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Abstract

Introducing electric vehicles (EVs) into urban transportation network brings higher require-

ment on travel time reliability and charging reliability. Specifically, it is believed that travel

time reliability is a key factor influencing travelers’ route choice. Meanwhile, due to the lim-

ited cruising range, EV drivers need to better learn about the required energy for the whole

trip to make decisions about whether charging or not and where to charge (i.e., charging reli-

ability). Since EV energy consumption is highly related to travel speed, network uncertainty

affects travel time and charging demand estimation significantly. Considering the network

uncertainty resulted from link degradation, which influences the distribution of travel demand

on transportation network and the energy demand on power network, this paper aims to

develop a reliability-based network equilibrium framework for accommodating degradable

road conditions with the addition of EVs. First, based on the link travel time distribution, the

mean and variance of route travel time and monetary expenses related to energy consump-

tion are deduced, respectively. And the charging time distribution of EVs with charging

demand is also estimated. Then, a nested structure is considered to deal with the difference

of route choice behavior derived by the different uncertainty degrees between the routes

with and without degradable links. Given the expected generalized travel cost and a psycho-

logical safety margin, a traffic assignment model with the addition of EVs is formulated. Sub-

sequently, a heuristic solution algorithm is developed to solve the proposed model. Finally,

the effects of travelers’ risk attitude, network degradation degree, and EV penetration rate

on network performance are illustrated through an example network. The numerical results

show that the difference of travelers’ risk attitudes does have impact on the route choice,

and the widespread adoption of EVs can cut down the total system travel cost effectively

when the transportation network is more reliable.
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Introduction

As a result of urbanization and motorization, transportation-related problems such as traffic

congestion, car dependency as well as the associated noise and air pollution, have posed a

major impediment to sustainable development for many contemporary cities worldwide.

Due to the advantage of high energy efficiency, low noise and zero pollution during use,

electric vehicle (EV) is viewed as an effective tool to mitigate and even remedy the environ-

mental problems resulted from transport sector. Based on this perspective, creative policies

have been adopted by many cities around the world to encourage drivers to ditch conventional

gasoline vehicles (GVs) in favor of clean transport. In Beijing, China, it is expected that the

application scale for clean-energy vehicles will reach around 200,000 by 2017, including

180,000 battery electric vehicles (BEVs) with the supporting 5km-radius public charging ser-

vice network. Therefore, there is every reason to believe that electric vehicular flow will be an

important component of urban mixed traffic network in Beijing and some other similar cities

all over the world.

As the last stage of traditional four-step models, traffic assignment is crucial for travel

demand forecasting and transportation development plan evaluating. In essence, traffic assign-

ment models the route choice behavior of travelers and their interactions, and the performance

of a traffic assignment model relies on the behavioral assumptions behind the route choice

model [1]. Given the EV cruising range limitation, the route choice behavior of EV drivers is

bound to be greatly different from that of GV drivers. In addition to the traditional influencing

factors like individual characteristics, route attributes and travel characteristics, energy con-

sumption is also an important factor influencing EV drivers’ route choice. EV driver makes

decision about whether charging or not and where to charge according to the cruising range

and travel characteristics (such as travel distance) before the travel begins. For an EV driver,

his/her route choice always comes with charging demand judgement and charging station

choice, and further reshapes the traffic flow pattern on the urban transportation network.

Empirical studies reveal that travel time and monetary are the most important factors influ-

encing route choice behavior, and travel time reliability also should not be underestimated [2],

especially for the EV drivers. It is found that there is a high correlation between EV energy

consumption rate and instantaneous speed from microscopic point of view [3]. Further, an EV

energy consumption factor model based on the link average speed at the meso level was pro-

posed [4]. Since the link length is fixed, it can be deduced that EV energy consumption is influ-

enced by travel time significantly. The aging transportation infrastructure, the implementation

of traffic control measures, as well as the occurrence of natural disasters and traffic incidents,

are more likely to degrade the transportation network capacity entirely or locally [5], and fur-

ther increase the travel time. Consequently, there will be a certain bias in travel cost for travel-

ers, especially for the EV drivers who are more sensitive to this bias. For instance, the trip that

usually can be finished without charging under normal conditions will generate the charging

demand and then is changed to reach the destination in the degradable transportation network

(i.e., a network with degradable link capacities, which may be subject to stochastic variations

resulted from various uncertainties). In this situation, the reliability not only refers to varia-

tions in travel time, but also variations in charging demand when it comes to EVs.

Therefore, it is necessary to analyze the impact of reliability on route choice behavior, and

further evaluate the performance of transportation network under different travelers’ risk atti-

tudes, different network degradation degrees and different EVs’ penetration rates. However,

the existing study on traffic assignment mainly aims at the gasoline vehicular flow, the accord-

ing research achievements cannot be applied directly to the network equilibrium with the

addition of EVs. Meanwhile, although the uncertainty of urban transportation network has
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been taken into consideration among reliability-based traffic assignment models, almost all of

which focus on one unique criterion, i.e., travel time, while the equally important monetary

criterion is ignored.

Different from emphasizing travel time-related criteria unilaterally, this paper comprehen-

sively takes the travel time (including route travel time and EV charging time) and the mone-

tary expense (including gasoline expense of GVs and electricity expense of EVs) into account

to solve the mixed traffic assignment problem in degradable transportation network with the

addition of EVs. In this paper, we carry the work of predecessors a major step forward by pro-

posing a reliability-based network equilibrium framework for capturing travelers’ route choice

behavior and the induced constrains with the addition of EVs. The contribution of this paper

to the current literature lies in two aspects. From the practical standpoint, this paper stresses

the sensibility of EVs to traffic conditions, and aims to provide some valuable suggestions for

the transportation system operation and management, as well as the infrastructure planning

and investment through investigating the impacts of transportation network uncertainty and

EV penetration on the distribution of travel demand on transportation network and the energy

demand on power network. From the theoretical standpoint, this study advances the traffic

assignment research by addressing a reliability-based network equilibrium framework for

accommodating urban mixed gasoline and electric vehicular flows, especially in the degradable

transportation network. Particularly, a nested modelling structure is employed to cope with

the route choice behavior difference derived by the different uncertainty degrees between the

routes with and without degradable road links. And considering the unique energy consump-

tion characteristics of EVs, the flow-dependent energy consumption cost and travel time, the

potential en-route charging demand and charging time are all given fully consideration in this

degradable transportation network research.

The outline of this paper is as follows: Section 2 reviews recent relevant literature. Section 3

describes the distributions of route travel cost components respectively. The model formula-

tion and specifications are illustrated in Section 4, and a heuristic solution algorithm is devel-

oped to solve the model. Section 5 presents the numerical results on an example network to

validate the proposed model and solution algorithm. Finally, the conclusions of the present

paper are provided in Section 6.

Literature review

A traffic assignment model is able to reflect travelers’ route choice behavior through a range of

devices. Traditional assignment techniques can be classified into two categories: the Wardrop

user equilibrium (UE) model and the stochastic user equilibrium (SUE) model according to

the criterion that if there is a variable perception of travel costs. On the basis of these pioneer-

ing works, many theoretical models and empirical researches have been conducted to supple-

ment and improve the behavioral assumptions behind travelers’ route choice, focusing on the

time-variability of travel demand [6], the heterogeneity of travellers [7], the multi-modal char-

acteristics of transportation network [8], and the combination of the above issues [9].

Given the gradual maturity of EV technologies and the expeditiously rising prices of crude

oil, as well as a variety of government incentives and policies, the proportion of electric vehicu-

lar flow in urban mixed traffic cannot be overlooked in the near future. However, due to the

unique energy consumption characteristics of EVs, the methodologies employed and the con-

clusions obtained in the above studies are no longer suitable for the traffic assignment problems

with the addition of EVs. For example, whether a route is usable for an EV driver depends on

the EV cruising range limitation and the energy consumption requirement to reach his/her des-

tination, while all the routes on urban transportation network are usable for a GV driver in
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theory. A number of works can be found that explicitly incorporate EVs into traffic assignment

models and accordingly evaluate the network performance. Some equilibrium models were for-

mulated to investigate the impacts of EVs’ cruising range and recharging requirement on trav-

els’ route choice [10]. However, the research objective is limited to pure electric vehicular flow,

the interaction between the mixed traffic flows has not been mentioned. Aiming at the mixed

gasoline and electric vehicular flows, the spatial distribution of travel demand of the mixed traf-

fic flows and their corresponding travel choices are modelled further by two studies [11–12].

