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Abstract

Finding dense spanning trees (DST) in unweighted graphs is a variation of the well studied

minimum spanning tree problem (MST). We utilize established mathematical properties of

extremal structures with the minimum sum of distances between vertices to formulate some

general conditions on the sum of vertex degrees. We analyze the performance of various

combinations of these degree sum conditions in finding dense spanning subtrees and apply

our approach to practical examples. After briefly describing our algorithm we also show how

it can be used on variations of DST, motivated by variations of MST. Our work provide some

insights on the role of various degree sums in forming dense spanning trees and hopefully

lay the foundation for finding fast algorithms or heuristics for related problems.

Introduction

Background information

A spanning tree T of a graph G is a connected acyclic subgraph that contain all vertices of G. In

the case that G is weighted, the classic problem of finding the minimum spanning tree (MST)

seeks the spanning tree with the minimum weight (sum of edge weights on the spanning tree).

Because of its extensive applications such as network design and cluster analysis, numerous

studies have been published on the algorithms (see, for instance, [1] and the references therein)

and related topics including a number of variations of MST such as the k-MST (finding the

minimum subtree containing exactly k vertices), the Steiner tree problem [2], degree con-

strained minimum spanning tree problem [3], capacitated minimum spanning tree problem

[4], MST with conflict pairs [5].

A variation of the tree with minimum weight (in weighted graphs) is the tree with mini-

mum sum of pairwise distances between vertices (in unweighted graphs). This “sum of dis-

tances” has been a simple but interesting mathematical concept since early 20th century, but

has started receiving tremendous attention in the last couple of decades as the so-called Wiener
index [6, 7] for its applications in biochemistry:

WðTÞ ¼
X

u;v2VðTÞ

dðu; vÞ:
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Here d(u, v) is the distance between u and v. Thus a natural variation of the MST is to find the

spanning tree with the minimum Wiener index.

Extremal trees and graphs that minimize the Wiener index in various classes of graphs have

been extensively studied, see [8] for an earlier informative survey and part of [9] for some

recent results. One interesting observation was that the extremal structures that minimize the

Wiener index usually maximize the number of subtrees (see for instance [10]). This correlation

was further analyzed in [11]. The number of subtrees relates to the complexity of phylogeny

reconstruction algorithms [12] and “density” of graphs [13, 14].

Intuitively, indeed a “dense” structure with many subtrees tends to minimize the sum of

distances. Consequently the MST becomes finding densest (with minimum Wiener index)

spanning trees (DST) in unweighted graphs. We explore the known mathematical properties

of dense trees that lead to useful methods for solving DST.

Degree sequence and the greedy tree

In the study of dense trees, trees with a given degree sequence (non-increasing sequence of ver-

tex degrees) are often considered. It has been established that the greedy tree (Definition 1)

minimizes the Wiener index and maximizes the number of subtrees among all trees with a

given degree sequence. Here we use deg(v) to denote the degree of a vertex v.

Definition 1 (Greedy Tree). With a given degree sequence, the greedy tree is achieved
through the following “greedy algorithm”:

i. Label the vertex with the largest degree as v (the root);

ii. Label the neighbors of v as v1, v2, . . ., assign the largest degrees available to them such that
deg(v11 )�deg(v12 )�. . .;

iii. Label the neighbors of v1 (except v) as v11, v12, . . .,such that they take all the largest degrees
available and that deg(v11 )�deg( v12 )�. . ., then do the same for v2, v3, . . .;

iv. Repeat (iii) for all the newly labeled vertices. Always start with the neighbors of the labeled
vertex with largest degree whose neighbors are not labeled yet.

Furthermore, greedy trees with different degree sequences can be compared according

to their Wiener indices or numbers of subtrees. Without going into details, it is easy to see

that the degree sequences (6, 5, 4, 3, 2, 2, 1, . . ., 1) and (5, 4, 4, 3, 3, 3, 1, . . ., 1) correspond to

trees with same number of vertices; and it is easy to verify that the greedy tree with the first

degree sequence is “denser”. Based on the simple idea of putting larger degrees closer and

obtaining “better” degree sequences, in [15] an edge-swapping heuristic was presented for the

DST.

