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Abstract

Introduction

Varus knee alignment has been identified as a risk factor for the progression of medial knee

osteoarthritis. However, the underlying mechanisms have not been elucidated yet in chil-

dren. Thus, the aims of the present study were to examine differences in ground reaction

forces, loading rate, impulses, and free moment values during running in children with and

without genu varus.

Methods

Thirty-six boys aged 9–14 volunteered to participate in this study. They were divided in two

age-matched groups (genu varus versus healthy controls). Body weight adjusted three

dimensional kinetic data (Fx, Fy, Fz) were collected during running at preferred speed using

two Kistler force plates for the dominant and non-dominant limb.

Results

Individuals with knee genu varus produced significantly higher (p = .01; d = 1.09; 95%) body

weight adjusted ground reaction forces in the lateral direction (Fx) of the dominant limb com-

pared to controls. On the non-dominant limb, genu varus patients showed significantly

higher body weight adjusted ground reaction forces values in the lateral (p = .01; d = 1.08;

86%) and medial (p < .001; d = 1.55; 102%) directions (Fx). Further, genu varus patients

demonstrated 55% and 36% greater body weight adjusted loading rates in the dominant

(p < .001; d = 2.09) and non-dominant (p < .001; d = 1.02) leg, respectively. No significant

between-group differences were observed for adjusted free moment values (p>.05).

Discussion

Higher mediolateral ground reaction forces and vertical loading rate amplitudes in boys with

genu varus during running at preferred running speed may accelerate the development of
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progressive joint degeneration in terms of the age at knee osteoarthritis onset. Therefore,

practitioners and therapists are advised to conduct balance and strength training programs

to improve lower limb alignment and mediolateral control during dynamic movements.

Introduction

The knee joint is particularly vulnerable for running injuries with a prevalence rate of 40%

affecting the knee joint [1]. Knee injuries are often encountered in child and adolescent sports

[2] and thus represent a meaningful cause for the later development of osteoarthritis) OA) [3].

Even though OA is a chronic disabling disorder usually occurring in elderly individuals, the

number of children and adolescents suffering from OA has dramatically increased globally

over the past decades [3]. It has been proposed that an impaired ability to control lower limb

alignment during the performance of activities of daily living due to for instance muscle weak-

ness is associated with mechanical stress within the knee joint [4]. In children with genu varus,

higher contact stresses on the knee joints represent one of the main causes associated with

medial OA development [5,6]. These contact stresses and thus the risk of developing knee OA

are even increased if youth with genu varus perform weight-bearing exercises [7–10].

Previous studies have examined children with genu varus compared to healthy controls

while walking and reported between-group differences in sagittal, frontal, and horizontal kine-

matics and kinetics. For example, it was demonstrated that knee varus malalignment resulted

in larger endorotation of the foot and greater internal tibia rotation during the stance phase of

walking [5]. In addition, significant and high associations were reported between the maxi-

mum external knee adduction moment and internal knee rotation during the terminal stance

phase of walking in genu varus children [5]. Running compared to walking is biomechanically

(e.g., higher impact forces) and physiologically (e.g., neuromuscular and cardiovascular) more

demanding for genu varus patients because running produces higher compressive loads on the

knee joint [11].

To the authors’ knowledge, there is no study available in the literature that examined kinet-

ics during running in children with genu varus compared to health young controls. Therefore,

it is timely and imperative to assess lower limb loads during children’s everyday activities such

as running. Knowledge on this research question can be used to determine key risk factors

associated with OA progression in youth patients. While there is evidence that long-term and

high-volume running training may induce degenerative changes to the articular cartilage

resulting in progression of knee OA [12,13], less is known on the relationship between static

knee varus malalignment and three dimensional ground reaction forces (GRF) during running

in children with genu varus.