More specifically, the former analyzed the joint mode and route choices under the assumption

that travelers have accessibility to both GVs and BEVs while the latter examined how the trans-

portation network changes with the destination, route and parking choice adjustments by EV

drivers under the assumption that the mode split is fixed. It should be noted that, both of two

papers all ignored possible availability of battery-charging stations en route, and the EV energy

consumption is assumed to be determined by the driving distance regardless of the traffic flows.

Furthermore, some studies were presented to solve the network user equilibrium problems for

the mixed battery electric vehicles and gasoline vehicles subject to the emerging charging tech-

nologies (e.g., battery swapping [13], wireless recharging [14], etc.). However, the feasibility of

these new charging technologies has not been tested by the reality, and their realizations still

need a long time. Gardner et al. [15] have addressed the relationship between travel demand

uncertainty and EV energy consumption for the first time. In their opinion, travel time variabil-

ity, which is resulted from demand uncertainty, has an influence on EV energy consumption,

and further affects travelers’ route choice in user level and regional energy demand in system

level. Nevertheless, the traffic assignment analysis was still based on the simplified assumptions,

i.e., EVs were charged at home only and EV drivers behaved in the same manner as non-EV

drivers.

In addition to stressing on the demand uncertainty in a traffic assignment context, remark-

able progress has been made in the field of reliability-based user equilibrium models from the

supply perspective. Given the link capacity degradation, Lo and Tung [16] formulated a proba-

bilistic user equilibrium (PUE) model to characterize the route choice behavior, aiming to

improve the travel time reliability rather than to reduce the mean travel times. This approach

was extended further by Lo et al. [5] by adopting the concept of travel time budget (TTB),

which is defined as the sum of the expected travel time and a safety margin to hedge against

variations of travel time. The safety margin is the product of the travel time standard deviation

and a scalar called punctuality parameter specified by the traveler to represent his/her risk

preference. Considering the doubly uncertainties from both travel demand and network sup-

ply, Siu and Lo [17] developed a framework to model travelers’ behavior in trip planning. They

claimed that all the factors that lead to the travel time variations should be taken into careful

consideration, thus the notion of travel time budget plays a more relevant and important role

in travelers’ travel choice compared to the notion of travel time. Later, Nie [18] pointed out

that the distribution of random link capacity is more reasonable to be flow-dependent, and a

percentile user equilibrium model was proposed to incorporate this viewpoint. Moreover, the

percentile route travel time was evaluated by directly convolving link travel time distributions

instead of relying on the central limit theorem in TTB model. Not only focusing on the reliabil-

ity aspect of travel time variability unilaterally, a mean-excess traffic equilibrium (METE)

model put forward by Chen and Zhou [19] also accounted for the travel time unreliability.

Through hypothesizing that all travelers are willing to minimize their travel risk measured by

the conditional expectation of the excess travel time for a certain travel time budget, the ques-

tions of ‘‘how much time do I need to allow?” and ‘‘how bad should I expect from the worse

cases?” can be answered at the same time. More recently, Wang et al. [2] proposed a general

travel time reliability bi-objective user equilibrium model to minimize both expected travel
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time and travel time budget. A used route with a lower expected travel time but higher variability

will be less attractive than another route with a higher expected travel time but lower variability

although they have the same travel time budget. In addition, based on the degradable transporta-

tion network equilibrium analysis, a series of studies were proposed to aid in the formulation

and evaluation of related traffic management policies. For example, Yan et al. [20] adopted the

travel time budget as travelers’ route choice principle to study the traffic assignment problem

related to speed limit in a degradable transport network. The relationship among the speed limit,

link capacity, and the travel time was investigated. And a user equilibrium model was established

and solved to assist in the speed limit design problem. Yao et al. [21] proposed a bi-modal user

equilibrium model based on the travel time budget to evaluate the exclusive bus lanes (EBLs) set-

ting scheme in a stochastic degradable network with car and bus transit modes. Specifically, trav-

elers by car only care about the uncertainty in terms of link travel time while travels by bus

transit care about the uncertainty in terms of link travel time and waiting time at the bus stop at

the same time. Liu and Huang [22] presented a user equilibrium model based on robust effective

path travel time to capture travelers’ route choice behaviors influenced by the travel time uncer-

tainty in a random degradable transportation network. The robust effective path travel time in

their study is defined as combination of mean travel time and the safety margin supremum,

which is similar to the concept of travel time budget. Besides, the congestion pricing design

problem was investigated based on this model, and the importance of robustness on the link

tolls in degradable transportation networks was revealed in their study. However, the aforemen-

tioned reliability-based user equilibrium models are all specific to the conventional transporta-

tion network without the addition of EVs, and the route choice criteria are merely related to the

travel time (expected travel time, travel time variance and standard deviation). It should note

that network reliability is of utmost importance for an EV driver to estimate his/her travel time

and the associated travel expense, as well as to determine his/her charging demand en route.

As stated above, the popularization of EVs enriches the composition of travel cost, and

meanwhile travelers’ travel cost bias resulted from network supply uncertainty leads to signifi-

cant variations in travel demand on transportation network as well as the energy demand on

power network. But these problems cannot be solved completely through the existing traffic

assignment models and methods. Therefore, this paper attempts to integrate the gasoline and

electric vehicular flow into a unified reliability-based network equilibrium framework. First,

on the basis of the concept of TTB, the route travel cost budgets for GVs and EVs are calcu-

lated respectively. Then, considering a nested route choice structure, the SUE conditions are

presented and formulated as an equivalent variational inequality (VI) model, which can be

solved based on the method of successive weighted averages (MSWA). Finally, the impacts of

travelers’ risk attitude, EV penetration rate and transportation network uncertainty on net-

work performance are assessed through an example network.

Travel cost budget function

Understanding the variations of travel cost components is an essential first step to estimate the

generalized route travel cost in degradable transportation network. This section describes

these variations for GV and EV drivers respectively. Notations used throughout the paper are

provided first, followed by the distributions of travel cost components.

Notations

Consider a strongly connected transportation network G (N, A), where N denotes the set of

nodes and A the set of links. A limited number of charging stations are located at certain

nodes of the network, and thus the usable route set for an EV with the charging demand only
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covers the route deployed with at least one charging station. Besides, the fast charging mode is

adopted in charging stations. Let R and S represent the sets of origins and destinations respec-

tively. Krs indicates the set of all routes between the origin r 2 R and destination s 2 S, while KGrs
for GVs and KErs for EVs.Mrs;E

k is the set of all the links between the origin r 2 R and destination

s 2 S on route k 2 KErs andMrs;G
k is that on route k 2 KGrs .M

0rs;E
k is the set of links from origin r 2

R to charging station on route k 2 KErs.
For discussion convenience, the notations of variables and parameters used in this paper

are given as follows unless specified otherwise, where superscripts G and E are used to indicate

variables or parameters associated with gasoline and electric vehicles, respectively.