In order to further explore the potential of using degrees as a credential for measuring

the denseness of a spanning tree, we explore a number of conditions on the sum of vertex

degrees.

Methodology

In a recent study [16], as an effort to find dense spanning trees sum of vertex degrees is used as

a possible condition. It is pointed out that finding a spanning tree T of a given graph G that

maximize
X

uv2EðTÞ

ðdegðuÞ þ degðvÞÞ ð1Þ
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can be handled through simple integer linear programming. Note that (1) equivalent to
X

v2VðTÞ

ðdegðvÞÞ2: ð2Þ

Hence condition (1) is merely choosing degree sequences. For the same degree sequence, the

condition
X

uv2EðTÞ

ðdegðuÞ þ degðvÞÞ þ
X

dðu;vÞ¼2
ðdegðuÞ þ degðvÞÞ ð3Þ

can also be easily realized through integer linear programming. This second condition takes

into consideration the sum of degrees at distance 2 apart, and hence further select from span-

ning trees with the same degree sequence. Due to the limitations of integer linear program-

ming, further variations of such conditions cannot be tested.

In this note, for a vector (of real numbers)~j ¼ ðj1; j2; . . . ; jiÞ, we let C~j be the condition

C~j ¼ Cðj1; j2; . . . ; jiÞ ¼ C1;j1
þ C2;j2

þ . . .þ Ci;ji

where the condition Ci,j is a generalization of (1), with

Ci;j ¼
X

dðu;vÞ¼i

ððdegðuÞÞj þ ðdegðvÞÞjÞ:

It is obvious that C1,1 is exactly (1) and C(1, 1) is exactly (3). We seek solutions to DST through

maximizing C~j . As an intuitive explanation, we note that maximizing such expressions finds

“superior” degree sequences as discussed earlier. And among spanning trees with the same

degree sequence these conditions put vertices with larger degrees closer to each other.

Results and discussion

We will first explore performances of the proposed methodology with various choices of~j.
First we provide a comprehensive examination, followed by some concluding remarks on pos-

sible optimal vectors~j. We then apply our optimized parameters in some practical examples.

We also briefly describe our algorithm and mention the application of our method to varia-

tions of DST, motivated from variations of MST in the literatures. In the end we summarize

our results and propose some future work.

Performance analysis

In this section we apply various degree sum conditions and evaluate the Wiener index of the

resulted spanning tree.

Sum of degrees at distance i

First consider the case when~j has only one nonzero entry. In what follows we let

~j ¼ ð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þ and apply C~j to 1200 random graphs with 6, 7, or 8 vertices.

The Wiener index of the selected spanning trees is evaluated and the distribution is plotted in

Fig 1.

It is obvious that~j ¼ ð1; 0; 0Þ performs much better than the other two. We conclude that

at least for small graphs, the adjacent degree sum condition (corresponding to (~j ¼ ð1; 0; 0Þ)
outperforms any other single sum of distances.

Degree sums and dense spanning trees

PLOS ONE | https://doi.org/10.1371/journal.pone.0184912 September 19, 2017 3 / 12

https://doi.org/10.1371/journal.pone.0184912


Sometimes the exponent also makes a difference, for instance, for the same set of random

graphs the conditions with~j ¼ ð2; 0; 0Þ; ð0; 2; 0Þ; ð0; 0; 2Þ generally performs better than the

ones with~j ¼ ð0:5; 0; 0Þ; ð0; 0:5; 0Þ; ð0; 0; 0:5Þ, as shown in Fig 2. On the other hand, expo-

nents higher than 2 do not seem to make a difference in the result.

Sum of degrees at different distances

In the case of a sparse graph, it is likely that the adjacent degree sum condition is no longer suf-

ficient to find the best solution. For instance, the conditions with~j ¼ ð2; 2; 0; 0Þ and ð2; 2; 1; 0Þ
outperform that with~j ¼ ð2; 0; 0; 0Þ when applied to the set of all (labeled) random graphs on

7 vertices and 10 edges, as plotted in Fig 3.

