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Abstract

As a specific kind of non-Euclidean metric lies in projective space, Cayley-Klein metric has

been recently introduced in metric learning to deal with the complex data distributions in

computer vision tasks. In this paper, we extend the original Cayley-Klein metric to the multi-

ple Cayley-Klein metric, which is defined as a linear combination of several Cayley-Klein

metrics. Since Cayley-Klein is a kind of non-linear metric, its combination could model the

data space better, thus lead to an improved performance. We show how to learn a multiple

Cayley-Klein metric by iterative optimization over single Cayley-Klein metric and their com-

bination coefficients under the objective to maximize the performance on separating inter-

class instances and gathering intra-class instances. Our experiments on several bench-

marks are quite encouraging.

Introduction

An effective distance metric is of great importance for many computer vision and pattern recog-

nition applications such as clustering [1], retrieval [2, 3] and classification [4, 5]. Researches have

shown that the widely used Euclidean metric mainly performs well under isotropic assumption

of the data space. Therefore, its performance is usually limited since it can not reasonably reflect

the underlying relationships between input instances [6–9]. To take the correlation among dif-

ferent data dimensions into consideration, using Mahalanobis metric is a popular solution.

Due to the difficulty in designing a specific Mahalanobis metric for a specific task, learn-

ing a Mahalanobis-like distance metric from labeled data attracts a growing attention over

the last years [10, 11]. The underlying idea of Mahalanobis metric learning is to define an

application dependent metric which could capture the characteristics of the data. It aims to

learn a positive semi-definite (PSD) matrix to define a specific Mahalanobis metric, i.e.,

d2(x, y) = (x − y)T M(x − y). Different learning objectives have been proposed in the litera-

ture, for example, to maximize the distances between dissimilar samples and simultaneously

constrain the distances between similar samples [12], or to maximize the margin between

similar pairs and dissimilar pairs [11].

Although Mahalanobis metric learning has been successfully applied in many applications,

it is actually a linear metric. However, it is widely believed that the high dimensional data

space encountered in computer vision applications is essentially non-linear. Therefore,

researchers have resorted to more complicated non-linear metrics to pursue a higher
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performance. These attempts include local metric learning [11, 13–16], kernel metric learning

[17] and the most recently proposed Cayley-Klein metric learning [18], etc.

This paper follows the work of Cayley-Klein metric learning in [18]. A multiple Cayley-

Klein metric learning method is proposed. It effectively learns several Cayley-Klein metrics

and their linear combination weights to form a powerful non-linear metric. Each of the com-

bined Cayley-Klein metric is focused on a part of the data space and can be considered as a

locally optimized metric on a part of the training data. To achieve this goal, we first partition

the training data into different clusters according to their label information. Each cluster is

assigned with a local Cayley-Klein metric, whose learning optimization is conducted only on

the training data from the related cluster. Once these Cayley-Klein metrics have been learned,

their combination weights are optimized by maximizing the distances between inter-class

instances and simultaneously restricting the distances between intra-class instances smaller

than an upper bound. By combining these local metrics together, it effectively leads to a more

powerful and global metric for the whole data space. The local Cayley-Klein metrics and their

weights are iteratively optimized towards a high classification performance distance metric.

Related work

In this section, we will first review some related work under the topic of metric learning. Then,

we move to a brief introduction to the Cayley-Klein geometries as a basis of our method.

Metric learning

When the general Euclidean distance can not fulfill the requirement of many computer vision

applications, it is straight-forward to explore the label information and the intrinsic structure

of training data to learn a specific but more powerful distance metric for a given task.

Most works in the literature have been focused on the Mahalanobis metric learning. The

earlier work for Mahalanobis metric learning is the MMC proposed by Xing et al. [12]. It aims

to learn a positive semi-definite metric matrix by maximizing the distances between instances

from different classes while restricting the distances between instances from a same class

smaller than a fixed upper bound. Based on this objective, they finally formulated the metric

learning problem as a convex optimization problem which is solved by semidefinite program-

ming. Similar objective has been used in Davis et al. [10] as constraints. Subject to these con-

straints, Davis et al. proposed the Information Theory Metric Learning (ITML) by minimizing

the differential relative entropy. Instead of restricting the intra-class distances below an upper

bound, Globerson and Roweis [19] proposed to make them as zero. Guillaumin et al. [20] pro-

posed a discriminative linear logistic regression for Mahalanobis metric learning. Other

famous works include the LMNN [11], which tried to learn a Mahalanobis distance metric so

as to make the k-nearest neighbors always lie in the same class while instances from different

classes are separated by a large margin. By replacing the exponential loss in LMNN with the

hinge loss, Shen et al. [21] proposed the BoostMetric. They further proposed the FrobMetric

by adding a general Frobenius norm as a regularization term to the objective function [22].