Thus, the aims of the present study were to examine differences in three dimensional GRF

(Fx, Fy, Fz) during running at preferred speed in boys with genu varus compared to age-

matched healthy controls. Additionally, we were interested in studying between-group differ-

ences during running in time to reach peak (TTP) GRF, vertical loading rates, impulses in all

axes, and free moment (FM) of the dominant and non-dominant lower limbs. With reference

to the relevant literature [5,6], we hypothesized that the vertical (Fz) and mediolateral (Fx)

GRF during running is higher in children with genu varus compared to their healthy peers. In

addition, we expected higher loading rates, mediolateral impulses, and FM in children with

genu varus compared to healthy controls which is indicative of an altered neuromuscular acti-

vation strategy [5,14].

Running kinetics in children with genu varus
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Material and methods

Participants

We used the freeware tool G�Power (http://www.gpower.hhu.de/) to calculate an a priori

power analysis with the test family (t tests) and the respective statistical test (means: difference

between two independent means [two groups]) based on a related study that examined

between-group differences in running kinetics (i.e., GRF) in injured and uninjured runners

[15]. The power analysis was computed with an assumed Type I error of 0.05, a Type II error

rate of 0.20 (80% statistical power) and an effect size of 0.80 for active running kinetics. The

analysis revealed that 36 children would be sufficient to observe large between group differ-

ences. Thirty-six boys aged 9–14 were enrolled in this study. Participants were divided in two

groups (genu varus and healthy controls). The genu varus group included 18 boys that were

selected during clinical examinations (Table 1). Only patients were enrolled that had a mech-

anical axis angle (MAA) which was defined as the angle formed by straight lines drawn from

the centre of the hip to the centre of the knee and the centre of the knee to the centre of the

ankle [16] greater than 1.3˚ in both knees. This was determined by means of a full-length

standing anteroposterior radiograph [17] (Fig 1). Exclusion criteria were signs of joints dis-

eases, diseases of bones, ligament injury, neuromuscular dysfunction, diseases of tendon, his-

tory of major trauma or surgery of the lower extremities, chronic joint infection, intra articular

corticosteroid injection [5]. All participants were right lower-limb dominant as determined by

a kicking ball test [18]. In addition, kinematic data was used to detect footfall patterns (heel

strike pattern instead of mid foot or forefoot strike) during running test trials to match our

participants in the two experimental groups not only for limb dominance but also for similar

footfall characteristics. Table 1 illustrates group characteristics. It was previously postulated

that shoe type affects walking kinetics in children [19,20] which is why all participants of the

present study were equipped with individually fitted (i.e., size) athletic shoes (New Balance

759, USA) during running.

All participants and their parents or legal representatives provided written informed con-

sent/assent to participate in this study. This study was approved by the local ethics committee

(University of Mohaghegh Ardabili, Iran) and all experiments were conducted in accordance

with the latest version of the Helsinki Declaration.

Running analysis

This cross-sectional study included boys aged 9–14 with genu varus and healthy controls. Our

participants were recruited from local physical therapy clinics. Three-dimensional running

Table 1. Group-specific characteristics of our participants presented as means and standard

deviations.

Variable Healthy controls

(n = 18)

Genu Varus

(n = 18)

p

Age (years) 11.44±1.78 11.66±1.64 0.70

Body height (m) 1.40±0.07 1.40±0.08 0.95

Body mass (kg) 36.39±12.13 36.55±11.44 0.97

BMI (kg/m2) 18.08±4.47 18.13±4.04 0.97

Dominant MAA - 9.5±6.1 N/A

Non-dominant MAA - 9.2±5.3 N/A

Note. MAA = Mechanical axis angle; BMI = Body mass index; N/A, Not applicable; p value from independent

samples t-test.

https://doi.org/10.1371/journal.pone.0185057.t001

Running kinetics in children with genu varus
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analysis was performed using a Vicon MX system consisting of six T- series cameras (200 Hz)

(Vicon Motion Systems, Oxford, UK). Two Force plates (Kistler AG, Winterthur, Switzerland)

embedded in the middle of an 18-m walkway simultaneously recorded three dimensional GRF

data (Fx, Fy, Fz) at a sampling frequency of 1000 Hz. A plug-in-gait marker set [21] with six-

teen reflective markers (14 mm diameter) was used to identify the pelvis, thighs, legs, and feet

segments. Marker positioning was identified through palpation and in accordance with guide-

lines provided by the manufacturer. The markers were directly attached to the skin of the fol-

lowing anatomical landmarks: bilateral anterior and posterior superior iliac spines; bilateral

lateral femoral epicondyles; bilateral lateral malleoli; bilateral calcaneus; lateral side of the

thighs and shanks, and top of the feet at the base of the second metatarsal.

