039451
3:171417570
3:171442535
5:131607721
5:153413390
6:26091179
13:113479820
19:49377436
22:37462936
22:44324727

1:3691997-3692014

Position RDW association

cDNA Protein | eA Gene AA Codon Effect Beta P eAF
1105 226 A E2F2 Q/MH | caG/caT P -0.033| 1.8x107'®| 0.502
1169 374 T TRIM58 T/M | aCg/aTg D -0.066| 6.3x10°°| 0.333
1539 308| A PLD1 R/C | Cgt/Tgt P 0.217| 4.6x10"| 0.005
1056 237 A PLD1 G/C | Ggc/Tge D 0.27| 9.3x10"| 0.048
751 225 T PDLIM4 AN | gCa/gTa B 0.056 1.1x10® | 0.042
459 122| T | FAM114A2 | G/S | Ggt/Agt B 0.026| 4.1x10"°| 0.633
347 63| G HFE H/D | Cat/Gat B -0.138 | 2.2x10"*3| 0.150
1037 317| G ATP11A M/V | Atg/Gtg B 0.025 2.4x10°| 0.724
1215 316 | C | PPP1R15A | A/P | Get/Cct B -0.028 8.5x10'?| 0.333
2321 736 T TMPRSS6 | V/D | ¢Tc/gAc B 0.119| 1.2x102%*| 0.439
617 148| G PNPLA3 I/M | atC/atG D -0.029 6.2x10° | 0.216
309-325 21-26 | Del SMIM1 - - F 0.12| 4.5x10'| 0.013

* Qutput from UCSC Variant Annotation Integrator for the RDW-associated conditionally independent SNPs located in protein-coding regions.

¥ Output from Ensembl Variant Effect Predictor for insertion/deletion events.

“Effect” = (D)amaging, (P)ossibly damaing, or (B)enign SNP, or (F)rameshift due to deletion; “AA” = amino-acid change; “eA” = effect allele (positive strand)
causing the change; “Beta” = the beta coefficient for the effect allele on RDW; "P" = p-value for the RDW association; “eAF” = effect allele frequency in UK
Biobank white/British participants. All positions are from hg19/b37.

https://doi.org/10.1371/journal.pone.0185083.t002

hemoglobin A1C and metabolic syndrome, as well as height. Autoimmune associated condi-
tions included autoimmune thyroid disease, type 1 diabetes, Crohn’s disease, inflammatory
bowel disease, rheumatoid arthritis, systemic lupus erythematosus and ulcerative colitis. Vari-
ants linked to Lung, ovary and nasopharyngeal cancers were present. In addition, conditions
associated with aging were represented, including variants linked to Alzheimer’s disease, age at
menopause, bone density, Myositis, Parkinson’s disease, macular degeneration, C-reactive
protein levels and longevity. For Alzheimer’s and longevity these were known SNPs in the
APOE gene region.

Gene ontology enrichment

MAGENTA software [13] identified pathways enriched in the genes mapped to variants signif-
icantly associated with RDW, including telomere maintenance, ribosomal RNA transcription
and histone modifications (Table 3), plus apoptosis. In addition, pathways related to lipid
metabolism (in particular chylomicrons) were also enriched. Additional information, such as
the expected/observed number of associated genes for each pathway is included in S5 Table.

Genetic risk score associations

We tested 20 Genetic Risk Scores (GRS) for potentially explanatory traits for the predictive
value of RDW for negative health outcomes; 7 were significant after adjustment for multiple
testing (p<0.0025). Three were associated with raised RDW (HDL, type-1 diabetes, and BMI);
four were associated with lower RDW (triglycerides, LDL, systolic blood pressure, and Alzhei-
mer’s disease) (Fig 2; S6 Table). After exclusion of the ApoE locus the HDL GRS remained sig-
nificant (p = 0.003), but the AD GRS was no longer significant (p = 0.84).
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Table 3. MAGENTA results: Biological pathways enriched in RDW genetics signals.