More recently, Lu et al. [23] proposed a neighborhood repulsed metric learning method for

kinship verification. Their target is to learn a distance metric so that the intra-class samples are

pulled as close as possible and inter-class samples lying in a neighborhood are repulsed and

pushed away as far as possible. Wang et al. [24] proposed the Shrinkage Expansion Adaptive

Metric Learning (SEAML). Their method could adaptively adjust the bound constraints used

in previous works [10, 12] by shrinking the distances between samples of similar pairs and

expanding the distances between samples of dissimilar pairs. Law et al. [25] proposed the Fan-

tope regularization and applied it to the Mahalanobis metric learning.

Multiple Cayley-Klein metric learning
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Beyond Mahalanobis metric learning, a lot of researchers have also made a big effort to non-

Mahalanobis metric learning due to its potential in dealing with more complex intra- and inter-

class variations. Kernel trick is the most straight-forward technique to deal with non-linearity, so

it is naturally to use kernel method in metric learning, such as [17, 26]. Non-Euclidean spaces

such as Riemannian space, projective space have also been explored for metric learning. These

methods include Riemannian and manifold metric learning [27, 28] and Cayley-Klein metric

learning [18]. In [27], Cheng proposed the Riemannian similarity learning by tackling the metric

learning problem in a Riemannian optimization framework. In [18], Bi et al. shown that Cayley-

Klein metric can be incorporated into the metric learning frameworks of MMC [12] and LMNN

[11] to obtain a better distance metric. Besides, Li et al. [29] proposed a margin based method to

learn a second-order discriminant function as distance metric for verification problem. Some

researchers have embedded metric learning into the framework of deep neural networks [30, 31].

Since our method learns several Cayley-Klein metrics locally and combines them together

for a global and powerful distance metric, it is mostly related to the local metric learning [11,

13, 15, 32] and some mixed/compositional metric learning methods [16, 33]. MM-LMNN [11]

is an extension of LMNN which learns a small number of metrics (typically one per class) in

an effort to alleviate overfitting. Noh et al. [32] pointed out that finite sampling using the class

conditional probability distribution leads to a theoretical bias of the nearest neighbor classifier.

Thus they proposed the Generative Local Metric Learning (GLML) using local metrics to limit

this theoretical bias. In [13], Wang et al. introduced a local metric learning method based on

finite number of linear metrics named PLML. They used the k-means algorithm to define

some anchor points as the means of clusters and optimized a combination of metric bases

learned from these clusters. Reduced-Rank Local Metric Learning (R2LML) proposed in [15]

learns k Mahalanobis-like local metrics that are then conically combined. Additionally, a

nuclear norm regularizer is adopted to obtain low-rank weight matrices for calculating met-

rics, which is able to control the rank of the involved linear mappings through a sparsity-

inducing matrix norm. Recently, Semerci and Alpaydin [16] proposed the Mixture of LMNN

(MoLMNN) method to learn a mixture of local Mahalanobis distances to better discriminate

the data. It needs a gating function to softly partition the input space into several regions. In

[33], SCML-local aims to learn a sparse combination of locally discriminative metrics. This

algorithm do not need to perform projections onto the PSD cone, thus getting a computational

advantage for high-dimensional problems.

Different from these methods, the proposed multiple Cayley-Klein metric learning linearly

combines several local Cayley-Klein metrics while most previous methods combine Mahalano-

bis metrics. Due to the intrinsic non-linearity of Cayley-Klein metric, combining them is more

effective than combining linear metrics like Mahalanobis metrics. Thus, our method is poten-

tially to have a better performance than previous methods. Moreover, contrast to the sophisti-

cated methods in the previous works for partitioning the input data space into several clusters

for local metrics learning, we use a simpler and straight-forward method by directly utilizing

the label information supplied with the training data.

