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Abstract

Introducing electric vehicles (EVs) into urban transportation network brings higher require-
ment on travel time reliability and charging reliability. Specifically, it is believed that travel
time reliability is a key factor influencing travelers’ route choice. Meanwhile, due to the lim-
ited cruising range, EV drivers need to better learn about the required energy for the whole
trip to make decisions about whether charging or not and where to charge (i.e., charging reli-
ability). Since EV energy consumption is highly related to travel speed, network uncertainty
affects travel time and charging demand estimation significantly. Considering the network
uncertainty resulted from link degradation, which influences the distribution of travel demand
on transportation network and the energy demand on power network, this paper aims to
develop a reliability-based network equilibrium framework for accommodating degradable
road conditions with the addition of EVs. First, based on the link travel time distribution, the
mean and variance of route travel time and monetary expenses related to energy consump-
tion are deduced, respectively. And the charging time distribution of EVs with charging
demand is also estimated. Then, a nested structure is considered to deal with the difference
of route choice behavior derived by the different uncertainty degrees between the routes
with and without degradabile links. Given the expected generalized travel cost and a psycho-
logical safety margin, a traffic assignment model with the addition of EVs is formulated. Sub-
sequently, a heuristic solution algorithm is developed to solve the proposed model. Finally,
the effects of travelers’ risk attitude, network degradation degree, and EV penetration rate
on network performance are illustrated through an example network. The numerical results
show that the difference of travelers’ risk attitudes does have impact on the route choice,
and the widespread adoption of EVs can cut down the total system travel cost effectively
when the transportation network is more reliable.
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Introduction

As a result of urbanization and motorization, transportation-related problems such as traffic
congestion, car dependency as well as the associated noise and air pollution, have posed a
major impediment to sustainable development for many contemporary cities worldwide.

Due to the advantage of high energy efficiency, low noise and zero pollution during use,
electric vehicle (EV) is viewed as an effective tool to mitigate and even remedy the environ-
mental problems resulted from transport sector. Based on this perspective, creative policies
have been adopted by many cities around the world to encourage drivers to ditch conventional
gasoline vehicles (GVs) in favor of clean transport. In Beijing, China, it is expected that the
application scale for clean-energy vehicles will reach around 200,000 by 2017, including
180,000 battery electric vehicles (BEVs) with the supporting 5km-radius public charging ser-
vice network. Therefore, there is every reason to believe that electric vehicular flow will be an
important component of urban mixed traffic network in Beijing and some other similar cities
all over the world.

As the last stage of traditional four-step models, traffic assignment is crucial for travel
demand forecasting and transportation development plan evaluating. In essence, traffic assign-
ment models the route choice behavior of travelers and their interactions, and the performance
of a traffic assignment model relies on the behavioral assumptions behind the route choice
model [1]. Given the EV cruising range limitation, the route choice behavior of EV drivers is
bound to be greatly different from that of GV drivers. In addition to the traditional influencing
factors like individual characteristics, route attributes and travel characteristics, energy con-
sumption is also an important factor influencing EV drivers’ route choice. EV driver makes
decision about whether charging or not and where to charge according to the cruising range
and travel characteristics (such as travel distance) before the travel begins. For an EV driver,
his/her route choice always comes with charging demand judgement and charging station
choice, and further reshapes the traffic flow pattern on the urban transportation network.

Empirical studies reveal that travel time and monetary are the most important factors influ-
encing route choice behavior, and travel time reliability also should not be underestimated [2],
especially for the EV drivers. It is found that there is a high correlation between EV energy
consumption rate and instantaneous speed from microscopic point of view [3]. Further, an EV
energy consumption factor model based on the link average speed at the meso level was pro-
posed [4]. Since the link length is fixed, it can be deduced that EV energy consumption is influ-
enced by travel time significantly. The aging transportation infrastructure, the implementation
of traffic control measures, as well as the occurrence of natural disasters and traffic incidents,
are more likely to degrade the transportation network capacity entirely or locally [5], and fur-
ther increase the travel time. Consequently, there will be a certain bias in travel cost for travel-
ers, especially for the EV drivers who are more sensitive to this bias. For instance, the trip that
usually can be finished without charging under normal conditions will generate the charging
demand and then is changed to reach the destination in the degradable transportation network
(i.e., a network with degradable link capacities, which may be subject to stochastic variations
resulted from various uncertainties). In this situation, the reliability not only refers to varia-
tions in travel time, but also variations in charging demand when it comes to EVs.