Biological pathway N genes Exp. Sig. Obs. Sig. p-value
Chromosomal & DNA-related
Histone 33 2 13 9.9x107
Nucleosome 31 2 9 1.7x10°
Nucleosome assembly 43 2 10 1.0x10
Packaging of telomere ends 23 1 11 9.9x107
Telomere maintenance 49 2 12 5.0x10°®
Chromatin packaging and remodeling 142 7 20 2.4x10°
Apoptosis-induced DNA fragmentation 9 0 4 4.0x10*
RNA polymerase-related
RNA Pol I—promoter clearance 44 2 14 9.9x107
RNA Pol I—promoter opening 23 1 14 9.9x107
RNA Pol I—chain elongation 30 2 9 7.0x10°
RNA Pol |, lll, and mitochondrial transcription 82 4 15 1.2x10°
Lipid-related
Chylomicron 9 0 5 3.4x10°
Chylomicron-mediated lipid transport 15 1 5 6.0x10™*
Phospholipid efflux 8 0 4 2.0x10*
Very-low-density lipoprotein particle 14 1 5 2.0x10*
Other
Systemic Lupus Erythematosus 60 3 15 9.9x107
Olfaction 105 5 18 4.0x10°®
Cellular iron ion homeostasis 25 1 8 2.8x10°
Lactation (mammary development) 8 0 3 4,5x10°

Output from MAGENTA GWAS enrichment software for the 30,988 RDW-associated genetic variants. Pathways shown are those where the estimated
false discovery rate p<0.05. N genes = number of genes in the gene-set analysed; Exp. Sig. = Expected number of genes with a corrected gene p-value
above the 95 percentile enrichment cutoff; Obs. Sig. = Observed number of genes with a corrected gene p-value above the 95 percentile enrichment cutoff;
p-value = nominal p-value using 95 percentile of all gene scores for the enrichment cutoff.

https://doi.org/10.1371/journal.pone.0185083.t003

Genetic risks for Crohn’s disease and inflammatory bowel disease were nominally associ-
ated with increased RDW (Beta = 0.009: 95% CIs = 0.003 to 0.015; Beta = 0.009: 95% ClIs =
0.003 to 0.014; respectively). Risk scores for coronary artery disease were not associated with
RDW, including after removal of the lipid related variants (Beta = 0.00: 95% CIs = -0.006 to
0.005). A genetic risk score for telomere length was not significantly associated with RDW.

We also created a GRS for RDW using the 194 conditional SNPs identified in this analysis.
Although the GRS was associated with anemia (OR = 1.10: 95% CIs = 1.08 to 1.12) there was
no association with mortality, coronary artery disease, or cancer (p = 0.24, p = 0.24, and
p = 0.44, respectively). In sensitivity analyses excluding RDW-SNPs associated with CAD
p<5x10"® in a recent meta-analysis [14], in case results were biased due to invalid genetic
instruments, or using the MR-Egger method to check for pleiotropy [15], the conclusions
remained consistent.

Discussion

Variation in RBC size (RBC Distribution Width, RDW) increases markedly with age [16] and
high RDW values are strongly predictive of increased mortality, plus incident cardiovascular
disease and certain cancers [3,17]. However, RDW is not generally considered as being a
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Genetic Risk Score (# SNPs) Beta Coefficient [95% CI]

* = FDR significant :
LDL (49) * = -0.018 [-0.024, -0.013]

HDL (67) * PR — 0.021[0.015, 0.027]
TG (37) * ——t -0.037 [-0.043, -0.032
SBP (26) * —_— -0.019 [-0.024, -0.013
CAD (42) : -0.000 [-0.006, 0.005

Stroke (4) -0.003 [-0.009, 0.003
0.003 [-0.003, 0.009
-0.001 [-0.007, 0.005
Colorectal Cancer (36) -0.005 [-0.011, 0.000
T1D (32) * 0.009 [ 0.004, 0.015