Thereafter, participants were familiarized with the laboratory environment and walkway

area and at least five practice trials were performed to ensure subjects were able to strike the

force plate without consciously changing their running cadence. Afterwards, each participant

identified with heel strike pattern during running (kinematic analysis) performed five accept-

able shod running trials at preferred and comfortable speed. A trial was discarded if both feet

did not land on the force plates, if the participant targeted the platforms, lost balance during

the trial, ran with mid or forefoot strike pattern, or even fell during running. Kinematic and

kinetic data were extracted during the stance phase of running, defined as the interval from

ground contact (onset of vertical GRF [Fz] > 10 N) to toe off (vertical GRF [Fz] < 10 N)

[22,23]. Kinematic and kinetic data were filtered using a fourth-order low-pass Butterworth

Fig 1. The view of (A) mechanical axis angle (MAA), and (B) plugin gait marker set. Written informed consent

(as outlined in the PLOS consent form) was obtained from the parents of the child in Fig 1. All participants

provided their written informed consent/assent.

https://doi.org/10.1371/journal.pone.0185057.g001

Running kinetics in children with genu varus
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filter with a cutoff frequency of 10 and 20 Hz, respectively. Using spline interpolation, all data

were normalized to the stance phase with heel contact to toe-off corresponding to 100% [24].

Parameters that were used for further statistical analyses included peak values in three

dimensional GRF and time to peak of the mediolateral (Fx), anteroposterior (Fy), and vertical

(Fz) GRF axes. The first and second peaks of the bimodal vertical GRF curve (impact peak [IP]

and active peak [AP]) were considered for further analysis (Fig 2). In the mediolateral direc-

tion, the peaks of lateral force and medial force were also analyzed (Fig 2). In the anteroposter-

ior direction, the braking peak (BP) and propulsion peak (PP) were analyzed (Fig 2). Forces

were normalized to body weight (BW) and the corresponding timing was expressed as a per-

centage of stance-phase duration (%Stance), to allow between-subject comparison [25].

Vertical loading rates were computed as the average slope from 20% to 80% of the vertical

GRF (Fz) at the point of interest [26]. Impulses were calculated using the trapezoidal integra-

tion method (Eq 1) for x, y, and z axes as follows [27]:

Impulse ¼ Dt
F1þ Fn

2

� �

þ
Pn� 1

i¼2
Fi

� �

ðEq 1Þ

Where, F1 and Fn are the first and last forces, respectively; Δt is equal to sampling duration

and n is the number of force samples.

The FM was calculated by using the following equation [28]:

FM ¼ Mz � FyðCoPxÞ þ FxðCoPyÞ ðEq 2Þ

Where Mz is the moment around the force plate vertical axis, CoPx and CoPy are the loca-

tions of the center of pressure (CoP) along the mediolateral and anteroposterior axes, respec-

tively. All FM waveforms were amplitude-normalized to the product of each individual’s body

weight (N) and height (m) [28]. The first peak of the FM curve (negative; abductor moment)

and the second peak (positive; adductor moment) were included in our analyses. Impulses of

FM were computed as the net area under the FM curve during stance [29].

Statistical analyses

Data were tested for normal distribution using the Shapiro-Wilk test. Homogeneity of variance

was assessed using the Levene’s test and variance ratios. Data were presented in the form of

means and standard deviations if normal distribution of data was given. Between-group differ-

ences were tested for significance using the independent samples t-test. The significance level

was set at p<0.01. In addition, effect sizes (Cohen’s d) were calculated as a ratio of mean differ-

ence divided by the mean standard deviation of both groups. Effect sizes were considered

small if d< 0.5, medium if 0.5� d< 0.8 and large with d� 0.8 [30]. The statistical calculations

were carried out using the SPSS version 16 (Chicago, IL, USA).