ξ EV penetration rate,%

α Value of time, CNY/min

τ1 Electricity price, CNY/kwh

τ2 Gasoline price, CNY/kg

χ A binary parameter whose value is 1 if an EV needs to be charged, otherwise 0

Ta Travel time on link a 2 A, min

Trsk Travel time on route k 2 Krs between OD pair (r,s), min

t0a Free-flow travel time on link a 2 A, min

T0 Charging time for a dead battery to be fully charged under fast charging mode, min

xa Flow on link a 2 A

xEa EV flow on link a 2 Mrs;E
k

xGa GV flow on link a 2 Mrs;G
k

frs;Ekm EV flow on route k 2 KErs between OD pair (r,s) in class m

f rs;Gkm GV flow on route k 2 KGrs between OD pair (r,s) in class m

Ca Capacity of link a 2 A, pcu/min

�ca Maximum or design capacity of link a 2 A

θa Maximum degradable coefficient of capacity for link a 2 A

d
rs
a;k Route-link incidence parameter, d

rs
a;k ¼ 1 if link a belongs to route k and 0 otherwise

eEa Energy consumption of an EV on link a 2 Mrs;E
k , kwh

la Distance of link a 2 A, km

va Average vehicle speed on link a 2 A, km/h

EFGa GV energy consumption factor on link a 2 Mrs;G
k , kg/100km

eGa Energy consumption of a GV on link a 2 Mrs;G
k , kg

ers;Ek Energy consumption of an EV on route k 2 KErs between OD pair (r,s), kwh

ers;Eck Energy consumption of an EV before charging between OD pair (r,s), kwh

ers;Gk Energy consumption of a GV on route k 2 KGrs between OD pair (r,s), kg

S0 Initial battery state of charge at origin of an EV, %

S0 Battery state of charge before charging, %

Trsck Charging time of an EV on route k 2 KErs between OD pair (r,s), min

Crs;Ek Generalized travel cost of an EV on route k 2 KErs between OD pair (r,s), CNY

Crs;Gk Generalized travel cost of a GV on route k 2 KGrs between OD pair (r,s), CNY

brs;Ekm Travel cost budget of an EV on route k 2 KErs between OD pair (r,s), CNY

brs;Gkm Travel cost budget of a GV on route k 2 KGrs between OD pair (r,s), CNY

ρm Probability that a trip arrives within the travel time cost

λm A parameter related to degree of risk-aversion in class m

gEa Coal equivalent consumption of an EV on link a 2 Mrs;E
k , kg

gGa Coal equivalent consumption of a GV on link a 2 Mrs;G
k , kg

https://doi.org/10.1371/journal.pone.0184693.t001
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Travel cost components

Travel cost consists of in-vehicle travel time, and the operating cost determined by the vehicle

energy consumption. Besides, there is a charging demand for an EV driver when the battery

state of charge (SOC) is lower than a threshold specified by the automaker. Therefore, the

charging time for an EV with charging demand also should be included.

It should be noted that EVs have two types of charging modes in China and some other

countries currently: slow charging and fast charging (also known as quick or rapid charging).

Particularly, slow charging usually requires six to eight hours to completely charge a fully

depleted battery [23] and can be performed at home or office from a standard household

Fig 1. Travel cost components for EVs.

https://doi.org/10.1371/journal.pone.0184693.g001
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electrical outlet. While fast charging usually provides an 80% charge in 30 min and needs to be

performed at charging stations as the emergency service [24]. Because of forgetting to charge

or having been used, the SOC of BEV is not always 100% when the travel begins, thus the

related limited cruising range usually causes a higher possibility of en-route charging demand

to complete the entire trip [25]. Under these situations, the EVs need to be fast-charged during

the trip since it can satisfy the short-term charging demand of EVs. This behavior is also simi-

lar to that of a conventional gasoline vehicle user who can refuel the vehicle at any gas stations

and any time [26]. Therefore, we focus on the en-route charging demand of EVs since the net-

work reliability is more important for an EV driver to estimate his/her travel time, which fur-

ther has an impact on EV driver’s en-route charging decision. The charging behavior at the

destination of the route has not been taken into consideration in this paper.

Fig 1 depicts different travel cost components for EVs with and without charging demand.

Specifically, before the travel begins, the EV driver will estimate whether the vehicle can com-

plete the trip without charging, and whether the remaining battery SOC at destination D is

more than the threshold specified by the automaker based on the current traffic conditions. If

so, the EV need not be charged en route, and the corresponding travel cost consists of the

route travel time TTod and the route energy consumption ECod between the OD pair. If not,

the EV has a demand of en-route charging. The route covering at least one charging station

will be selected, and the EV driver will estimate whether the vehicle can arrive at the charging

station with acceptable SOC left (i.e., more than the SOC threshold). If so, the selected route

will be regarded as the usable route for EVs with charging demand, and the corresponding

travel cost consists of the route travel time TToc and the route energy consumption ECoc
between the origin O and the charging station C, the route travel time TTcd and the route

energy consumption ECcd between the charging station C and the destination D, as well as the

charging time CT at the charging station C. If not, the selected route will be deleted from the

usable route set of EVs with charging demand, and another search for usable route will be con-

ducted until all the usable routes are selected. The following subsections describe the distribu-

tions of these cost components in degradable transportation network.

Link travel time. Among the degradable transportation network research, the study of Lo

and Tung [16] is the most representative, and the link travel time distribution model proposed

by them is also the most classical and most widely used model. Since this study is illustrative

only, we conduct our study based on the work of predecessors. For sake of completeness, some

of the results on link travel time distributions as derived in Lo and Tung [16] are restated as

follows.

The bureau of public roads (BPR) link performance function is adopted in this study.

Taðxa;CaÞ ¼ t
0

a 1þ b
xa
Ca

� �n� �

ð1Þ

where β,n are the deterministic parameters. As capacity Ca is a random variable, so is link

travel time Ta.
Then the mean and variance of Ta can be written as:

EðTaÞ ¼ Eðt
0

aÞ þ bt0aE
xa
Ca

� �n� �

¼ t0a þ bt0ax
n
aE

1

Cna

� �

ð2Þ

varðTaÞ ¼ varðt
0

aÞ þ b
2
ðt0aÞ

2var
xa
Ca

� �n� �

¼ b
2
ðt0aÞ

2x2n
a var

1

Cna

� �

ð3Þ
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Suppose the capacity degradable random variable Ca is independent of the amount of traffic

on it, and follows a uniform distribution defined by an upper bound �ca and a lower bound ya�ca
similar to the assumptions made in other previous studies (the generalization of the capacity

random variable as a function of the link flow can be found in Lo and Tung [16]). The mean

and variance of 1

Cna
can be derived as the followings:

E
1

Cna

� �

¼

Z �ca

ya�ca

1

Cna
�

1

�ca � ya�ca
dCna ¼

1 � y
1� n
a

�cnað1 � yaÞð1 � nÞ
ð4Þ

E
1

C2n
a

� �

¼

Z �ca

ya�ca

1

C2n
a

�
1

�ca � ya�ca
dCna ¼

1 � y
1� 2n
a

�c2n
a ð1 � yaÞð1 � 2nÞ

ð5Þ

var
1

Cna

� �

¼ E
1

C2n
a

� �

� Eð
1

Cna
Þ

� �2

¼
1 � y

1� 2n
a

�c2n
a ð1 � yaÞð1 � 2nÞ

�
1 � y

1� n
a

�cnað1 � yaÞð1 � nÞ

� �2

ð6Þ

Based on Eqs (2–6), the mean and variance of Ta are, respectively:

EðTaÞ ¼ t
0

a þ bt0ax
n
a

1 � y
1� n
a

�cnað1 � yaÞð1 � nÞ
ð7Þ

varðTaÞ ¼ b
2
ðt0aÞ

2x2n
a

1 � y
1� 2n
a

�c2n
a ð1 � yaÞð1 � 2nÞ

�
1 � y

1� n
a

�cnað1 � yaÞð1 � nÞ

� �2
( )

ð8Þ

Since the capacity variable Ca is assumed independent, the route travel time variable Trsk can

thereby be expressed by summing the corresponding link travel time variables:

Trsk ¼
X

a

d
rs
a;kTa ð9Þ

As assumed that link capacity distributions are independent, the mean and variance of Trsk
can be obtained as:

EðTrsk Þ ¼
X

a

d
rs
a;kEðTaÞ ð10Þ

varðTrsk Þ ¼
X

a

d
rs
a;kvarðTaÞ ð11Þ

Energy consumption. In order to quantify the impact of link capacity degradation on

energy consumption for EVs and GVs, it is necessary to compute the energy consumption in

link and route levels.

As introduced before, EV energy consumption is influenced by travel time significantly.