At least for small graphs it does not seem to be beneficial to include sum of nonzero

power of vertex degrees at distance 4 or more, as shown in Fig 4 where the conditions with

~j ¼ ð1; 1; 1; 1Þ; ð1; 1; 1; 2Þ; ð2; 2; 2; 4Þ do not provide any better result than those shown in

Fig 3.

Optimal criteria

Based on these experiments, selecting from over 30 variations of~j, we have narrowed our pos-

sible optimal conditions to a few vectors. We apply these particular~j to a set of over 2000 large

random graphs on 11, 12, 13, 14, 15, 16, 17 vertices, the performance is shown below. As one

can see (from Fig 5) the conditions corresponding to~j ¼ ð4; 2; 0; 0Þ; ð4; 2; 2; 0Þ outperform

conditions corresponding to~j ¼ ð2; 4; 0; 0Þ; ð2; 4; 2; 0Þ, etc.

Discussion

We have systematically analyzed the performance of various degree sum conditions to find

dense spanning trees. When only one degree sum has nonzero power, the adjacent degree sum

Fig 1. Comparison between~j ¼ ð1;0; 0Þ; ð0; 1;0Þ; ð0; 0;1Þ.

https://doi.org/10.1371/journal.pone.0184912.g001
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condition greatly outperforms the others (Fig 1), as one would expect. Furthermore, using

larger exponents generally result in better performance (Fig 2).

On the other hand, since the adjacent degree sum condition is equivalent to simply the sum

of squares of degrees, it is obvious that including multiple degree sums in the condition should

lead to better result. This fact is verified in (Fig 3). However, when a star (generally considered

as the densest tree) or “the second densest” structure exists as a spanning subgraph, the adja-

cent degree sum condition does always find the densest spanning tree. As in the case of graphs

Fig 2. Comparison between~j ¼ ð2;0; 0Þ; ð0; 2;0Þ; ð0; 0;2Þ (top) and~j ¼ ð0:5;0; 0Þ; ð0; 0:5;0Þ; ð0; 0;0:5Þ
(bottom).

https://doi.org/10.1371/journal.pone.0184912.g002
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with 7 (labeled) vertices, all 9555 cases of the spanning star and 110691 cases of a spanning T1

(a tree with degree sequence (5, 2, 1, 1, 1, 1, 1)) are found through the adjacent degree sum

condition.

This is because of the uniqueness of these dense spanning trees (and hence can be identified

with the adjacent degree sum condition alone) given their degree sequences. This is formally

stated below.

Fig 3. Comparison between~j ¼ ð2;2; 0;0Þ; ð2;2; 1;0Þ; and ð2;0;0; 0Þ.

https://doi.org/10.1371/journal.pone.0184912.g003

Fig 4. Statistics corresponding to conditions with~j ¼ ð1; 1;1;1Þ; ð1; 1;1;2Þ; and ð2;2; 2;4Þ.

https://doi.org/10.1371/journal.pone.0184912.g004
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Proposition 1. For a graph on n vertices, if the densest spanning tree is a star (with degree
sequence (n − 1, 1, . . ., 1)) or a tree with degree sequence (n − 2, 2, 1, . . ., 1), using the adjacent
degree sum condition will always find these spanning trees.

While in theory we believe that conditions involving five or more degree sums could be use-

ful in very large graphs, it seems that (from our collected data) in practice (when all graphs are

of “reasonable size”) the conditions C~j with~j ¼ ð4; 2; 0; 0Þ; ð4; 2; 2; 0Þ or ð4; 2; 2; 2Þ result in

the densest spanning trees.

Fig 5. Statistics corresponding to conditions with~j ¼ ð4; 2;0;0Þ; ð4; 2;2;0Þ; ð2; 4;0;0Þ; and ð2; 4;2;0Þ.

https://doi.org/10.1371/journal.pone.0184912.g005

Fig 6. The 8-gene and 10-gene models of molecular circuits.

https://doi.org/10.1371/journal.pone.0184912.g006
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Exemplary applications

We now apply our established “optimal conditions” with~j ¼ ð4; 2; 0; 0Þ; ð4; 2; 2; 0Þ
and ð4; 2; 2; 2Þ to find dense spanning trees in some practical applications.