Cayley-Klein geometries

Cayley-Klein geometries are branches of non-Euclidean geometry, which is an ancient topic in

geometry and can be traced back to the 19th century. Among many mathematicians who con-

ducted research on this topic, there were A. Cayley and F. Klein. In 1859, A. Cayley discovered

that Euclidean geometry can be considered as a special case of projective geometry which leads

to his famous statement “descriptive geometry (his term for projective geometry) is all geome-

try” [34]. Ten years later, F. Klein [35, 36] followed A. Cayley’s ideas and showed that the
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projective geometry can provide a framework for the development of hyperbolic and elliptic

geometries as well. His research is mainly focused on the real Euclidean, hyperbolic and elliptic

geometries since he believed that only these geometries can describe the physical universe

[37]. Based on their researches, it is acknowledged that the Euclidean, the hyperbolic and the

elliptic geometries are independent and self-subsistent geometries. Their research also leads to

working models for these different geometries. Owing to their distinguished work on this

topic, both the hyperbolic and elliptic geometries are called Cayley-Klein geometries. They

occupy a significant position in the foundations of geometry, because of their distinguished

position as geometries of constant curvature.

Nowadays, the term “non-Euclidean geometry” is frequently used to refer the hyperbolic

geometry only [38] or the hyperbolic and elliptic geometries together [39]. The reason of calling

them “non-Euclidean” is perhaps that no other non-Euclidean geometry had been discovered

earlier, and also for which, they both violate the parallel postulate of Euclidean geometry. In

Euclidean geometry, for each tangent to a circle there is a unique second parallel tangent. That is

to say, there is a unique line through a fixed point in parallel with a given line (not through the

fixed point). Whereas in elliptic geometry, there are no parallels at all. As great circles are taken

to be lines in elliptic geometry, two different lines in one plane always intersect. In hyperbolic

geometry, through one point not on the given line, there are infinitely many parallels to this line.

Methods

Cayley-Klein metric

According to [34, 35], Cayley-Klein metric is defined over an invertible symmetric matrix

G in projective space. Mathematically, the Cayley-Klein distance between two data points

xi; xj 2 R
n in n-dimensional space is defined as:

dCKðxi; xj;GÞ ¼
k
2

log
sxixj
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where

sðxi; xjÞ ¼ ðxT
i ; 1ÞG

xj

1

� �
≜sxixj

ð2Þ

k is a parameter related to the space curvature [18].

Apparently, there is one-to-one correspondence between the symmetric matrix

G 2 Rðnþ1Þ�ðnþ1Þ and the Cayley-Klein metric, i.e., a specific G defines a specific kind of Cayley-

Klein metric. For this reason, G is called the Cayley-Klein metric matrix. Depending on

whether G is positive definite or indefinite, there exist two kinds of Cayley-Klein metric.

When G is positive definite, dCK is an elliptic Cayley-Klein metric. Otherwise, dCK is a hyper-

bolic Cayley-Klein metric. Bi et al. [18] have shown that a special form of Cayley-Klein metric

could approach Mahalanobis metric in an extreme case. For this reason, they also call it the

generalized Mahalanobis metric. In their work, two specific metric learning methods have

been proposed for learning data-dependent Cayley-Klein metric matrix.

Multiple Cayley-Klein metrics

In many computer vision tasks, it is expected that data points from same class are localized

near each other in the feature space, while data points from different classes are far from each

other. On one hand, a distance metric learned for one class may not perform well when
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applying to another class. On the other hand, a single distance metric learned on data from all

classes is usually incompetent to model the multiclass decision boundaries due to the complex-

ity of high dimensional data space. Based on these reasons, we propose the multiple Cayley-

Klein metric. It combines multiple Cayley-Klein metrics that are trained on different parts of

the training set. Since Cayley-Klein metric is a kind of non-linear metric, combining several

metrics could enlarge its non-linearity, thus leading to a better performance.

The definition of multiple Cayley-Klein metric is simple,

dmCKðxi; xjÞ ¼
XN

c¼1

acdCKðxi; xj;GcÞðac > 0;
X

c

ac ¼ 1Þ ð3Þ

Essentially, it linearly combines N different Cayley-Klein metrics, so it fulfills the metric axi-

oms as well. Note that dCK(xi, xj; Gc) is a Cayley-Klein metric learned on the c-th data cluster.

When the label information is available in the training data, we cluster training data by their

labels. In other words, dCK(xi, xj; Gc) is learned to maximize the performance related to the c-

th class. For example, making the distance between any two instances in the c-th class small

and the distance between instance in the c-th class and instance from other classes large. In

this case, N is set equal to the number of classes. If the label information is unavailable, the

training data can be partitioned into N clusters by any unsupervised clustering method, such

as k-means. In this paper, we only focus on the supervised case as the purpose of metric learn-

ing is to leverage metric’s performance by using labeled training data.