Results

Our statistical analysis did not detect any significant between-group difference in running

speed. Running speed of the genu varus group was 3.23±0.14 m/s and 3.26±0.15 m/s for the

healthy control group (p>0.05, CI: -0.09, 0.07).

Table 2 compares mean and body weight adjusted peak GRF values between groups for the

dominant and non-dominant lower limbs during the stance phase of a running cycle. In the

dominant lower limb, individuals with knee genu varus attained 95% higher GRF values in the

lateral direction (Fx) compared to healthy controls (p = .01, d = 1.09). Similarly, they showed

86% higher GRF values in the lateral direction (Fx) (p = .01, d = 1.08) as well as 102% higher

GRF values in the medial direction (Fx) (p< .001, d = 1.55) of the non-dominant lower limb.

Running kinetics in children with genu varus

PLOS ONE | https://doi.org/10.1371/journal.pone.0185057 September 19, 2017 5 / 15

https://doi.org/10.1371/journal.pone.0185057


Fig 2 illustrates the patterns of GRF in all directions for both legs. The graph indicates that

subjects from both groups showed similar patterns in anterior–posterior direction (Fy) but dif-

ferent patterns in other planes of motion. In particular, genu varus patients showed signifi-

cantly greater peak GRF values in medial and lateral directions (Table 2).

Table 3 presents the TTP GRF values for both groups. Overall, the healthy control group

showed significantly longer times to reach peak GRF values (except TTP for the propulsion

Fig 2. Time-normalized traces of the ground reaction forces for both groups during the stance phase of a running cycle. Reaction forces

(Fx, Fy, Fz) are demonstrated for the (a) dominant and (b) non-dominant lower limbs. “IP”, “AP”, “BP” and “PP” represent abbreviations that stand

for “Impact Peak”, “Active Peak”, “Braking Peak” and “Propulsion Peak”, respectively. The solid lines represent the mean values, whereas the

dashed lines indicate standard deviation values.

https://doi.org/10.1371/journal.pone.0185057.g002

Running kinetics in children with genu varus
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peak) compared to genu varus patients. In the dominant limb, a significantly longer duration

in time to reach peak GRF was found for impact (Fz) (p< .001, d = 3.72, 150%) and the poste-

rior braking (Fy) peak GRF (p< .001, d = 1.30, 47%). Likewise, in the non-dominant lower

limb, our analysis revealed 111% and 42% longer duration to reach the vertical GRF impact

(Fz) (p< .001, d = 3.68) and the posterior braking peak GRF (Fy) (p = .01, d = 1.08),

respectively.

Fig 3 illustrates between-group differences in vertical loading rates for both, the dominant

and non-dominant lower limbs during the stance phase of a running cycle. The genu varus

group demonstrated greater loading rate in the dominant (p< .001, d = 2.09, 55%, CI: -44.3,

-22.5) and non-dominant (p< .001, d = 1.02, 36%, CI: -39.0, -7.8) lower limbs, respectively.

Table 2. Means and standard deviations of peak GRF values in vertical (Fz), anterior-posterior (Fy) and mediolateral (Fx) directions for both

groups. Data were normalized to each individual’s body weight (%BW).

Side Variable Component Group p

value

Effect

Size (d)

95% CI of

differenceHealthy controls Genu Varus

Dominant Fz Impact 131.5±27.1 132.8±56.3 0.93 0.03 -31.7, 28.9

Active 200.2±20.1 216.8±18.8 0.02 0.85 -29.7, -3.3

Fy Braking 34.8±10.9 43.9±12.9 0.03 0.76 0.9, 17.1

Propulsion 29.1±7.6 30.2±5.9 0.63 0.16 -5.7, 3.5

Fx Lateral 7.7±3.1 14.9±10.2 0.01* 1.09 -12.6, -2.1

Medial 7.0±2.8 11.6±6.4 0.01 0.49 1.1, 7.9

Non-dominant Fz Impact 127.6±31.9 144.9±39.8 0.16 0.48 -41.5, 6.9

Active 194.1±23.4 213.3±26.9 0.03 0.38 -36.3, 2.1

Fy Braking 31.8±8.3 38.4±17.3 0.16 0.51 -2.7, 15.9

Propulsion 29.7±6.0 30.4±11.1 0.82 0.08 -6.8, 5.4

Fx Lateral 7.3±3.8 13.7±7.9 0.01* 1.08 -10.6, -2.1

Medial 6.4±3.4 13.1±5.2 < .001* 1.55 3.7, 9.6

* Note. Significant between-group differences.