Since the link travel time is estimated by BPR link performance function based on the link traf-

fic flow, it can be concluded that the EV link energy consumption is also dependent on the

link traffic flow. Allowing for flow-dependent energy consumption, the EV link energy con-

sumption function is adopted as Eq (12) proposed by He et al. [10].

eEa ¼ 0:108la þ 0:072Ta ð12Þ

Using Eqs (7) and (8), the mean and variance of EV link energy consumption are obtained
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as follows:

EðeEaÞ ¼ Eð0:108laÞ þ Eð0:072TaÞ

¼ 0:108la þ 0:072t0a þ
0:072bt0ax

n
að1 � y

1� n
a Þ

�cnað1 � yaÞð1 � nÞ
ð13Þ

varðeEaÞ ¼ varð0:108laÞ þ 0:0722varðTaÞ

¼ 0:005b
2
ðt0aÞ

2x2n
a

(
1 � y

1� 2n
a

�c2n
a ð1 � yaÞð1 � 2nÞ

�
1 � y

1� n
a

�cnað1 � yaÞð1 � nÞ

� �2
)

ð14Þ

On the other hand, based on the vehicle fuel consumption factor model estimated by Yao

and Song [27], the GV link energy consumption eGa is calculated as the followings:

EFGa ¼
1:276� 102

va
þ 5:298 ð15Þ

eGa ¼ EF
G
a �

la
100

ð16Þ

where the average vehicle speed va is expressed as:

va ¼
60la
Ta

ð17Þ

Therefore, the mean and variance of GV link energy consumption are, respectively:

EðeGa Þ ¼ E
5:298la

100

� �

þ E
1:276Ta

60

� �

¼ 0:0530la þ 0:0213t0a þ bt0ax
n
a

0:0213ð1 � y
1� n
a Þ

�cnað1 � yaÞð1 � nÞ

ð18Þ

varðeGa Þ ¼ 0:05302varðlaÞ þ var
1:276Ta

60

� �

¼ 0:000452b
2
ðt0aÞ

2x2n
a

(
1 � y

1� 2n
a

�c2n
a ð1 � yaÞð1 � 2nÞ

�
1 � y

1� n
a

�cnað1 � yaÞð1 � nÞ

� �2
) ð19Þ
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Similar to the calculation of route travel time distributions, the mean and variance of route

energy consumption ers;Ek , ers;Gk for two types of vehicles are written as:

Eðers;Ek Þ ¼
X

a2Mrs;Ek

d
rs
a;kEðe

E
aÞ ð20Þ

varðers;Ek Þ ¼
X

a2Mrs;Ek

d
rs
a;kvarðe

E
aÞ ð21Þ

Eðers;Gk Þ ¼
X

a2Mrs;Gk

d
rs
a;kEðe

G
a Þ ð22Þ

varðers;Gk Þ ¼
X

a2Mrs;Gk

d
rs
a;kvarðe

G
a Þ ð23Þ

Moreover, it should be noted that we have adopted the over-simplified energy consumption

functions to estimate the vehicle energy consumption for EVs and GVs. The reasons are as fol-

lows. First, a series of findings have been published in the international journals [3, 25, 27, 28]

about the vehicle energy consumption estimation. In this paper, the energy consumption

model establishment is not the focus of this study. Second, the energy consumption functions

adopted in this study have considered the impact of link traffic flow on link energy consump-

tion, and have the simple function form, thus it is easy and convenient to calculate the mean

and variance of link energy consumption. As described above, the mean and variance of link

energy consumption are based on the integral of the probability density function of link capac-

ity, once the form of link energy consumption is too complicated, the corresponding mean

and variance are hard to be obtained. Third, the above models adopted in this paper have been

published in the leading journals in the field of transportation, the feasibility and applicability

of these two models have been verified by the peers.

Charging time. The SOC, which is an indicator of the amount of usable battery energy, is

the criterion for an EV driver to decide whether or not to charge his/her vehicle. And the SOC

before charging can be obtained from Eq (24).

S0 ¼ S0 �
ers;Eck � 1000

Q� U
� 100% ð24Þ

where Q is the nominal capacity of battery, Ah, and U is the battery voltage, V. These variables

are usually viewed as known constants in practice.

Thus, the charging time that an EV needs to wait for being fully charged is:

Trsck ¼ T0ð1 � S
0Þ ð25Þ

Degradable network equilibrium with the addition of electric vehicles

PLOS ONE | https://doi.org/10.1371/journal.pone.0184693 September 8, 2017 11 / 29

https://doi.org/10.1371/journal.pone.0184693


Similar to the calculation of route travel time distributions, the mean and variance of EV

charging time are listed as follows:

EðTrsckÞ ¼ T0E 1 � S0 þ
ers;Eck � 1000

Q� U

� �

¼ T0ð1 � S0Þ þ
1000T0

Q� U

X

a2M0rs;Ek

d
rs
a;kEðe

E
aÞ ð26Þ

varðTrsckÞ ¼ T
2

0
var 1 � S0 þ

ers;Eck � 1000

Q� U

� �

¼
T2

0
� 106

Q2 � U2

X

a2M0rs;Ek

d
rs
a;kvarðe

E
aÞ ð27Þ

Generalized route travel cost

Based on the above distributions of travel cost components, the generalized route travel costs

for EVs and GVs can be written as:

Crs;Ek ¼ a½Trsk þ wTrsck� þ t1e
rs;E
k ð28Þ

Crs;Gk ¼ aTrsk þ t2e
rs;G
k ð29Þ

And their mean and standard deviation are, respectively:

EðCrs;Ek Þ ¼ a½EðTrsk Þ þ wEðTrsckÞ� þ t1Eðe
rs;E
k Þ ð30Þ

sðCrs;Ek Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðaTrsk þ awTrsck þ t1e

rs;E
k Þ

p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½ðaTrsk þ awTrsck þ t1e
rs;E
k Þ

2
�� ½EðaTrsk þ awTrsck þ t1e

rs;E
k Þ�

2

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2varðTrsk Þ þ a2w2varðTrsckÞ þ t2

1
varðers;Ek Þ þ 2a2w½EðTrsk T

rs
ckÞ � EðT

rs
k ÞEðT

rs
ckÞ�

þ2at1½EðTrsk e
rs;E
k Þ � EðTrsk ÞEðe

rs;E
k Þ� þ 2awt1½EðTrscke

rs;E
k Þ � EðTrsckÞEðe

rs;E
k Þ�

v
u
u
t

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2varðTrsk Þ þ a2w2varðTrsckÞ þ t2
1
varðers;Ek Þ þ 2a2w� 0:072�

1000T0

Q� U

X

a2M0rs;Ek

d
rs
a;kvarðTaÞ

þ2at1 � 0:072
X

a2M0rs;Ek

d
rs
a;kvarðTaÞ þ 2awt1 � 0:0722 �

1000T0

Q� U

X

a2M0rs;Ek

d
rs
a;kvarðTaÞ

v
u
u
u
u
u
u
u
u
u
t

ð31Þ

EðCrs;Gk Þ ¼ aEðTrsk Þ þ t2Eðe
rs;G
k Þ ð32Þ

sðCrs;Gk Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðaTrsk þ t2e

rs;G
k Þ

p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½ðaTrsk þ t2e
rs;G
k Þ

2
� � ½EðaTrsk þ t2e

rs;G
k Þ�

2

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2varðTrsk Þ þ t2
2
varðers;Gk Þ þ 2at2½EðTrsk e

rs;G
k Þ � EðTrsk ÞEðe

rs;G
k Þ�

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2varðTrsk Þ þ t2
2
varðers;Gk Þ þ 2at2 �

1:276

60

X

a

d
rs
a;kvarðTaÞ

s

ð33Þ

In order to capture the stochastic change of generalized route travel cost due to the stochas-

tic perturbation on link capacity in degradable transportation network, based on the concept

of travel time budget (TTB), the route choice principle for EV and GV drivers can be expressed

Degradable network equilibrium with the addition of electric vehicles

PLOS ONE | https://doi.org/10.1371/journal.pone.0184693 September 8, 2017 12 / 29

https://doi.org/10.1371/journal.pone.0184693


as follows:

brs;ikm ¼ EðC
rs;i
k Þ þ lmsðCrs;ik Þ i ¼ E;G ð34Þ

According to the Central Limit Theorem, when the number of links with nonzero variance

is large enough for a route, the generalized route travel cost follows a normal distribution. As a

result, λm has a close relation with the probability ρm that a trip arrives within the travel cost

budget, and can be written as:

PfCrs;ik � b
rs;i
km ¼ EðC

rs;i
k Þ þ lmsðCrs;ik Þg ¼ rm i ¼ E;G ð35Þ

Rearrange this equation leads to:

P SiCk ¼
Crs;ik � EðC

rs;i
k Þ

sðCrs;ik Þ
� lm

� �

¼ rm i ¼ E;G ð36Þ

where the left hand side in Eq (36) is the standard normal variate of Crs;ik , SiCk � Nð0; 1Þ, and

the value of λm determined by the probability ρm influences the travel cost budget brs;ikm as in Eq

(34).