Fig 1 illustrates the basic idea of the proposed multiple Cayley-Klein metric learning method

by a toy example. There are two classes of data in (a) denoted by squares and circles, three clas-

ses of data in (b) denoted by squares, circles and triangles respectively. In situation (a), we can

see that using a non-linear metric achieves the same goal as using two linear metrics in data

classification. While in situation (b), a single non-linear metric is not enough, it would need at

least two non-linear metrics or even more linear ones to separate the data. Therefore, multiple

Cayley-Klein metrics actually correspond to a series of Riemannian metrics with several differ-

ent (but fixed) curves, which we expect to model more complex data distribution.

In the following, we will describe the formulation of multiple Cayley-Klein metric learning,

and then elaborate how to optimize the objective function.

Metric learning

Suppose we have a training set of N classes. According to the label information, we organize it

into N sets of similar pairs S ¼ fSc; c ¼ 1; 2; � � � ;Ng and N sets of dissimilar pairs

D ¼ fDc; c ¼ 1; 2; � � � ;Ng. In Sc, it is constituted by samples from the c-th class. While in Dc,

it contains pairs of dissimilar samples, one of which from the c-th class, and the other from the

j-th class, j 6¼ c. Following the widely used learning criteria in metric learning community, we

formulate our objective as follows:

maximize
ac;Gc;c¼1;2;���;N

X

ðxi ;xjÞ2D

dmCKðxi;xjÞ

subject to ðaÞ
X

ðxi;xjÞ2S

dmCKðxi;xjÞ � 1

ðbÞ 0 � ac � 1;
XN

c¼1

ac ¼ 1

ðcÞ Gc > 0

ð4Þ
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Our objective is to learn a multiple Cayley-Klein metric such that the distances of dissimilar

pairs as max as possible, while in the meantime restricting the distances of similar pairs to be

smaller than 1. Directly optimize the above problem is difficult. Here, we propose to optimize

αc and Gc alternatively.

Optimizeα. Given N Cayley-Klein matrices Gc, the problem to solve αc is formulated as:

maximize
ac;c¼1;2;���;N

XN

c¼1

acð
X

ðxi ;xjÞ2D0
dCKðxi;xj; GcÞÞ

subject to ðaÞ
XN

c¼1

acð
X

ðxi ;xjÞ2S

dCKðxi;xj; GcÞÞ � 1

ðbÞ 0 � ac � 1;
XN

c¼1

ac ¼ 1

ð5Þ

Fig 1. Intuitive illustration of multiple Cayley-Klein metrics and single Cayley-Klein metric by a toy example. (a) non-linear metric

VS. linear metrics. (b) multiple non-linear metrics VS. single non-linear metric.

https://doi.org/10.1371/journal.pone.0184865.g001
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Such a linear programming problem is easy to solve. Note that concatenating all sets of dissim-

ilar pairs Dc; c ¼ 1; 2; � � � ;N contains duplicated pairs. D0 is the set of dissimilar pairs after

removing duplicated pairs from D.

Optimize Gc. Once the weights are fixed, the problem in (4) could be separated into N sub-

problems, which are solved one by one. For the c-th sub-problem, it is:

maximize
Gc

X

ðxi ;xjÞ2Dc

acdCKðxi;xj; GcÞ

subject to ðaÞ ac

X

ðxi;xjÞ2Sc

dCKðxi;xj; GcÞ

þ
X

p6¼c

ap

X

ðxi;xjÞ2Sp

dCKðxi;xj; GpÞ � 1

ðbÞ Gc > 0

ð6Þ

Since matrix Gc in the objective is symmetric, it is convenient to optimize on Lc after Cholesky

decomposition Gc ¼ LT
c Lc with Lc 2 R

ðnþ1Þ�ðnþ1Þ. In this way, the above problem can be solved

by the gradient ascend algorithm. At each iteration, we take a gradient ascent step on the

objective function

εðLcÞ ¼
P
ðxi ;xjÞ2Dc

acdCKðxi; xj; LcÞ ð7Þ

with respect to Lc. By applying the Cholesky decomposition on Gc, constraint (b) is satisfied.