https://doi.org/10.1371/journal.pone.0185057.t002

Table 3. Means and standard deviations of time to reach peak GRF components in vertical (Fz), anterior-posterior (Fy) and mediolateral (Fx) direc-

tions for both groups. Times are expressed as a percentage of the stance-phase duration.

Side Variable Component Healthy controls

(% Stance)

Genu Varus

(% Stance)

p value Effect

Size (d)

95% CI of difference

Dominant Fz Impact 12.4±2.6 4.9±1.4 < .001* 3.72 6.0, 8.9

Active 42.3±4.8 41.9±5.0 0.84 0.06 -2.9, 3.6

Fy Braking 24.4±6.1 16.4±9.1 < .001* 1.30 2.7, 13.2

Propulsion 71.7±1.8 74.5±4.4 0.02 0.93 -5.2, -0.6

Fx Lateral 24.1±22.9 11.0±6.3 0.03 0.89 1.4, 24.7

Medial 39.2±16.2 34.2±24.6 0.48 0.24 -9.2, 19.1

Non-dominant Fz Impact 11.6±2.0 5.5±1.3 < .001* 3.68 4.9, 7.3

Active 41.0±6.2 40.7±4.9 0.86 0.07 -3.5, 4.1

Fy Braking 24.8±4.3 17.4±9.4 0.01* 1.08 2.4, 12.4

Propulsion 71.3±1.9 72.7±5.3 0.29 0.20 -4.2, 1.3

Fx Lateral 15.5±13.5 8.5±3.6 0.04 0.81 0.3, 13.7

Medial 42.2±13.4 34.2±15.9 0.12 0.54 -2.0, 17.9

* Note. Significant between-group differences.

https://doi.org/10.1371/journal.pone.0185057.t003

Running kinetics in children with genu varus

PLOS ONE | https://doi.org/10.1371/journal.pone.0185057 September 19, 2017 7 / 15

https://doi.org/10.1371/journal.pone.0185057.t002
https://doi.org/10.1371/journal.pone.0185057.t003
https://doi.org/10.1371/journal.pone.0185057


With regards to the impulse amplitude, genu varus patients showed significantly higher val-

ues in the mediolateral direction for both, the dominant (p = .01; d = 1.12, 60%, CI: -0.9, -0.2)

and non-dominant (p< .001, d = 1.24, 46%, CI: -.7, -0.2) lower limbs as compared to controls

(Fig 4).

Table 4. indicates no significant between-group differences in terms of body-weight adjus-

ted free moments. Fig 5 illustrates the patterns of free moments for the dominant (a) and non-

dominant (b) lower limbs during the stance phase of a running cycle.

Discussion

This is the first study that examined three dimensional running GRF in boys with genu

varus compared to healthy and age-matched controls. We hypothesized that body weight

adjusted vertical (Fz) and mediolateral (Fx) GRF during running is higher in children with

genu varus compared to their healthy peers. In addition, we expected higher body weight

adjusted loading rates, mediolateral impulses, and FM in children with genu varus com-

pared to healthy controls.

The most important findings of this study were that individuals with knee genu varus pro-

duced significantly higher body weight adjusted GRF values in the lateral direction (Fx) of the

dominant limb compared to controls. On the non-dominant limb, genu varus patients showed

significantly higher body weight adjusted GRF values in the lateral and medial directions (Fx).

Further, genu varus patients demonstrated greater body weight adjusted loading rates in the

dominant and non-dominant leg, respectively. Finally, no significant between-group differ-

ences were observed for body weight adjusted FM values.

Given that no significant between-group differences were detected in running speed and

kinetic data were adjusted for body weight, validity of our data is given.