First, in Fig 6 we have two models of molecular circuits of cell cycle control, established by

using QIAGEN’s Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City, www.qiagen.

com/ingenuity). The originally generated network contain many more proteins including key

proteins in regulating cell cycle and with extremely high relevance in human cancers, IPA

analyses was used to represent the protein-interaction network by fewer proteins, which serve

as molecular hubs for the circuits of cell cycle control.

Conditions with~j ¼ ð4; 2; 0; 0Þ or ð4; 2; 2; 0Þ or ð4; 2; 2; 2Þ lead to the same results shown in

Fig 7.

As one can see from the result, our dense spanning trees identifies the key proteins, evi-

dently TP53 in the 8-gene model and SKP2 in the 10-gene model. This finding is consistent

with the biological findings that confirms the importance of these two genes in cell cycle

control.

Next, Fig 8 shows the eight regions of mainland United States, to its graph representation

we apply our “optimal conditions” and find the same densest spanning tree that “centers” at

the Southeast (Fig 9).

The “center position” of the Southeast region on this map and the corresponding dense

spanning tree is rather obvious from the fact that it is adjacent or close to the most number of

regions. This trivial observation, however, does lend support to many observations where the

Southeast stands out from the rest of the country. For instance, Table 1 shows the number of

incidences of an infectious disease Hepatitis B in each region in the years 2010 through 2014,

published by the U.S. Department of Health and Human Services, Center for Disease Control

Fig 7. Dense spanning trees in the 8-gene and 10-gene models.

https://doi.org/10.1371/journal.pone.0184912.g007
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and Prevention [17]. It is easy to see that the Southeast region has the largest infected

population.

Algorithm and similar problems

In this section we briefly describe our algorithm (Algorithm 1). Note that our goal is to analyze

the effectiveness of each degree sum condition and we make no attempt in optimizing the

algorithm.

Fig 8. A map of the United States with 8 regions.

https://doi.org/10.1371/journal.pone.0184912.g008

Fig 9. The graph representation (on the left) and the dense spanning tree (on the right).

https://doi.org/10.1371/journal.pone.0184912.g009

Table 1. Number of incidences of Hepatitis B of each region in the US.

2010 2011 2012 2013 2014

SOUTHEAST 1272 1276 1342 1498 1389

MIDEAST 355 366 309 282 288

NEW ENGLAND 55 97 105 94 59

GREAT LAKES 481 353 457 482 416

PLAINS 130 124 55 116 78

SOUTHWEST 540 328 266 213 212

ROCKY MOUNTAINS 63 36 44 46 46

FAR WEST 385 253 223 208 174

https://doi.org/10.1371/journal.pone.0184912.t001
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Algorithm 1: Finding the densest spanning tree and its Wiener index.

input:A connectedgraphG on n vertices;positiveintegeri, vector ~j
output:The densestspanningtree (undercondition C~j) and its Wienerindex

1 initialization;
2 foreachsubgraphS of G with n − 1 edgesdo save S to the set S if S is
connected;
3 for spanningtrees S 2 S do
4 density 0;
5 for 1� k� i do
6 for u, v 2 V(G) with d(u, v) = k do
7 density  densityþ ððdegðuÞÞjk þ ðdegðvÞÞjkÞ;
8 end
9 end
10 DS density;
11 end
12 Find S 2 S with the maximumDS;
13 w 0;
14 for u, v 2 V(S) do
15 w w + d(u, v);
16 end
17 ReturnS and w;

Before ending this section we want to point out that the above algorithm can be easily

adapted to analyze similar problems, motivated from variations of MST (mentioned in the

introduction):

• the k-DST (finding the densest subtree that contains exactly k vertices);

• the Steiner DST: Given a set of terminals, find the densest subtree that connects them;

• degree constrained DST;

• capacitated (see [4] for details) DST;

• DST with conflict pairs (i.e. pairs of vertices are given such that at most one of each pair can

be chosen in the spanning tree);

• the problem of finding dense (spanning) subgraph such as unicyclic graphs and bicyclic

graphs.