Then we just need to approximate the updated Lc to fulfill the constraint (a). Specifically, given

an updated Lc, its approximated L0 that meets the constraints (a) can be obtained by the follow-

ing minimization problemml:

minimizeL0 k L0 � LckF

subject to ac

X

ðxi ;xjÞ2Sc

dCKðxi;xj; L
0Þ

þ
X

p6¼c

ap

X

ðxi;xjÞ2Sp

dCKðxi;xj; LpÞ � 1

ð8Þ

For simplicity, we denote Cxixj
¼ ðxT

i ; 1Þ
T
ðxT

j ; 1Þ, then:

sðxi; xjÞ ¼ trðCxixj
GcÞ ¼ trðCxixj

ðLT
c LcÞÞ ð9Þ

Suppose the matrix Lc at the t-th iteration is Lt, we can compute the gradient of the objective

function at the t-th iteration as:

Lt
¼
εðLcÞ

@Lc
jLt ¼

k
2i
� 2Lc � ac �

X

ðxi ;xjÞ2Dc

2Cij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ij � siisjj

q

0

B
@

�
sijCii

sii

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ij � siisjj

q �
sijCjj

sjj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ij � siisjj

q

1

C
A

ð10Þ

Initialization. To start the alternative optimization procedure described above, we have to

initialize αc and Gc in a reasonable way. Bi et al. [18] have proposed a specific method to con-

struct a Cayley-Klein matrix from a given dataset, which is called the generalized Mahalanobis

matrix. They have experimentally shown a better performance of initialization using the gener-

alized Mahalanobis matrix compared to using an identity matrix or a random matrix.
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Therefore, we also choose to use the generalized Mahalanobis matrix to initialize Gc. Since Gc

is a local metric mainly focused on the c-th class, we use the mean m(c) and inverse covariance

S(c) computed from samples of the c-th class. In this way, we initialize Gc with the following

matrix:

Gc ¼
SðcÞ � SðcÞmðcÞ

� mðcÞTSðcÞ mðcÞTSðcÞmðcÞ þ kðcÞ2

 !

ðkðcÞ > 0Þ ð11Þ

For αc, it is simply initialized as 1/N.

Combining all the above issues together, we summarize the proposed Multiple Cayley-

Klein Metric Learning (MCKML) algorithm as follows:

Algorithm 1. Multiple Cayley-Klein Metric Learning (MCKML)

Input:classesof labeledtrainingdata (organizedinto sets of similar
pairsand sets of dissimilarpairs),convergenceerror �.
Output:αc,Gc, c = 1, 2, � � �, N
Begin

1. Set α = 1/N and Gc according to Eq (11)

2. Optimize α by solving (5) with linear programming.

3. for c = 1 to N do

4. Optimize Gc by solving (6).

5. end for

6. Repeat 2–5 until
PN

c¼1 jG
update
c � Gprevious

c j < �, where Gupdatec and Gprevious
c denote the

updated and the previous Gc respectively.

7. return α and Gc

End

Experiments

In this section, we evaluate the proposed method on image classification tasks with three dif-

ferent public datasets. For comparison, we also tested the performance of CK-MMC and

MMC as they share an identical learning target as our method. Their difference only lies in the

definition of distance metric. Moreover, LMNN and CK-LMNN have been evaluated due to

their good performance. Additionally, MM-LMNN and SCML-local also have been tested as

they are typical local metric learning methods.

Results on the UCI datasets

Datasets: In this experiment, we use 9 different datasets from the UCI Machine Learning

Repository at http://archive.ics.uci.edu/ml/datasets.html, which are widely used in evaluating

metric learning methods. These datasets include: Wine, Ionosphere, Vowel, Balance, Pima,

Vehicle, Segmentation, Waveform and Letter. The characteristics of each UCI dataset such as

the number of data points, feature dimensions, and the number of classes are summarized in

Table 1.

Set up: For each dataset, we randomly divide it into training/validation/test sets. The num-

bers of samples in the training/validation/test subsets are shown in Table 1, and the proportion

of these three subsets is nearly 60%/20%/20%. All features are first normalized over the

Multiple Cayley-Klein metric learning
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training data to have zero mean and unit variance. Features of the validation and test data are

normalized using the mean and variance of training data. The parameters of all methods are

set by authors’ recommendation. LMNN, MM-LMNN and CK-LMNN use 3 target neighbors

and all imposters, while these are set to 3 and 10 in SCML-Local. The k-nearest neighbor

(kNN) classifier is used for classification, and we set k = 3 for all the datasets. We repeat this

procedure 10 times and report the average accuracies for these datasets.

Results: Table 2 shows the classification accuracies for the seven evaluated methods. Con-

sistent to the previous work, the performance is improved by using Cayley-Klein metric to

replace the traditional Mahalanobis metric. This point can be read from “CK-MMC VS.