Therefore, it is necessary to analyze the impact of reliability on route choice behavior, and
further evaluate the performance of transportation network under different travelers’ risk atti-
tudes, different network degradation degrees and different EVs’ penetration rates. However,
the existing study on traffic assignment mainly aims at the gasoline vehicular flow, the accord-
ing research achievements cannot be applied directly to the network equilibrium with the
addition of EVs. Meanwhile, although the uncertainty of urban transportation network has
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been taken into consideration among reliability-based traffic assignment models, almost all of
which focus on one unique criterion, i.e., travel time, while the equally important monetary
criterion is ignored.

Different from emphasizing travel time-related criteria unilaterally, this paper comprehen-
sively takes the travel time (including route travel time and EV charging time) and the mone-
tary expense (including gasoline expense of GVs and electricity expense of EVs) into account
to solve the mixed traffic assignment problem in degradable transportation network with the
addition of EVs. In this paper, we carry the work of predecessors a major step forward by pro-
posing a reliability-based network equilibrium framework for capturing travelers’ route choice
behavior and the induced constrains with the addition of EVs. The contribution of this paper
to the current literature lies in two aspects. From the practical standpoint, this paper stresses
the sensibility of EVs to traffic conditions, and aims to provide some valuable suggestions for
the transportation system operation and management, as well as the infrastructure planning
and investment through investigating the impacts of transportation network uncertainty and
EV penetration on the distribution of travel demand on transportation network and the energy
demand on power network. From the theoretical standpoint, this study advances the traffic
assignment research by addressing a reliability-based network equilibrium framework for
accommodating urban mixed gasoline and electric vehicular flows, especially in the degradable
transportation network. Particularly, a nested modelling structure is employed to cope with
the route choice behavior difference derived by the different uncertainty degrees between the
routes with and without degradable road links. And considering the unique energy consump-
tion characteristics of EVs, the flow-dependent energy consumption cost and travel time, the
potential en-route charging demand and charging time are all given fully consideration in this
degradable transportation network research.

The outline of this paper is as follows: Section 2 reviews recent relevant literature. Section 3
describes the distributions of route travel cost components respectively. The model formula-
tion and specifications are illustrated in Section 4, and a heuristic solution algorithm is devel-
oped to solve the model. Section 5 presents the numerical results on an example network to
validate the proposed model and solution algorithm. Finally, the conclusions of the present
paper are provided in Section 6.

Literature review

A traffic assignment model is able to reflect travelers’ route choice behavior through a range of
devices. Traditional assignment techniques can be classified into two categories: the Wardrop
user equilibrium (UE) model and the stochastic user equilibrium (SUE) model according to
the criterion that if there is a variable perception of travel costs. On the basis of these pioneer-
ing works, many theoretical models and empirical researches have been conducted to supple-
ment and improve the behavioral assumptions behind travelers’ route choice, focusing on the
time-variability of travel demand [6], the heterogeneity of travellers [7], the multi-modal char-
acteristics of transportation network [8], and the combination of the above issues [9].