]
1
—— 1
= ]
Prostate Cancer (85) - ]
- ]
—— 1
e ]
T2D (66) I—-—( -0.006 [-0.012, -0.000]
e :
]
= ]
b 1
]
— ]
= ]
= ]
= ]
T

Breast Cancer (65)

AMD (32) 0.007 [ 0.001, 0.013
AD (8) * — -0.022 [-0.028, -0.016
FVC (6) -0.001 [-0.007, 0.005
Telomere Length (7) 0.004 [-0.002, 0.010
BMI (69) * = 0.023[0.017, 0.029
Height (402) 0.007 [ 0.002, 0.013
Crohn's disease (139) 0.009 [ 0.003, 0.015
IBD (156) 0.009 [ 0.003, 0.014
Ulcerative Colitis (87) 0.004 [-0.001, 0.010
[ T T 1
-0.050 -0.025 0.000 0.025 0.050

Standardized Beta Coefficient

Fig 2. Genetic Risk Score associations with RDW. * FDR = false-discovery rate adjusted significant
association. Genetic Risk Scores (GRS) were z-transformed prior to analysis. Linear regression model
against RDW (z-transformed) including 116,666 participants, adjusted for age, sex, assessment center and
population structure (genetic PCs 1-5). LDL (low-density lipoprotein), HDL (high-density lipoprotein), TG
(triglycerides), SBP (systolic blood pressure), CAD (coronary artery disease), T1D (type-1 diabetes), T2D
(type-2 diabetes), AMD (age-related macular degeneration), AD (Alzheimer’s disease), FVC (forced vital
capacity), BMI (body mass index), IBD (inflammatory bowel disease). Full results in S6 Table.

https://doi.org/10.1371/journal.pone.0185083.9002

clinically useful measure outside the assessment of anemia sub-type, perhaps because the
mechanisms explaining its prognostic value in people without anemia are unclear. In this
study we investigated RDW using genetic analysis to understand the molecular mechanisms
underpinning variation in RBC size.

A large proportion of RDW variation (29.3%) was attributable to common genetic variants
in this analysis, and the variation explained by genetic variants appeared to increase with age,
contrary to common assumptions that genetic effects decrease with advancing age. This could
be due to effects accumulating over a time. Many of the “hallmarks of aging” also have this
property [18]. Additionally, many of the RDW-associated genetic variants (in 71 of 194 condi-
tionally independent signals) have previously been associated with other traits including meta-
bolic syndrome, certain cancers, and autoimmune disease as well as aging related conditions
including menopausal age.

Our analysis of genetic risk scores (GRS) showed that participants with genetically-
increased risk for coronary artery disease or cancer did not have significantly higher RDW.
Similarly, we found that a GRS for RDW (using the 194 variants) had was not associated with
mortality, incident coronary heart disease (CHD), or cancer. Consistent with this, the propor-
tion of the variance shared between RDW and CHD attributable to genetics was only 6.6%;
therefore the majority of genetically influenced red cell variation is independent of CHD.
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As higher RDW is associated with CVD epidemiologically, we might have hypothesized
that genetic risks for adverse lipid levels or blood pressures affect RDW, but instead we found
associations in the opposite directions: GRS analysis showed that participants with genetically
lower LDL levels, triglyceride levels, or systolic blood pressure, had higher RDW, and geneti-
cally higher HDL was associated with greater RDW. Published observational associations
between lipids and RDW are only partially consistent with our findings here: Lippi et al found
that LDL and HDL cholesterol were both negatively related to RDW, and triglyceride levels
were positively related [6]. It is known that RBC have a role in cholesterol homeostasis by
transporting cholesterol in the plasma membranes, with significant inter-individual differ-
ences not entirely explained by age or cholesterol levels [19]. The relationship between lipids
and RDW is complex and requires further investigation. We also observed that genetically
increased risk of type-1 diabetes was associated with increased RDW-further evidence for
autoimmune involvement, in addition to the overlap in significant SNPs in the GWAS cata-
logue-and that genetically increased BMI is associated with increased RDW.