MMC” and “CK-LMNN VS. LMNN”. Among all the evaluated methods, the proposed

MCKML performs the best on 6 out of 9 datasets. For two datasets (Balance and Letter), it per-

forms the second best and closely follows the best result (SCML-local). Note that CK-LMNN,

MM-LMNN and SCML-local use a learning target based on triplets of samples that is more

powerful than the learning target based on pairs of samples, which is used in MCKML. When

considering the same learning target, MCKML consistently improves over MMC and

CK-MMC on all datasets. By incorporating MCKML to the learning paradigm of LMNN, it is

expected to further improve its performance. We will leave this as our future work.

For more accurate comparison, we perform paired t-test with significance level 0.05 to sta-

tistically evaluate which result is better. The comparison results with CK-MMC, CK-LMNN

and two local metric learning methods (MM-LMNN and SCML-local) are summarized in

Table 3. We use “*”to indicate the classification results of the two methods are not

Table 1. Characteristics and experiment settings of the UCI datasets.

Datasets Data points Training Validation Test Attributes Classes

Wine 178 107 35 36 13 3

Iono. 351 210 70 71 34 2

Vowel 528 317 105 106 10 11

Bala. 625 375 125 125 4 3

Pima 768 461 153 154 8 2

Vehicle 846 507 169 170 18 4

Seg. 2310 1386 462 462 19 7

Wave 5000 3000 1000 1000 21 3

Letter 20000 3000 1000 1000 16 26

https://doi.org/10.1371/journal.pone.0184865.t001

Table 2. Classification accuracies (mean and standard deviation in %) on UCI datasets. MCKML achieves the best performance on 6 out of 9 datasets.

Method MMC [12] LMNN [11] CKMMC [18] CKLMNN [18] MMLMNN [11] SCML-local [33] MCKML

Wine 94.8±2.8 96.2±2.3 95.7±2.7 96.8±2.4 96.9±2.3 97.2±2.4 97.6±2.4

Iono. 84.5±1.5 86.7±1.4 84.8±1.4 87.2±1.4 88.7±1.4 89.7±1.5 89.8±1.4

Vowel 89.4±1.4 95.1±1.3 92.4±1.5 95.5±1.3 95.2±1.1 95.0±1.2 95.8±1.3

Bala. 86.0±2.0 87.3±1.7 86.2±1.9 88.7±1.7 89.6±1.8 92.3±1.8 90.7±1.7

Pima 68.6±1.9 70.3±1.6 71.9±1.8 71.5±1.6 71.8±1.7 70.3±1.6 72.9±1.7

Vehicle 70.1±2.5 75.4±2.3 78.1±2.4 78.0±2.3 78.4±2.4 79.8±2.4 81.7±2.3

Seg. 94.6±1.4 96.2±1.2 96.9±1.3 97.0±1.2 97.0±1.2 97.1±1.2 97.5±1.3

Wave 80.9±1.1 81.5±0.8 81.0±1.2 82.8±1.0 82.8±1.1 83.0±1.2 82.7±1.1

Letter 89.6±1.3 91.2±1.2 90.9±1.3 92.0±1.2 92.3±1.2 92.5±1.2 92.3±1.2

avg. 84.3±1.8 86.6±1.5 86.4±1.7 87.7±1.6 88.1±1.6 88.5±1.6 89.0±1.6

https://doi.org/10.1371/journal.pone.0184865.t002
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significantly different for the given confidence level, and “<” to indicate that the mean of the

classification accuracy of the latter method is statistically higher than that of the former one.

From the paired t-test results, we can conclude with a 95% confidence level that the proposed

MCKML generally outperforms CK-MMC and is comparable with or even better than

CK-LMNN, MM-LMNN and SCML-local on all datasets except Balance dataset.

Visualization of the learned metric: In order to provide a better understanding of why the

proposed MCKML works well and further show the necessity (benefit) of enlarging non-linear

property, we added a graphical illustration using t-SNE [40] on the Segmentation dataset with

MMC, CK-MMC and MCKML. In the first row of Fig 2, we can see that although CK-MMC

improves MMC, MCKML obtains further improvement. Under the metric obtained by

MCKML, the distributions of different classes (denoted by different colors) are more concen-

trated. Meanwhile, each class is far from other classes and the boundaries are more clear and

legible. The second row shows that the metrics consistently generalize to test data. Such a visu-

alization validates the necessity to use the Cayley-Klein metric as well as the multiple Cayley-

Klein metric.