Given the gradual maturity of EV technologies and the expeditiously rising prices of crude
oil, as well as a variety of government incentives and policies, the proportion of electric vehicu-
lar flow in urban mixed traffic cannot be overlooked in the near future. However, due to the
unique energy consumption characteristics of EVs, the methodologies employed and the con-
clusions obtained in the above studies are no longer suitable for the traffic assignment problems
with the addition of EVs. For example, whether a route is usable for an EV driver depends on
the EV cruising range limitation and the energy consumption requirement to reach his/her des-
tination, while all the routes on urban transportation network are usable for a GV driver in
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theory. A number of works can be found that explicitly incorporate EVs into traffic assignment
models and accordingly evaluate the network performance. Some equilibrium models were for-
mulated to investigate the impacts of EVS’ cruising range and recharging requirement on trav-
els’ route choice [10]. However, the research objective is limited to pure electric vehicular flow,
the interaction between the mixed traffic flows has not been mentioned. Aiming at the mixed
gasoline and electric vehicular flows, the spatial distribution of travel demand of the mixed traf-
fic flows and their corresponding travel choices are modelled further by two studies [11-12].
More specifically, the former analyzed the joint mode and route choices under the assumption
that travelers have accessibility to both GVs and BEVs while the latter examined how the trans-
portation network changes with the destination, route and parking choice adjustments by EV
drivers under the assumption that the mode split is fixed. It should be noted that, both of two
papers all ignored possible availability of battery-charging stations en route, and the EV energy
consumption is assumed to be determined by the driving distance regardless of the traffic flows.
Furthermore, some studies were presented to solve the network user equilibrium problems for
the mixed battery electric vehicles and gasoline vehicles subject to the emerging charging tech-
nologies (e.g., battery swapping [13], wireless recharging [14], etc.). However, the feasibility of
these new charging technologies has not been tested by the reality, and their realizations still
need a long time. Gardner et al. [15] have addressed the relationship between travel demand
uncertainty and EV energy consumption for the first time. In their opinion, travel time variabil-
ity, which is resulted from demand uncertainty, has an influence on EV energy consumption,
and further affects travelers’ route choice in user level and regional energy demand in system
level. Nevertheless, the traffic assignment analysis was still based on the simplified assumptions,
i.e., EVs were charged at home only and EV drivers behaved in the same manner as non-EV
drivers.

In addition to stressing on the demand uncertainty in a traffic assignment context, remark-
able progress has been made in the field of reliability-based user equilibrium models from the
supply perspective. Given the link capacity degradation, Lo and Tung [16] formulated a proba-
bilistic user equilibrium (PUE) model to characterize the route choice behavior, aiming to
improve the travel time reliability rather than to reduce the mean travel times. This approach
was extended further by Lo et al. [5] by adopting the concept of travel time budget (TTB),
which is defined as the sum of the expected travel time and a safety margin to hedge against
variations of travel time. The safety margin is the product of the travel time standard deviation
and a scalar called punctuality parameter specified by the traveler to represent his/her risk
preference. Considering the doubly uncertainties from both travel demand and network sup-
ply, Siu and Lo [17] developed a framework to model travelers’ behavior in trip planning. They
claimed that all the factors that lead to the travel time variations should be taken into careful
consideration, thus the notion of travel time budget plays a more relevant and important role
in travelers’ travel choice compared to the notion of travel time. Later, Nie [18] pointed out
that the distribution of random link capacity is more reasonable to be flow-dependent, and a
percentile user equilibrium model was proposed to incorporate this viewpoint. Moreover, the
percentile route travel time was evaluated by directly convolving link travel time distributions
instead of relying on the central limit theorem in TTB model. Not only focusing on the reliabil-
ity aspect of travel time variability unilaterally, a mean-excess traffic equilibrium (METE)
model put forward by Chen and Zhou [19] also accounted for the travel time unreliability.
Through hypothesizing that all travelers are willing to minimize their travel risk measured by
the conditional expectation of the excess travel time for a certain travel time budget, the ques-
tions of “how much time do I need to allow?” and “how bad should I expect from the worse
cases?” can be answered at the same time. More recently, Wang et al. [2] proposed a general
travel time reliability bi-objective user equilibrium model to minimize both expected travel
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time and travel time budget. A used route with a lower expected travel time but higher variability
will be less attractive than another route with a higher expected travel time but lower variability
although they have the same travel time budget. In addition, based on the degradable transporta-
tion network equilibrium analysis, a series of studies were proposed to aid in the formulation
and evaluation of related traffic management policies. For example, Yan et al. [20] adopted the
travel time budget as travelers’ route choice principle to study the traffic assignment problem
related to speed limit in a degradable transport network. The relationship among the speed limit,
link capacity, and the travel time was investigated. And a user equilibrium model was established
and solved to assist in the speed limit design problem. Yao et al. [21] proposed a bi-modal user
equilibrium model based on the travel time budget to evaluate the exclusive bus lanes (EBLs) set-
ting scheme in a stochastic degradable network with car and bus transit modes. Specifically, trav-
elers by car only care about the uncertainty in terms of link travel time while travels by bus
transit care about the uncertainty in terms of link travel time and waiting time at the bus stop at
the same time. Liu and Huang [22] presented a user equilibrium model based on robust effective
path travel time to capture travelers’ route choice behaviors influenced by the travel time uncer-
tainty in a random degradable transportation network. The robust effective path travel time in
their study is defined as combination of mean travel time and the safety margin supremum,
which is similar to the concept of travel time budget. Besides, the congestion pricing design
problem was investigated based on this model, and the importance of robustness on the link
tolls in degradable transportation networks was revealed in their study. However, the aforemen-
tioned reliability-based user equilibrium models are all specific to the conventional transporta-
tion network without the addition of EVs, and the route choice criteria are merely related to the
travel time (expected travel time, travel time variance and standard deviation). It should note
that network reliability is of utmost importance for an EV driver to estimate his/her travel time
and the associated travel expense, as well as to determine his/her charging demand en route.