Model formulation

In this section, the modelling process is described in details. First, a reliability-based traffic

assignment model with the addition of EVs is proposed based on the route choice behavior

analysis. Then, an equivalent VI problem is formulated to depict the SUE conditions. Finally,

the solution algorithm used to solve the model is illustrated on the basis of the MSWA.

Equilibrium conditions

In this paper, it is assumed that all the travelers make their route choice decisions based on the

perceived generalized travel cost distribution. Since the multinomial logit (MNL) model exhib-

its the independence from irrelevant alternative (IIA) property, which is resulted from indepen-

dently and identically distributed (IID) assumptions inherited in using the Gumbel distributed

perception errors, the MNL model has a fatal weakness when used in degradable transportation

network equilibrium analysis. Specially, the variance of the Gumbel error term for routes whose

capacities are not degraded is obviously different from which for routes whose capacities are

degraded, i.e., these perception errors don’t follow the same Gumbel distribution. Therefore, a

nested route choice structure is employed to deal with the relatively larger perceived error dif-

ference among route alternatives through grouping routes considered to have similar percep-

tion error in hierarchies or nests. As shown in Fig 2, the routes that have or don’t have high

uncertainty (HU) are classified into the same nest respectively, leading to a two-level nested

logit (NL) route choice model: the bottom level focuses on route choice among the route set,

and further influences the top level route set choice.

Fig 2. Nested route choice structure.

https://doi.org/10.1371/journal.pone.0184693.g002
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The perceived generalized route travel costs for EV and GV drivers are represented as:

Brs;ikm ¼ b
rs;i
km þ ε

rs;i
km i ¼ E;G ð37Þ

where εrs;Ekm and εrs;Gkm denote the error terms.

And the possibilities Prs;im ðwkÞ for EV drivers and GV drivers in classm choose route k
between OD pair (r,s) follow the logit-based principle.

Prs;im ðwkÞ ¼ P
rs;i
m ðwÞ � P

rs;i
m ðkjwÞ i ¼ E;G ð38Þ

where Prs;im ðwÞ is the marginal probability of route set w being chosen, and Prs;im ðkjwÞ is the con-

ditional probability of route choice given that route set w is selected. In this two-level NL

choice structure, Prs;im ðkjwÞ can be expressed with a MNL expression as:

Prs;im ðkjwÞ ¼
expð� m1b

rs;i
kmÞX

l2Ki;wrs

expð� m1b
rs;i
lm Þ

i ¼ E;G ð39Þ

And Prs;im ðwÞ can be calculated by:

Prs;im ðwÞ ¼
expð� m2Vrs;iwm

�Þ
X

l2Nw

expð� m2V
rs;i
lm
�Þ

i ¼ E;G ð40Þ

where Nw is the number of alternatives on top level, Vrs;iwm
� is the natural logarithm of the

denominator (i.e., log sum term) of Prs;im ðkjwÞ, it is viewed as the expected maximum utility of

routes set w (i.e., Ki;wrs ).

Vrs;iwm
� ¼ �

1

m1

In
X

l2Ki;wrs

expð� m1b
rs;i
lm Þ i ¼ E;G ð41Þ

Besides, the expected maximum utility between the OD pair (r,s) can be expressed as:

Vrs;im
� ¼ �

1

m2

In
X

Nw

expð� m2V
rs;i
wm
�Þ i ¼ E;G ð42Þ

Moreover, μ1 and μ2 are the scaling parameters for bottom and top level respectively, and

can be computed as shown in Eqs (43) and (44):

m1 ¼
p
ffiffiffiffiffiffiffiffiffi
6Crs

k̂1

p ð43Þ

m2 ¼
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðCrs

k̂1
þ Crs

k̂2
Þ

q ð44Þ

where Crsk̂1
and Crsk̂2

can be viewed as the minimum generalized route travel cost of routes and

of route sets respectively. It should note that all routes at same level are assumed to have the

identical variance, because scaling each route with a different scaling factor would violate the

logit-based SUE models’ assumption [29].
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On this occasion, the conditions of the stochastic user equilibrium can be characterized by

the following equations:

Qrs ¼ QGrs þ Q
E
rs

Qirs ¼
X

w

X

m
f rs;imw i ¼ E;G

Qi;wrs ¼
X

k2Ki;wrs

X

m
f rs;imkjw i ¼ E;G

f rs;imkjw ¼ Prs;im ðkjwÞ � Q
i
rs � Zm i ¼ E;G

f rs;imw ¼ P
rs;i
m ðwÞ � Q

i
rs � Zm i ¼ E;G

f rs;imkjw � 0; f rs;imw � 0 i ¼ E;G

Qirs � 0;Qi;wrs � 0 i ¼ E;G

xa ¼
X

rs

X

m

X

k

X

i

X

w
d
rs
a;kf

rs;i
mkjw

ð45Þ

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

where Qrs is total travel demand between OD pair (r,s); Qirs is the travel demand between OD

pair (r,s) for mode i (i.e., EV or GV); Qi;wrs is the travel demand between OD pair (r,s) for mode

i choosing route set w; f rs;imkjw is traffic flow between OD pair (r,s) for mode i choosing route k
given the route set w is selected; f rs;imw is traffic flow between OD pair (r,s) for mode i choosing

route set w; and ηm is the population proportion of classm, %.

VI formulation

Mathematically, the SUE conditions (45) can be formulated as an equivalent VI problem as fol-

lows:

X

rs

X

m

X

k2KE;HUrs

brs;Ekmjwðf
rs;E�
kmjw Þ þ

1

m1

In
f rs;E�kmjw

ZmQE;w
rs

� Vrs;E�wm

 !

ðf rs;Ekmjw � f
rs;E�
kmjw Þ

þ
X

rs

X

m

X

w

1

m2

In
f rs;E�mw

ZmQE
rs

þ Vrs;E�wm � V
rs;E�
m

� �

ðf rs;Emw � f
rs;E�
mw Þ

þ
X

rs

X

m

X

k2KG;HUrs

brs;Gkmjwðf
rs;G�
kmjw Þ þ

1

m1

In
f rs;G�kmjw

ZmQG;w
rs

� Vrs;G�wm

 !

ðf rs;Gkmjw � f
rs;G�
kmjw Þ

þ
X

rs

X

m

X

w

1

m2

In
f rs;G�mw

ZmQG
rs

þ Vrs;G�wm � V
rs;G�
m

� �

ðf rs;Gmw � f
rs;G�
mw Þ � 0

ð46Þ

where the variables with � is the decision variables; brs;Ekmjw (or brs;Gkmjw) is the travel cost budget of

an EV (or a GV) on route k 2 KE;wrs (or k 2 KG;HU
rs ) between OD pair (r,s) in classm, CNY.

The equivalence of the VI formulation and the SUE conditions as well as the existence of an

equilibrium solution are given by the following propositions.

Proposition 1. The VI problem(46) is equivalent to the SUE conditions(45).
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Proof. The KKT (Karush-Kuhn-Tucker) conditions of the VI problem (46) are:

f rs;Ekmjw : brs;Ekmjwðf
rs;E
kmjwÞ þ

1

m1

In
f rs;Ekmjw

ZmQE;w
rs

� Vrs;Ewm ¼ 0 ð47Þ

f rs;Emw : brs;Emwðf
rs;E
mw Þ þ

1

m2

In
f rs;Emw

ZmQE
rs

þ Vrs;Ewm � V
rs;E
m ¼ 0 ð48Þ

f rs;Gkmjw : brs;Gkmjwðf
rs;G
kmjwÞ þ

1

m1

In
f rs;Gkmjw

ZmQG;w
rs

� Vrs;Gwm ¼ 0 ð49Þ

f rs;Gmw : brs;Gmw ðf
rs;G
mw Þ þ

1

m2

In
f rs;Gmw

ZmQGrs
þ Vrs;Gwm � V

rs;G
m ¼ 0 ð50Þ

where Eqs (47) and (48) can be rewritten as:

f rs;Ekmjw

ZmQE;w
rs

¼ expð� m1ðb
rs;E
kmjwðf

rs;E
kmjwÞ � V

rs;E
wm Þ ð51Þ

f rs;Emw

ZmQE
rs

¼ expð� m2ðb
rs;E
mwðf

rs;E
mw Þ þ V

rs;E
wm � V

rs;E
m ÞÞ ð52Þ

Combining Eq (41) with Eq (51) leads to:

f rs;Ekmjw

ZmQE;w
rs

¼
expð� m1b

rs;E
kmjwðf

rs;E
kmjwÞÞX

l

expð� m1b
rs;E
lm Þ

ð53Þ

which corresponds to the conditional probability of the NL model (Eq (39)).