Results on the PubFig dataset

Dataset: Public Figure Face Database (PubFig) [41] is a challenging real-world face database

collected from the internet. It contains 200 people and has a total number of 58,797 images of

them. The images in this database are taken in completely uncontrolled situations with non-

cooperative subjects, leading to large variations in pose, lighting, expression, scene, camera,

imaging conditions and parameters, etc. Similar to [18, 25], our experiment uses a subset of

PubFig, containing 772 images from 8 identities, including Alex Rodriguez (Alex), Clive

Owen (Clive), Hugh Laurie (Hugh), Jared Leto (Jared), Miley Cyrus (Miley), Scarlett Johans-

son (Scarlett), Viggo Mortensen (Viggo) and Zac Efron (Zac). We use 11-dimensional relative

attributes [42] to represent each image in the dataset. The relative attributes are computed

from a concatenation of the 512-dimensional GIST descriptor [43] and a 45-dimensional LAB

color histogram. We use the publicly available codes of [42] to compute relative attributes.

Set up: For all the evaluated methods, we randomly select 30 images per class for training,

30 images per class for validation, and use the remaining images for testing. In the test stage,

we use a 3-NN classifier based on the learned distance metric. We repeat this procedure 10

times and report the average classification accuracies.

Results: The results are listed in Table 4. We could obtain similar observations as in the

UCI datasets: MCKML outperforms MMC and CK-MMC in all cases, while it is slightly infe-

rior to CK-LMNN in some categories (the reason has been explained in the last subsection).

Table 3. Paired t-test for statistical evaluation of the classification results on UCI datasets.

Datasets Paired t-test

Wine CKMMC < CKLMNN * MMLMNN < SCML-local * MCKML

Iono. CKMMC < CKLMNN < MMLMNN < SCML-local * MCKML

Vowel CKMMC < SCML-local * MMLMNN < CKLMNN * MCKML

Bala. CKMMC < CKLMNN < MMLMNN < MCKML < SCML-local

Pima SCML-local < CKLMNN * MMLMNN * CKMMC < MCKML

Vehicle CKLMNN * CKMMC * MMLMNN < SCML-local < MCKML

Seg. CKMMC * CKLMNN * MMLMNN * SCML-local < MCKML

Wave CKMMC < MCKML * CKLMNN * MMLMNN * SCML-local

Letter CKMMC < CKLMNN < MMLMNN * MCKML * SCML-local

https://doi.org/10.1371/journal.pone.0184865.t003
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Moreover, two local metric learning methods MM-LMNN and SCML-local, which all use a set

of triplet constraints as LMNN, perform better than LMNN while comparable to CK-LMNN.

When comparing the overall performance, MCKML is the best. By comparing the results of

MCKML to those of CK-MMC and CK-LMNN, it is clear that learning multiple Cayley-Klein

metrics does improve the performance of learning a single Cayley-Klein metric. Although Cay-

ley-Klein metric learning already improves the traditional Mahalanobis metric learning, the

multiple Cayley-Klein metric learning further improves its performance.

Results on the OSR dataset

Dataset: Outdoor Scene Recognition Dataset (OSR) [43] contains 2688 images from 8 outdoor

scene categories: tall buildings (B), inside city (IC), street (S), highways (H), coast (C), open

country (OC), mountain (m) and forest (F). We use the 6-dimensional relative attributes gen-

erated from 512-dimensional GIST descriptors to represent the images.

Set up: As in the experiment on the PubFig dataset, we randomly select 30 images per class

for metric learning, 30 images per class for validation, and use the remaining images to test the

performance of the learned metric. 3-NN classifier is used for classification. We repeat this

procedure 10 times and report the average classification accuracies.

Fig 2. Illustrative experiment on Segmentation dataset in 2D. (a)*(c) Distributions of training points under the learned metrics (MMC,

CK-MMC and MCKML) respectively. (d)*(f) Distributions of test points under the learned metrics (MMC, CK-MMC and MCKML)

respectively.

https://doi.org/10.1371/journal.pone.0184865.g002
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Results: The classification results on the OSR dataset are listed in Table 5. Owing to the

more powerful learning objective based on triplets of samples, LMNN/CK-LMNN outper-

forms MMC/CK-MMC respectively in all categories. In average, there is over 2% improve-

ment. Under the same learning objective, we can see that using Cayley-Klein metric

(CK-MMC) outperforms using Mahalanobis metric (MMC) by 3%. The performance of Cay-

ley-Klein metric is further improved by the proposed multiple Cayley-Klein metric by addi-

tionally 3%. The local metric learning methods MM-LMNN and SCML-local outperform the

original LMNN while inferior to CK-LMNN.