As stated above, the popularization of EV's enriches the composition of travel cost, and
meanwhile travelers’ travel cost bias resulted from network supply uncertainty leads to signifi-
cant variations in travel demand on transportation network as well as the energy demand on
power network. But these problems cannot be solved completely through the existing traffic
assignment models and methods. Therefore, this paper attempts to integrate the gasoline and
electric vehicular flow into a unified reliability-based network equilibrium framework. First,
on the basis of the concept of TTB, the route travel cost budgets for GVs and EVs are calcu-
lated respectively. Then, considering a nested route choice structure, the SUE conditions are
presented and formulated as an equivalent variational inequality (VI) model, which can be
solved based on the method of successive weighted averages (MSWA). Finally, the impacts of
travelers’ risk attitude, EV penetration rate and transportation network uncertainty on net-
work performance are assessed through an example network.

Travel cost budget function

Understanding the variations of travel cost components is an essential first step to estimate the
generalized route travel cost in degradable transportation network. This section describes
these variations for GV and EV drivers respectively. Notations used throughout the paper are
provided first, followed by the distributions of travel cost components.

Notations

Consider a strongly connected transportation network G (N, A), where N denotes the set of
nodes and A the set of links. A limited number of charging stations are located at certain
nodes of the network, and thus the usable route set for an EV with the charging demand only
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covers the route deployed with at least one charging station. Besides, the fast charging mode is
adopted in charging stations. Let R and S represent the sets of origins and destinations respec-
tively. K, indicates the set of all routes between the origin r € R and destination s € S, while K¢
for GVs and K for EVs. M} is the set of all the links between the origin r € R and destination
s € Son route k € KF and M} is that on route k € K¢. M;*" is the set of links from origin r €
R to charging station on route k € K”.

For discussion convenience, the notations of variables and parameters used in this paper
are given as follows unless specified otherwise, where superscripts G and E are used to indicate
variables or parameters associated with gasoline and electric vehicles, respectively.