Genetic variants associated with RDW were enriched in expected pathways, including iron
homeostasis, but we also found evidence for telomere maintenance, ribosomal RNA produc-
tion, and a number of nucleosome and histone pathways. Short telomere length is a hallmark
of cellular aging to senescence [18] and is associated with many risk factors of disease, however
the causal direction is still uncertain [20], and longer telomeres have been linked to risk of can-
cer [21]. Kozlitina et al reported in 2012 that increased RDW is associated with shorter telo-
meres in leukocytes [22]. We created a genetic risk score for telomere length but it was not
associated with RDW (Beta = 0.004: 95% CIs = -0.002 to 0.010); further work is required to
clarify this association.

We also found enrichment of RNA polymerase I (which transcribes ribosomal RNA) and
RNA polymerase III (which transcribes transfer RNA); both are required for protein synthesis,
including hemoglobin, and can even function as regulators of gene expression in their own
right [23], suggesting these are key factors for consistent production of RBC. Deregulation of
transcription and proteostasis are hallmarks of aging [18], and we have previously reported
deregulation of gene expression of the transcriptional machinery with advancing age [24].

Four of the conditionally independent genetic variants associated with RDW are exonic
and affect the amino-acid sequence of the protein products. Most others are intronic or inter-
genic, and may be regulatory; this is supported by published eQTL data [25], in which 37 of
the RDW-associated signals have been reported to affect the expression of a gene in whole
blood. Of the 194 independent variants identified, 119 are intronic; this does not appear to be
an uncommonly high proportion, as 23 of 39 novel BMI variants identified by Locke et al.
2015 were intronic [26] and 6 of 12 novel blood pressure variants identified by Kato et al. 2015
were intronic [27]. Intronic variants may have direct effects on protein expression by affecting
the splicing or processing of the pre-mRNA, a complex process to produce the correct mRNA
and subsequent protein [28], or by altering expression of a regulatory non-coding RNA such
as a micro RNA. These will be useful targets for future research to determine how these vari-
ants ultimately affect consistency in red blood cell size.

Limitations

The UK Biobank is a volunteer study which achieved only a 5% response rate, so at assessment the
participants were healthier than the general population. However, there was substantial variation
in RDW within the participants so the results can still be generalized to the wider population [29].

More work is needed to replicate these findings in independent cohorts, and to establish
the effects in other populations, particularly non-European ancestries. No data have been
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released regarding the UK Biobank participant’s lipid and other blood assays; once this is avail-
able, further investigations into the complex relationship between RDW and lipids can be
performed.

The GWAS catalogue does not contain every published GWAS, especially the most recent
studies, but contains many of the largest meta-analyses for traits such as cardiovascular disease
and cancer. It is therefore likely we have missed some studies using this method, therefore our
results present an approximation of the overlap between RDW signals and other traits.

Conclusions

Variation in RDW has a substantial genetic component, and this increases with increasing age.
Although increased RDW is predictive of cardiovascular outcomes, this was not explained by
known CVD or related lipid genetic risks. The predictive value of RDW for a range of negative
health outcomes may in part be due to variants influencing fundamental pathways of aging,
but it may also be reflective of exposures or underlying conditions.

Materials and methods

The UK Biobank study recruited 503,325 volunteers aged 40-70 who were seen between 2006
and 2010. Data includes RBC distribution width (RDW) and other clinical hematology mea-
sures, extensive questionnaires including smoking behavior and education history, and follow-
up using electronic medical records. Currently one third of the participants have available
genotype information. We utilized data from 116,666 participants of white/British descent
with all available data. UK Biobank has approval from the North West Multi-centre Research
Ethics Committee (MREC), which covers the UK. UK Biobank data is available to all bona fide
researchers, in the UK and internationally, without preferential access. Applications are
reviewed, with ethical advice from from both the University of Oxford’s Ethox Centre and the
Ethics and Governance Council, where appropriate. Following approval and signing of a mate-
rials transfer agreement, de-identified data is transferred to researchers [30]. Information and
access to data can be found online (www.ukbiobank.ac.uk/scientists).