Combining Eq (52) with Eq (42) leads to:

f rs;Emw

ZmQE
rs

¼
expð� m2Vrs;Ewm ÞX

l2Nw

expð� m2V
rs;E
lm Þ

ð54Þ

which corresponds to the marginal probability of the NL model (Eq (40)).

Similarly, Eqs (49) and (50) can also be deduced through the above manipulations.

Therefore, it is easy to see that the proposed VI problem is equivalent to the SUE condi-

tions. This completes the proof.

Proposition 2. At least one solution of the VI problem (46) exists.
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Proof. Assume that the travel time is the strictly monotonic increasing function of the link

flow, let us set:

Fðf rs;EkmjwÞ ¼ b
rs;E
kmjwðf

rs;E
kmjwÞ þ

1

m1

In
f rs;Ekmjw

ZmQE;w
rs

� Vrs;Ewm ð55Þ

Fðf rs;Emw Þ ¼ b
rs;E
mwðf

rs;E
mw Þ þ

1

m2

In
f rs;Emw

ZmQE
rs

þ Vrs;Ewm � V
rs;E
m ð56Þ

Fðf rs;GkmjwÞ ¼ b
rs;G
kmjwðf

rs;G
kmjwÞ þ

1

m1

In
f rs;Gkmjw

ZmQG;w
rs

� Vrs;Gwm ð57Þ

Fðf rs;Gmw Þ ¼ b
rs;G
mw ðf

rs;G
mw Þ þ

1

m2

In
f rs;Gmw

ZmQGrs
þ Vrs;Gwm � V

rs;G
m ð58Þ

The derivatives of the above equations with respect to path flow variables are,

@Fðf rs;EkmjwÞ

@f rs;Ekmjw

¼
@brs;Ekmjwðf

rs;E
kmjwÞ

@f rs;Ekmjw

þ
1

m1

1

f rs;Ekmjw

�
@Vrs;Ewm

@brs;Ekmjwðf
rs;E
kmjwÞ

@brs;Ekmjwðf
rs;E
kmjwÞ

@f rs;Ekmjw

¼
@brs;Ekmjwðf

rs;E
kmjwÞ

@f rs;Ekmjw

þ
1

m1

1

f rs;Ekmjw

� Prs;Em ðkjwÞ
@brs;Ekmjwðf

rs;E
kmjwÞ

@f rs;Ekmjw
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It can be easily seen that Fðf rs;EkmjwÞ, Fðf rs;Emw Þ, Fðf
rs;G
kmjwÞ and Fðf rs;Gmw Þ are the strictly monotone

increasing functions with respect to path flows. Moreover, since being composed of nonnega-

tive linear constraints, the feasible region of the VI problem is compact and convex. Thus, the

uniqueness of solution can be guaranteed. This completes the proof.

Solution algorithm

A number of methods can be used to solve the VI problem. Compared with optimization algo-

rithm, the heuristic solution algorithm is more practical and efficient, it can find an approximate
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suitable stepsize without evaluating the complex objective function, and finally converges to the

optimal solution through several iterations. Among the heuristic solution algorithm, the MSWA

is widely used to solve the stochastic user equilibrium problems [30–32]. This paper solves the

problem by a heuristic solution algorithm developed from the MSWA. Specific steps are as

follows:

Step 1. Initialization. Input the network characteristics and set the initial link flows xa. Mean-

while, let the iteration n = 1.

Step 2. Distribution update.

• Step 2.1: Update the means and variances of link travel time based on Eqs (7) and (8); the

means and variances of link energy consumption for EVs and GVs, respectively, based on

Eqs (13), (14), (18) and (19).

• Step 2.2: Calculate the means and variances of route travel time via Eqs (10) and (11); the

means and variances of GV route energy consumption via Eqs (22) and (23); the means

and variances of EV route energy consumption, including which on the routes that an EV

from the origin to the destination and on the routes that an EV from the origin to the

charging station, via Eqs (20) and (21).

• Step 2.3: Adjust the usable route set for EV drivers. If the initial usable battery energy of

an EV can meet the energy requirement, then the usable route set is the same as the GV

drivers. If not, the usable route set must cover at least one charging station, and ensure the

EV can reach the charging station also with acceptable SOC left.

• Step 2.4: Using Eqs (26) and (27), calculate the means and variances of EV charging time.

And update the generalized route travel cost budgets in classm via Eqs (30–34).

Step 3. Search Direction. According to the route choice probability formulas (Eqs (38–40) and

Eq (63) below, obtain the auxiliary flows on routes f rs;ikm and links x0a.

x0a ¼
X

rs

X

m

X

k

X

i
d
rs
a;kf

rs;i
km ð63Þ

Step 4. Iteration. Update the link flows by the MSWA.

ðxaÞ
nþ1
¼ ðxaÞ

n
þ

1

1þ 2þ � � � n
½ðx0aÞ

n
� ðxaÞ

n
� ð64Þ

Step 5. Convergence Check. If the merit function F satisfies the following formulation:

F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

a2A

ððxaÞ
nþ1
� ðxaÞ

n
Þ

2
r

X

a2A

ðxaÞ
n � c ð65Þ

then stop, where ψ is the convergence criterion for F; otherwise let n = n + 1, return to Step 2.
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Numerical example

In this section, a set of numerical and computational analysis results with the proposed model

are presented to illustrate the effects of considering factors, including travelers’ risk attitude

toward network uncertainty, the network degradation degree, and the penetration rate of EVs.

The Nguyen–Dupius network shown in Fig 3 is adopted as an illustrative example. It con-

sists of four OD pairs, 19 links, and 13 nodes, where nodes 5 and 10 represent the public charg-

ing stations. The link characteristics can be found in Nguyen and Dupius [33]. The free-flow

speed on all links is set as 60 km/h, and thus the link distance of each link is approximated as

its free-flow travel time. In addition, a threshold of 30% SOC is adopted in this paper accord-

ing to the suggestion by the Beijing Automotive Industry Corp (BAIC). The link performance

function (Eq (1)) is with β = 1, n = 4. Additional parameter values such as the value of time α =

0.478 CNY/min, electricity price τ1 = 0.488 CNY/kwh, gasoline price τ2 = 9.076 CNY/kg, and

charging time for a dead battery to be fully charged under fast charging mode T0 = 37.5 min

are suggested according to the general situations in Beijing, China. It should be noted that this

paper focuses on a long-term network equilibrium pattern. The inputs and outputs are all at a

mean level. For the input parameter related to the charging time at the charging station, it can

be viewed as the average charging time including the waiting or searching time and the actual

charging time. The queuing at the charging station hasn’t been taken into account in this

study.

Moreover, suppose there are three classes of travelers with different degrees of risk-aversion

on the transportation network, namely low reliability (LR), medium reliability (MR) and high

reliability (HR) travelers. And EV drivers in the same class have the equal initial battery SOC

at their origins. Based on the survey data collected by Lo et al. [5], the parameters λm are set

as 0.1, 0.86, 1.72, corresponding to the within budget cost reliability of 54%, 81% and 96%,

respectively. The respective population proportions of these three classes of travelers are

49.5%, 38% and 12.5%. Besides, the initial battery SOC for LR, MR and HR EV drivers are set

as 50%, 60% and 70%, respectively given the risk-aversion degrees, i.e., the lower reliability the

driver is with, the less initial battery SOC the EV has, leading to a shorter driving range.

Table 1 enumerates the travel demands for all O–D pairs and all effective paths of the exam-

ple network, where 1(1-10-19) represents that route 1 is comprised by links 1, 10, and 19.

Fig 3. The Nguyen–Dupius network.

https://doi.org/10.1371/journal.pone.0184693.g003
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In the case of maximum degradable coefficient θa = 0.7 for all links (i.e., moderate degrada-

tion of the entire transportation network), and EV penetration rate ξ = 20% (i.e., the smaller

EV market share), the convergence performance of the MSWA-based algorithm is shown in

Fig 4 and Table 2.