Effects of genu varus on ground reaction forces

Our results are partly in accordance with the relevant literature with regards to the observed

GRF values on the dominant and non-dominant limb during running at preferred speed [5,6].

In the present study, individuals with knee genu varus produced significantly higher body

Fig 3. Vertical loading rate values during the stance phase of a running cycle.

https://doi.org/10.1371/journal.pone.0185057.g003
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Fig 4. Means and standard deviations of (a) impulse x, (b) impulse y, and (c) impulse z values for both groups

during the stance phase of a running cycle.

https://doi.org/10.1371/journal.pone.0185057.g004

Running kinetics in children with genu varus
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weight adjusted GRF values in the lateral direction (Fx) of the dominant limb and significantly

higher body weight adjusted GRF values in the lateral and medial directions (Fx) of the non-

dominant limb. Furthermore, there is a considerable variation both within and between

groups in the pattern of medio-lateral GRF during the stance phase of running (see Fig 2).

Of note, a number of studies reported abnormal control of mediolateral motion in children

and/or adolescents with cerebral palsy [31], hearing loss [32], down syndrome [33], and scolio-

sis [34]. It has been demonstrated that during walking at different velocities (i.e., 0.54; 0.75;

1.15; 1.56 m/s) the abductor, vasti, and plantarflexor muscles) make significantly larger contri-

butions to mediolateral GRF compared to the contributions of passive dynamics (i.e., gravity

and velocity-related forces) [35]. On average, the above reported muscles contributed 92% of

the total mediolateral GRF over all examined walking speeds [35]. In this context, Liu et al.

postulated that the abductors primarily support body weight by contributing a large medial

GRF at all walking speeds, the vasti, gastrocnemius, and soleus influence both, forward pro-

gression and body weight support [36]. Also, it has been demonstrated that electromyographi-

cal activity of the biceps femoris muscle was significantly higher in boys with genu varus

compared to healthy controls during the loading response phase of walking [14]. In the present

study, we observed higher mediolateral GRF (Fx) in genu varus patients which is primarily

caused by varus malalignment and to a lesser extent by muscular disorders [14]. In young indi-

viduals with varus malalignment, abnormally high knee internal rotation and hip external

rotation moments were detected during walking which may increase the risk of sustaining

knee injuries [6]. Apart from that, higher lateral (Fx) GRF were found in the present study in

children with genu varus. It has previously been postulated for runners that high lateral GRF

result in overpronation during running [37,38] which may again cause overuse syndromes of

the leg and the knee joint [39]. If signs of abnormally high lateral GRF are observed in chil-

dren, it is recommended to conduct preventive training programs (e.g., balance and/or

strength training) that focuses on lower limb alignment and control mediolateral motion from

an early age on [40]. Therefore, practitioners and therapists are advised to conduct balance

and strength training to improve lower limb alignment and mediolateral control during

dynamic movements in children with genu varus.

Effects of genu varus on vertical loading rates

Our results are partly in accordance with the relevant literature with regards to the observed

vertical loading rate values on the dominant and non-dominant limb [41,42]. Findings from

the present study demonstrated greater body weight adjusted vertical loading rates in both, the

dominant and non-dominant lower limbs in children with genu varus compared to healthy

controls. Higher vertical loading rates in children with genu varus are most likely due to a

shorter time to reach peak GRF (Table 3 and Fig 2).

Table 4. Averaged and normalized (% body weight × height) free moment variables in healthy controls and genu varus children.

Side Variable Component Group p value Effect

Size (d)

95% CI of difference

Healthy controls Genu Varus

Dominant Free Moment Peak Adduction 5.4±3.1 5.7±3.5 0.83 0.07 -2.4, 2.0

Impulse 1.4±1.9 1.4±1.9 0.99 0.01 -1.3, 1.3

Non-dominant Free Moment Peak Adduction 5.0±3.2 5.9±3.3 0.46 0.25 -3.0, 1.3

Impulse 1.3±1.8 1.5±1.7 0.71 0.13 -1.4, 0.9

Note. Petak Adduction values are × 10−3; Impulse values are × 10−4.