Phenotypes

RDW is a measure of the variability in the mean size of the RBC in each participant (in %
units). It was measured using four Beckman Coulter LH750 instruments within 24 hours of
blood draw, with extensive quality control performed by UK Biobank [31]. RDW is a continu-
ous, highly skewed trait, therefore we used quantile normalization of the continuous measure
to create a Gaussian distribution, so that the normality assumption of the linear regression
models were not violated.

Anemia was determined both using self-reported diagnosis, electronic medical records
(ICD10: D64* and D5* categories), or by low hemoglobin levels at the baseline assessment
(<120g/L in females, <130g/L in males: from WHO definition [32]).

Coronary heart disease (CHD) was defined using self-reported myocardial infarction or
angina, or diagnosis in the electronic medical records (ICD10: 120-125).

Variance explained and genetic correlation

Variance-components analysis determines the heritable phenotypic variation in complex traits
explained by genetic variants. We used BOLT-REML to determine the variance in RDW
explained by the common, genotyped variants (n = 457,643 directly genotyped variants with
minor allele frequency (MAF) >0.1%, HWE p>1x10"® and missingness <1.5%) using

PLOS ONE | https://doi.org/10.1371/journal.pone.0185083 September 28, 2017 9/14


http://www.ukbiobank.ac.uk/scientists
https://doi.org/10.1371/journal.pone.0185083

@° PLOS | ONE

Genetic influences on red blood cell variation

restricted maximum likelihood estimation [33]. The method performs multiple iterations to
approximate BOLT-REML was also used to estimate the genetic correlation between RDW
and CHD.

To determine whether differences in heritability between the young/old groups was statisti-
cally significant we computed the t-statistic using Eq (1) from which a two-tailed p-value is
derived.

B, — B,

P k. (1)
\/SE? + SE,?

Genome-wide association study

We used data from the May 2015 release of the UK Biobank genetics data, where 152,248 partici-
pants were genotyped. Two custom Affymetrix genotyping arrays were used to directly genotype
>800,000 genetic variants; the UK BILEVE array (n = 49,922) and the UK Biobank Axiom array
(n =102,326), which share >95% of genomic markers. Both were enriched for known disease
variants and include >600,000 variants specifically chosen to optimize imputation in populations
of European descent. Quality control steps performed centrally by UK Biobank [34] included fil-
tering less reliable genotyping results (e.g. setting genotypes to missing in batches where the SNP
deviated from Hardy-Weinberg Equilibrium) and identifying poor quality samples (e.g. extreme
heterozygosity and/or low call rate) according to Affymetrix recommendations.

Genotype imputation, also performed centrally by UK Biobank [35], was performed on a
subset of genotype data, where SNPs with MAF < 1% were excluded, leaving 641,018 variants.
Phasing and imputation were performed separately, using a custom SHAPEIT?2 algorithm to
handle large sample size and IMPUTE2 with a combined UK10K and 1000 Genomes Phase 3
reference panel. This resulted in 73,355,667 genetic variations available in the dataset.

We performed a GWAS in 116,666 white/British participants (by self-report & genetic an-
cestry) with complete genetic data to determine genetic variants associated with RDW. After
quality control and filtering (we included autosomal variants with MAF >0.1%, missingness <
1.5%, imputation quality >0.4 and with Hardy-Weinberg equilibrium (HWE) p>1x10°
within the white/British participants) 16,889,199 imputed genetic variants were available for
GWAS analysis: methods described in detail previously [34-36]. We also utilized data directly
from the microarrays for variants on the X (n = 19,381) and Y (n = 284) chromosomes, and on
the mitochondrial genome (n = 135), which were unavailable in the imputed dataset.