Based on the convergence index mentioned in Eq (65), it can be observed from Fig 4 that

the algorithm terminates at iteration 18, indicating that this solution algorithm can solve the

proposed traffic assignment problem efficiently and can be easily applied to other networks.

And the value-related change process of convergence index and link flow is shown in Table 2.

The equilibrium route flow distributions for GVs and EVs are represented in Table 3.

Moreover, the effect of travelers’ risk attitude toward network uncertainty on route choice

behavior is also studied. As Table 3 shows, there is some difference in the route choice prefer-

ence among these three types of travelers, especially for the EV drivers. For example, between

OD pair (1,2), more EV drivers with LR use the route 2 while more with MR and HR use the

route 1. Due to the less initial SOC for LR EV drivers, the initial energy cannot meet the

requirement to reach the destination without charging, thus it needs to choose a route that

Table 1. OD demands and route composition.

OD pairs (1, 2) (1, 3) (4, 2) (4, 3)

Travel demands 400 800 600 200

Routes 1(1-10-19) 1(2-5-8-12) 1(4-7-11-17) 1(4-8-12)

2(2-6-9-16-19) 2(2-6-9-15-18) 2(3-6-9-16-19) 2(4-7-11-18)

3(2-6-9-15-17) 3(2-6-14-11-18) 3(3-6-9-15-17) 3(3-5-8-12)

4(2-6-14-11-17) 4(2-5-7-11-18) 4(3-6-14-11-17) 4(3-6-9-15-18)

5(2-5-7-11-17) 5(1-13-9-15-18) 5(3-5-7-11-17) 5(3-6-14-11-18)

6(1-13-9-16-19) 6(1-13-14-11-18) 6(3-5-7-11-18)

7(1-13-9-15-17)

8(1-13-14-11-17)

https://doi.org/10.1371/journal.pone.0184693.t002

Fig 4. Convergence of the solution algorithm.

https://doi.org/10.1371/journal.pone.0184693.g004
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covers charging stations. It should be noted that since the usable route sets for three types of

EV drivers are different from each other, the mean and standard deviation for generalized

route travel cost are not listed herein for lack of space. As for GV drivers, between OD pair

(1,3), more GV drivers with LR use the route 2 (a low mean but high standard deviation) while

more with MR and HR use the route 1 (a high mean but low standard deviation), indicating

that the higher degree of risk-aversion of a traveler is, the more reluctant to choose the route

with high standard deviation. Consistent with results in the previous studies (e.g., Lo et al. [5]),

some routes with high standard deviation are still used by the traveler whose degree of risk-

aversion is higher, it is reasonable in the sense that both types of routes achieve the same within

budget cost reliability and require the same travel cost budget.

Additionally, in order to investigate the impact of local network capacity degradation on

travelers’ route choice, it is assumed that maximum degradable coefficient θa = 0.45 for link 7

and the other link capacities have not been degraded. The other parameters are the same as

those that are used above. As a result, route 5 between OD pairs (1,2), route 4 between OD

pairs (1,3), routes 1 and 5 between OD pairs (4,2), and routes 2 and 6 between OD pairs (4,3)

are directly influenced by the link degradation. The generalized cost standard deviations of

these routes are obviously higher than which of other routes. As shown in Table 4, the route

with minimum generalized cost is most popular for GV drivers when the standard deviation

of generalized cost equals to zero. When the route has a lower mean compared with a route

with high mean and 0-standard deviation, it still can be chosen by GV drivers although its

standard deviation is over zero, such as routes 5 and 8 between OD pairs (1,2), and the choice

difference narrows with the increase of travelers’ risk-aversion degrees. Moreover, the route

with high mean and high standard deviation is least attractive among the route set, such as

route 5 between OD pairs (4,2) and route 6 between OD pairs (4,3).Similarly, compared with

EV drivers with MR and HR, the EV drivers with LR have the charging demand, hence their

Table 2. Change process of convergence index and link flow.

Convergence step 1 5 10 15 20 25 30

Link flow 1 124 382 396 410 412 413 413

2 1076 818 804 790 788 787 787

3 640 445 435 444 443 443 443

4 160 355 365 356 357 357 357

5 149 377 472 436 439 438 438

6 1567 887 767 798 792 792 792

7 47 266 254 239 238 238 238

8 262 466 583 552 558 557 557

9 1567 923 783 819 810 810 810

10 85 300 333 340 342 343 343

11 87 312 300 289 290 290 290

12 262 466 583 552 558 557 557

13 40 82 63 70 69 69 69

14 40 46 46 50 51 52 52

15 754 529 421 456 448 448 448

16 812 394 362 362 362 362 362

17 103 306 305 298 296 295 295

18 738 534 417 448 442 443 443

19 897 694 695 702 704 705 705

Convergence

index

Inf 0.06 0.02 0.01 0.00 0.00 0.00

https://doi.org/10.1371/journal.pone.0184693.t003
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route choice is distributed among the routes with at least one charging station, and shows dif-

ferent characteristics. It is important to note that the ratios of scaling parameters between top

level and bottom level for different types of travelers lie within the 0±1 range (respectively are

0.743 (GV drivers with LR), 0.744 (GV drivers with MR), 0.744 (GV drivers with HR), 0.814

(EV drivers with LR), 0.745 (EV drivers with MR), 0.746 (EV drivers with HR)), meeting the

condition for consistency with utility maximization in the NL model, and indicating that it is

appropriate to adopt the nested modelling structure to analyze travelers’ route choice when rel-

atively larger perceived error difference among route alternatives exists.

Fig 5 summarizes the effects of EV penetration rate and maximum degradable coefficient

for the transportation network on total system travel cost budget (i.e., the amount of routes’

travel cost budgets for all users). It can be concluded that the higher the EV penetration rate is,

the lower the total system travel cost budget achieves, so is the maximum degradable coeffi-

cient. It is particularly worth mentioning here that the lowest total system travel cost budget is

not at the highest maximum degradable coefficient or the maximum EV penetration rate uni-

laterally. Instead, the total system travel cost budget achieves lowest when there is a higher EV

penetration rate and network reliability simultaneously. The reason behind this phenomenon

Table 3. Equilibrium route flows under entire network capacity degradation.

OD pairs Route GVs EVs

Flow #LR Flow # MR Flow #HR Generalized cost mean Generalized cost st. dev. Flow #LR Flow

# MR

Flow #HR

(1,2) 1 151 118 39 40.71 0.92 0 27 9

2 5 3 1 44.07 1.45 13 1 0

3 1 0 0 46.15 1.40 11 1 0

4 0 0 0 50.45 0.56 6 0 0

5 0 0 0 51.13 0.43 10 0 0

6 1 1 0 45.82 1.34 0 1 0

7 0 0 0 47.91 1.29 0 0 0

8 0 0 0 52.17 0.09 0 0 0

(1,3) 1 136 127 50 45.35 0.83 23 35 8

2 152 94 23 45.22 1.41 25 15 3

3 2 2 1 49.52 0.57 20 0 2

4 1 1 1 50.19 0.44 11 0 2

5 26 18 5 46.97 1.30 0 11 2

6 0 1 0 51.24 0.14 0 0 3

(4,2) 1 36 60 36 47.44 0.05 0 36 12

2 179 108 21 45.81 1.41 20 7 1

3 22 14 3 47.89 1.36 16 3 1

4 0 0 0 52.18 0.45 9 0 1

5 0 0 0 52.85 0.26 16 0 1

(4,3) 1 78 59 19 41.69 0.71 0 12 3

2 1 1 0 46.51 0.12 0 3 1

3 0 0 0 47.08 0.76 5 1 0

4 1 0 0 46.95 1.37 3 0 0

5 0 0 0 51.24 0.46 5 0 0

6 0 0 0 51.91 0.28 8 0 0

Note: Since the usable route sets for three types of EV drivers are different from each other, the mean and standard deviation for generalized route travel

cost are not listed herein for lack of space.

https://doi.org/10.1371/journal.pone.0184693.t004
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might be that when the transportation network is more reliable, the variation related to the

generalized route travel cost will be reduced. And when more EVs are introduced, the travel

cost related to energy consumption will decrease.