Concluding remarks

By employing the sum of vertex degrees at different distances and assigning different expo-

nents to the degrees before summation to solve the DST, we are able to analyze the roles of dif-

ferent degree sums play in identifying dense subtrees. While the adjacent degree sum,

equivalent to the sum of squares of degrees, is obviously not the optimal condition alone, it is

indeed an important part of measuring the denseness of a spanning tree or subgraph in gen-

eral. Our analysis shows that when

~j ¼ ð4; 2; 0; 0Þ or ð4; 2; 2; 0Þ or ð4; 2; 2; 2Þ

the corresponding conditions
X

dðu;vÞ¼1

ððdegðuÞÞ4 þ ðdegðvÞÞ4Þ þ
X

dðu;vÞ¼2

ððdegðuÞÞ2 þ ðdegðvÞÞ2Þ þ 2 � ‘3 þ 2 � ‘4;
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X

dðu;vÞ¼1

ððdegðuÞÞ4 þ ðdegðvÞÞ4Þ þ
X

dðu;vÞ¼2

ððdegðuÞÞ2 þ ðdegðvÞÞ2Þ

þ
X

dðu;vÞ¼3

ððdegðuÞÞ2 þ ðdegðvÞÞ2Þ þ 2 � ‘4

and
X

dðu;vÞ¼1

ððdegðuÞÞ4 þ ðdegðvÞÞ4Þ þ
X

dðu;vÞ¼2

ððdegðuÞÞ2 þ ðdegðvÞÞ2Þ

þ
X

dðu;vÞ¼3

ððdegðuÞÞ2 þ ðdegðvÞÞ2Þ þ
X

dðu;vÞ¼4

ððdegðuÞÞ2 þ ðdegðvÞÞ2Þ

appear to be the most effective when solving DST for graphs with no more than 50 vertices.

Here ℓi is the number of pairs of vertices at distance i from each other.

As future work, we intend to make use of the identification of these optimal degree sum

conditions to find faster and more precise heuristics for DST. Furthermore, while we measured

the denseness of a spanning tree through the Wiener index and number of subtrees (as dis-

cussed in the introduction), it will be interesting to see how other related graph invariants

behave in our dense spanning trees. One of the most interesting such concepts is the Wiener

polarity index, defined as the number of pairs of vertices at distance 3 from each other. Also

introduced by Wiener, this concept contains information from both distance and substruc-

tures (as in a spanning tree each pair of vertices induces a unique path). Consequently, another

potential topic for future research is to study the behavior of the Wiener polarity index in the

dense spanning trees and compare the results with the most recent work such as [18] and [19].
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1. Bazlamaçci C, Hindi K. Minimum-weight spanning tree algorithms:A survey and empirical study, Com-

puters and Operations Research. 2001 28, 767–785. https://doi.org/10.1016/S0305-0548(00)00007-1

Degree sums and dense spanning trees

PLOS ONE | https://doi.org/10.1371/journal.pone.0184912 September 19, 2017 11 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0184912.s001
https://doi.org/10.1016/S0305-0548(00)00007-1
https://doi.org/10.1371/journal.pone.0184912


2. Hwang FK, Richards DS, Winter P. The steiner tree problem. North-Holland, New York (1992).

3. Narula SC, Ho CA. Degree-constrained minimum spanning tree. Comput. Oper. Res. 1980 Vol. 7, pp.

239–249. https://doi.org/10.1016/0305-0548(80)90022-2

4. Amberg A, Domschke W, Voß S. Capacitated minimum spanning trees: algorithms using intelligent

search. Combinatorial Optimization: Theory and Practice. 1996 Vol. 1 9–40.

5. Darmann A, Pferschy U, Schauer J. Minimal spanning trees with conflict graphs. Optimization online,

2009.

6. Wiener H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947 69, 17–20.

https://doi.org/10.1021/ja01193a005 PMID: 20291038

7. Wiener H. Correlation of heats of isomerization, and differences in heats of vaporization of isomers

among the paraffin hydrocarbons. J. Am. Chem. Soc. 1947 69, 2636–2638. https://doi.org/10.1021/

ja01203a022

8. Dobrynin AA, Entringer R, Gutman I. Wiener index of trees: Theory and applications. Acta Appl. Math.

2001 66, 211–249. https://doi.org/10.1023/A:1010767517079
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