https://doi.org/10.1371/journal.pone.0185057.t004
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It has been shown that repetitive impact loading results in subchondral bone microdamage

associated with cartilage thinning [43]. Also, the first peak of vertical GRF curve has high fre-

quency domains that are propagated through the lower limb and modulated by the active and

passive structure of the lower extremities, such as the muscles, tendons, ligaments, bone, and

cartilage. Impairments to the active (muscles) and passive structures (such as ligaments and

etc) of the body may be associated with dysfunction in impact attenuation process. This dys-

function results in forces across the articular surfaces of the lower limb joints (i.e., knee) to be

Fig 5. Time-normalized traces of the free moment for both groups during the stance phase of a running cycle. Free

moments for the (a) dominant and (b) non-dominant lower limbs are displayed.

https://doi.org/10.1371/journal.pone.0185057.g005
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increased beyond the tissues’ load-bearing capacity [44], especially the cartilage regions that

are unaccustomed to such forces [45,46]. It has been suggested that the vertical loading rate is

a useful variable for estimating the overload applied on the lower limb musculoskeletal tissues

[47,48]. An average vertical loading rate greater than 70, 72, and 100 N/kg/s during running in

runners has been associated with a risk of sustaining stress fractures [49,50], patellofemoral

pain [41,51], and plantar fasciitis [42]. In the present study, genu varus children demonstrated

vertical loading rates that were greater than 80 N/kg/s. Therefore, it can be postulated that chil-

dren with genu varus are at risk of sustaining stress fractures [49,50] and patellofemoral pain

syndrome [41,51].

Effects of genu varus on free moment amplitudes

Our results are not in accordance with the literature in terms of the observed FM values on the

dominant and non-dominant limbs [5,28,52]. Our study revealed no statistically significant

between-group differences in body weight adjusted FM values during the stance phase of a

running cycle. It has previously been demonstrated that knee varus malalignment results in

larger endorotation of the foot and greater internal tibia rotation during the stance phase of

walking [5]. Further, it has been demonstrated that runners with an injury history (tibial stress

fracture and over pronation) showed higher free moment amplitudes compared to healthy

(uninjured) runners [28,29,53]. This highlights the importance of assessing FM and thus bio-

mechanical loading of the lower limbs in other populations. Nevertheless, our results did not

demonstrate any significant differences in running FM peaks between genu varus group and

healthy controls. However, as was illustrated in Fig 5, there was a considerable variation both

within and between groups in the pattern of free moment during the stance phase of running.

Moreover, as is typical in ensemble curves, the peaks are attenuated relative to the individual

curves owing to between-group differences in TTP GRF values. The group average curves (Fig

5) illustrate the overall pattern of FM during stance phase of running, but as can be seen from

the large spread demonstrated by the standard deviation in Table 4, there was considerable

between subject data variability. The present study provides fundamental information regard-

ing the characteristics of FM in healthy boys as well as boys with genu varus during the stance

phase of running. As mentioned in a previous study [52], it seems that FM could be used to

classify genu varus children into functional groups since it possesses a considerable inter-sub-

ject variability, a relationship to the mechanical demands put on the lower limb joints and

potentially to injury risk. This is likely due to the longer support time during walking versus

running.

A few limitations of this study warrant discussion. First, we assessed kinetic data only

which is why it is not possible to deduce the underlying neuromuscular mechanisms responsi-

ble for the observed findings. Thus, further research is needed in this area. Second, we exam-

ined boys with genu varus versus age-matched healthy controls. Therefore, our findings

should be carefully interpreted in girls and adolescents. More research is needed to confirm

our findings for different population groups.

Conclusions

A mechanical consequence of knee varus malalignment is a greater lateral (Fx) GRF amplitude,

lower TTP three dimensional GRF components, greater vertical loading rates, and greater

mediolateral impulses in both limbs during the stance phase of running. Of note, the genu

varus compared to the control group did not show any differences in peak negative and posi-

tive FM. Due to the higher GRFs, higher loading rates, and impulses put upon the lower limbs

of genu varus children, various invasive or non-invasive treatment strategies such as surgery,
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orthoses, or balance and strength training protocols should be considered to prevent joint

degeneration in these young individuals.
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