Finally, we can find that the results in Tables 2, 4 and 5 are rather consistent, although these

datasets are fundamentally different from each other. Among all the tested methods, the pro-

posed MCKML achieves the best average classification and only slightly inferior to CK-LMNN

which uses a more powerful learning objective based on triplets. When using the same objec-

tive based on pairs of samples, our method outperforms previous methods on all tested

categories.

Table 6 shows the running times on OSR and PubFig for different methods, which are aver-

age results of 10 runs. Generally speaking, using Cayley-Klein metric requires a litter more

time in testing as more operations are involved in computing Cayley-Klein metric according

to its definition. While for training, compared with MMC and CK-MMC, which all need one

loop of gradient ascending to find the optimal solution, MCKML needs two loops that is time

consuming. One is the outer loop optimized alternatively on α and the Cayley-Klein matrices

Table 4. Classification accuracies for each identity (mean in %) and average accuracies (mean and standard deviation in %) obtained on the Pub-

Fig dataset.

Method MMC [12] LMNN [11] CKMMC [18] CKLMNN [18] MMLMNN [11] SCML-local [33] MCKML

Alex 79.2 80.1 84.3 81.6 81.0 82.1 85.7

Clive 72.7 75.8 83.8 82.5 80.4 83.0 84.5

Hugh 83.4 80.6 85.8 83.7 82.7 83.4 86.4

Jared 79.2 80.2 79.9 81.1 80.6 80.2 80.6

Miley 77.9 75.4 78.2 78.7 77.9 78.9 81.8

Scarlett 84.3 83.1 83.0 84.1 84.8 85.2 86.8

Viggo 77.3 77.9 78.4 79.9 78.4 79.1 79.1

Zac 84.9 82.1 85.2 84.3 83.5 84.9 88.2

avg. 79.9±1.2 79.4±1.9 82.3±0.9 82.0±1.9 81.2±1.8 82.1±1.1 84.1±1.1

https://doi.org/10.1371/journal.pone.0184865.t004

Table 5. Classification accuracies for each category (mean in %) and average accuracies (mean and standard deviation in %) obtained on the OSR

dataset.

Method MMC [12] LMNN [11] CKMMC [18] CKLMNN [18] MMLMNN [11] SCML-local [33] MCKML

B 69.0 72.7 74.1 75.2 74.7 75.2 76.3

IC 41.2 45.8 46.3 47.4 46.9 46.5 48.6

S 64.2 69.6 71.9 74.7 74.1 74.4 75.9

H 74.6 75.3 75.0 78.2 75.5 76.8 77.9

C 69.1 70.9 70.1 72.3 71.4 71.1 71.9

OC 56.3 57.3 57.9 58.8 58.3 59.5 61.4

m 60.2 62.5 64.0 65.0 64.3 63.9 68.4

F 85.4 86.3 87.3 88.3 88.2 87.8 88.9

avg. 65.0±1.2 67.5±1.1 68.3±1.2 70.0±1.1 69.2±1.1 69.4±1.0 71.2±1.0

https://doi.org/10.1371/journal.pone.0184865.t005
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Gc, while the other is the inner loop for solving Gc by gradient ascending identical to

CK-MMC. When compared with the other two local metric learning methods, MM-LMNN

and SCML-local are more efficient than MCKML.

Conclusion

This paper follows a very recent work of Cayley-Klein metric learning, which is a first paper

introducing the ancient Cayley-Klein geometries in computer vision. We show in this paper

that Cayley-Klein metric can benefit from learning multiple local Cayley-Klein metrics, each

of which is only focused on a part of the data space. To this end, we propose the multiple Cay-

ley-Klein metric learning method, which alternatively optimizes over the local Cayley-Klein

metrics and their global combination weights. Although the metric learning target is identical

to some previous works, i.e., to maximize the inter-class distances and restrict the intra-class

distances to be less than an upper bound, our method results in a better performance on three

widely used datasets as shown in the experiments. These results demonstrate the superiority of

multiple Cayley-Klein metric learning to the Cayley-Klein metric learning, as well as the tradi-

tional Mahalanobis metric learning and the state-of-art local metric learning.
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