GWAS was performed using BOLT-LMM, a software that uses linear mixed-effect models
to determine associations between each variant and the outcome, incorporating genetic relat-
edness [33]. We provided all directly genotyped SNPs that were present in the imputed data to
BOLT-LMM to construct the model. For X, Y and mitochondrial variants we used Plink (v1.9)
[37] to determine the associations between genotype and phenotype, with additional adjust-
ment for the first 5 principal components from FlashPCA [38] based on 95,535 independent
SNPs (pairwise r*<0.1) with MAF >2.5%, missingness <1.5%, and HWE p>1x10"°.

The main outcome of the GWAS was RDW residuals from a linear regression model
adjusted for age, sex, and assessment center, and were quantile-normalized prior to analysis.
Models were adjusted for array type (two different Affymetrix arrays were used, which are
>95% identical) at run time. Variants were classed as significant if the p-value for the associa-
tion with RDW was less than 5x10°,

Identifying conditionally independent GWAS signals

Many of the identified variants are correlated and may therefore not be independent; we used
conditional analysis to determine independent signals by adjusting each variant in a locus for
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the most significant variant in that locus (loci defined as runs of SNPs separated by <2Mb on
a chromosome). This process was repeated until only “conditional SNPs” remained that were
significantly associated with RDW independent of one another.

Conditional SNPs were checked for their consistency of association with RDW in two sen-
sitivity analyses: once excluding participants with prevalent anemia (either clinical diagnosis,
self-report, or raised hemoglobin), and in a separate analysis excluding participants <60 years
of age.

GWAS-significant SNPs follow-up

The determine the gene-locations and possible functional consequences of the conditionally
independent SNPs we submitted them to the UCSC Variant Annotation Integrator (https://
genome.ucsc.edu/cgi-bin/hgVai), which combines information from several sources to deter-
mine the probable effect of a genetic variant, including on specific genes (for example intronic,
missense, splice site, intergenic etc.) and PolyPhen-2 (a tool for predicting the impact of amino
acid substitutions on the protein product). We used data from the “Blood eQTL browser”
(http://genenetwork.nl/bloodeqtlbrowser) published by Westra et al. which reports associa-
tions between genetic variants and gene expression in whole blood [25] to determine whether
the independent SNPs affect gene expression in human whole blood.

The GWAS catalogue of published variant-trait associations was searched for all SNPs (not
just conditional SNPs) associated with RDW to determine which loci had previously been
associated with another trait in GWAS analyses (p<5x10°®), and which were novel [39]. We
used the UCSC ‘liftOver‘tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver) to match the geno-
mic coordinates between the GWAS catalogue (GRCh38) and the UK Biobank genetics data
(GRCh37).

We used the software package MAGENTA [13] to determine whether any biological path-
ways were enriched in the GWAS results, using the pathways database file GO_PANTHER _-
INGENUITY_KEGG_REACTOME_BIOCARTA. These methods involve adjustment for
multiple testing and include information on the expected and observed number of significant
genes in each pathway.

Genetic risk scores

Twenty Genetic Risk Scores (GRS) were computed for each participant based on the number
of trait-raising alleles they have for a particular phenotype, such as LDL cholesterol or type-2
diabetes. The derivation of each individual score is described in the S1 Methods document. To
compute the GRS we used Plink function ‘scores‘[37] which computes the number of trait-
raising alleles (0, 1 or 2) in each participant, multiplied (weighted) by the effect size (coefficient
or odds ratio) from the previously published study. Each of the 20 GRS computed was tested
for its association with RDW using linear regression models, adjusted for age, sex, assessment
center, genotype array, and population stratification (using the first 5 principal components
(PCs)).

Supporting information

S1 Table. Genetics variants (signals) independently associated with RDW.
(XLSX)

$2 Table. Variant annotation information for the independent signals associated with
RDW.
(XLSX)
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