Fig 6 displays the standard deviation distribution of system travel cost under various EV

penetration rates and maximum degradable coefficients. Different from the variation pattern

of total system travel cost budget in Fig 5, the lower EV penetration rate and higher maximum

network degradable coefficient lead to the reduction for total system travel cost standard devi-

ation. Due to the usable routes for EV drivers change with the network conditions (EV pene-

tration rate and maximum degradable coefficient), the variation trend is in the form of highly

nonlinear nature. Moreover, when the reliability of transportation network is higher, the influ-

ence of EV penetration rate on system standard deviation is not obvious.

Therefore, from what has been discussed above, it would be reasonable to believe that the

widespread adoption of EVs can cut down the total system travel cost effectively only when the

transportation network is more reliable.

Furthermore, given that the energy prices for gasoline and electricity might differ greatly in

different countries or regions, both the gasoline consumption of GVs and electricity consumption

Table 4. Equilibrium route flows under local network capacity degradation.

OD pairs Route GVs EVs

Flow #LR Flow # MR Flow #HR Generalized cost mean Generalized cost st. dev. Flow #LR Flow

# MR

Flow #HR

(1,2) 1 47 36 12 38.34 0.00 0 7 2

2 35 27 9 40.61 0.00 10 7 2

3 17 13 4 45.69 0.00 10 4 1

4 9 7 2 50.62 0.00 9 0 1

5 8 6 2 51.24 0.22 10 0 1

6 24 19 6 43.13 0.00 0 5 1

7 12 9 3 48.22 0.00 0 3 1

8 6 5 2 53.15 0.00 0 0 1

(1,3) 1 99 76 25 42.52 0.00 20 27 5

2 72 55 18 44.84 0.00 21 17 3

3 36 28 9 49.77 0.00 20 2 2

4 33 25 8 50.39 0.22 18 2 2

5 51 39 13 47.36 0.00 0 13 3

6 26 20 7 52.29 0.00 0 1 2

(4,2) 1 45 34 11 48.11 0.22 0 12 3

2 101 78 26 42.90 0.00 16 19 5

3 50 39 13 47.99 0.00 15 11 3

4 25 19 6 52.92 0.00 14 2 2

5 16 12 4 53.54 0.22 15 0 1

(4,3) 1 33 25 8 39.38 0.00 0 6 2

2 10 8 2 47.25 0.22 0 3 1

3 15 12 4 44.81 0.00 5 3 1

4 11 9 3 47.13 0.00 4 2 1

5 6 4 1 52.06 0.00 5 0 0

6 4 3 1 52.68 0.22 5 0 0

Note: Since the usable route sets for three types of EV drivers are different from each other, the mean and standard deviation for generalized route travel

cost are not listed herein for lack of space.

https://doi.org/10.1371/journal.pone.0184693.t005
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Fig 5. Total system travel cost budget variation with EV penetration rate and maximum degradable coefficient.

https://doi.org/10.1371/journal.pone.0184693.g005

Fig 6. Standard deviation variation of system travel cost with EV penetration rate and maximum degradable

coefficient.

https://doi.org/10.1371/journal.pone.0184693.g006
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of EVs are converted into coal equivalent consumption to verify the impacts of EV penetra-

tion rate and maximum degradable coefficient on total system energy consumption [28]. Par-

ticularly, the conversion formulas for GVs and EVs are adopted as gGa ¼ 1:471� eGa and

gEa ¼ 0:326� eEa=½ð1 � 6:62%Þ � 97%�, respectively. The former formula means that 1.471kg

standard coal will be consumed to produce 1kg gasoline, and the latter formula indicates that

the energy generated by 0.326kg standard coal equals to which by 1kwh electricity. Mean-

while, 6.62% is the power line loss and 97% is the charge-discharge efficiency of EV battery.

Consequently, the total system standard coal consumption variation with EV penetration

rate and maximum degradable coefficient is exhibited in Fig 7. As shown, the total system

standard coal consumption is most affected by EV penetration rate compared to maximum

degradable coefficient. However, both the increases of EV penetration rate and maximum

degradable coefficient will decrease the total system standard coal consumption, indicating

that the popularization of EVs in large scale can save total system energy consumption signifi-

cantly. By contrast, since the increase of EV penetration rate can save more total system ener-

gy consumption (the energy efficiency of EVs is higher than GVs), the effect of improving the

reliability of transportation network is not remarkable although the total system energy con-

sumption can be reduced a little.

Fig 8 shows the EV charging demand variation with different network conditions (EV pen-

etration rate and maximum degradable coefficient). It can be seen that maximum degradable

coefficient has no significant impact on EV charging demand when EV penetration rate is at a

lower level. However, with the increase of EV penetration rate, the poor network operation

condition will result in the increase of EV charging demand. Therefore, to provide a better

charging service to the majority of the network users, it is necessary to consider both the influ-

ences of EV penetration rate and maximum degradable coefficient on EV charging demand

when locating EV charging infrastructures. Specifically, EV charging demand needs to be esti-

mated under different combinations of EV penetration rate and maximum degradable coeffi-

cient to test the serviceability of EV charging infrastructures.

Fig 7. Total system standard coal consumption variation with EV penetration rate and maximum

degradable coefficient.

https://doi.org/10.1371/journal.pone.0184693.g007
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Conclusions

The introduction of EVs calls for fundamental changes to the existing traffic assignment

modeling tools for accommodating urban mixed gasoline and electric vehicular flows, espe-

cially in the degradable transportation network. This paper has begun to address this issue by

presenting a reliability-based network equilibrium framework for capturing travelers’ route

choice behaviors and the induced constrains with the addition of EVs. Specifically, given the

unique energy consumption characteristics of EVs, the flow-dependent energy consumption

cost and travel time, charging demand and charging time are given fully consideration in gen-

eralized route travel cost calculation in degradable network, while only the former two are

incorporated in for GVs. The means and variances of link and route travel time are derived

firstly, and the distributions of link and route energy consumption, as well as the EV charging

time distribution are presented subsequently. Furthermore, based on a nested route choice

structure, the route travel cost budgets are viewed as the principle of travelers’ route choice,

and a reliability-based traffic assignment model with the addition of EVs is formulated. Finally,

through developing a heuristic solution algorithm from the MSWA to solve the proposed

model, the effects of travelers’ risk attitude, transportation network reliability and EV penetra-

tion rate on network performance are fully analyzed based on the example application. In the

numerical example, the ratios of scaling parameters between top level and bottom level for dif-

ferent types of travelers lie within the 0±1 range in NL model, demonstrating that it is suitable

to employ the nested modelling structure to analyze travelers’ route choice for accommodating

different uncertainty degrees of the routes with and without degradable road links. And the

equilibrium route flow distributions under different network degradation conditions reveal

that the initial SOC and energy demand will determine the usable route set for an EV driver to

reach the destination and further reshape the network traffic flow. In this study, a route with

high mean but low standard deviation is more popular among the GV drivers with higher

degree of risk-aversion. But some routes with high standard deviation are still used by the trav-

eler whose degree of risk-aversion is higher due to the same within budget cost reliability and

Fig 8. EV charging demand with EV penetration rate and maximum degradable coefficient.

https://doi.org/10.1371/journal.pone.0184693.g008
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the same travel cost budget. Besides, the study on impacts of EV penetration rate and maxi-

mum degradable coefficient on total system travel cost budget and system travel cost standard

deviation shows the highly nonlinear nature of these influencing factors, indicating that the

widespread adoption of EVs can cut down the total system travel cost effectively when the

transportation network is more reliable. Specifically, the total system travel cost is relatively

low (nearly lower than 6000 CNY) when the network maximum degradable coefficient is

higher than 0.9 and the EV penetration rate exceeds 70%. Meanwhile, the analysis of EV charg-

ing demand variation under different network conditions points out that it is necessary to take

EV penetration rate and network reliability into consideration when planning EV charging

infrastructures. In particularly, when the network maximum degradable coefficient is lower

than 0.7 and the EV penetration rate exceeds 45%, there will be an obvious increase of EV

charging demand.

The presented modelling method in this paper is helpful to understand travelers’ route

choice behavior in unreliable transportation network with the addition of EVs, and further

aids in the travel demand forecasting and transportation development plan evaluation.
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