13 EV penetration rate,%
Value of time, CNY/min
T4 Electricity price, CNY/kwh
To Gasoline price, CNY/kg
X A binary parameter whose value is 1 if an EV needs to be charged, otherwise 0
T, Travel time on link a € A, min
T Travel time on route k € K;s between OD pair (r,s), min
t Free-flow travel time on link a € A, min
To Charging time for a dead battery to be fully charged under fast charging mode, min
Xz Flowonlinkae A
x5 EV flow on link a € M*F
x¢ GV flow on linka € M
for EV flow on route k € K% between OD pair (r,s) in class m
i GV flow on route k € K¢ between OD pair (r,s) in class m
Ca Capacity of link a € A, pcu/min
cC, Maximum or design capacity of link a € A
0, Maximum degradable coefficient of capacity for link a € A
ok Route-link incidence parameter, 6, = 1 if link a belongs to route k and 0 otherwise
el Energy consumption of an EV on linka € MF, kwh
I Distance of link a € A, km
Vg Average vehicle speed on link a € A, km/h
EF¢ GV energy consumption factor on linka € M€, kg/100km
e Energy consumption of a GV on linka € M€, kg
et Energy consumption of an EV on route k € K& between OD pair (r,s), kwh
esEf Energy consumption of an EV before charging between OD pair (r,s), kwh
e Energy consumption of a GV on route k € K¢ between OD pair (r,s), kg
So Initial battery state of charge at origin of an EV, %
S Battery state of charge before charging, %
TS Charging time of an EV on route k € K& between OD pair (r,s), min
CcrE Generalized travel cost of an EV on route k € K% between OD pair (r,s), CNY
cee Generalized travel cost of a GV on route k € K¢ between OD pair (r,s), CNY
bE Travel cost budget of an EV on route k € K& between OD pair (r,s), CNY
bEe Travel cost budget of a GV on route k € KS between OD pair (r,s), CNY
Pm Probability that a trip arrives within the travel time cost
Am A parameter related to degree of risk-aversion in class m
A Coal equivalent consumption of an EV on link a € Mi°, kg
78 Coal equivalent consumption of a GV on linka € M2 ¢, kg

https://doi.org/10.1371/journal.pone.0184693.t001
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Y '
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CT: Charging time 1T, EC.., IT, BG,, €T

Fig 1. Travel cost components for EVs.
https://doi.org/10.1371/journal.pone.0184693.9001

Travel cost components

Travel cost consists of in-vehicle travel time, and the operating cost determined by the vehicle
energy consumption. Besides, there is a charging demand for an EV driver when the battery
state of charge (SOC) is lower than a threshold specified by the automaker. Therefore, the
charging time for an EV with charging demand also should be included.

It should be noted that EV's have two types of charging modes in China and some other
countries currently: slow charging and fast charging (also known as quick or rapid charging).
Particularly, slow charging usually requires six to eight hours to completely charge a fully
depleted battery [23] and can be performed at home or office from a standard household
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electrical outlet. While fast charging usually provides an 80% charge in 30 min and needs to be
performed at charging stations as the emergency service [24]. Because of forgetting to charge
or having been used, the SOC of BEV is not always 100% when the travel begins, thus the
related limited cruising range usually causes a higher possibility of en-route charging demand
to complete the entire trip [25]. Under these situations, the EV's need to be fast-charged during
the trip since it can satisfy the short-term charging demand of EVs. This behavior is also simi-
lar to that of a conventional gasoline vehicle user who can refuel the vehicle at any gas stations
and any time [26]. Therefore, we focus on the en-route charging demand of EVs since the net-
work reliability is more important for an EV driver to estimate his/her travel time, which fur-
ther has an impact on EV driver’s en-route charging decision. The charging behavior at the
destination of the route has not been taken into consideration in this paper.

Fig 1 depicts different travel cost components for EVs with and without charging demand.
Specifically, before the travel begins, the EV driver will estimate whether the vehicle can com-
plete the trip without charging, and whether the remaining battery SOC at destination D is
more than the threshold specified by the automaker based on the current traffic conditions. If
so, the EV need not be charged en route, and the corresponding travel cost consists of the
route travel time TT,; and the route energy consumption EC,; between the OD pair. If not,
the EV has a demand of en-route charging. The route covering at least one charging station
will be selected, and the EV driver will estimate whether the vehicle can arrive at the charging
station with acceptable SOC left (i.e., more than the SOC threshold). If so, the selected route
will be regarded as the usable route for EVs with charging demand, and the corresponding
travel cost consists of the route travel time TT,, and the route energy consumption EC,,
between the origin O and the charging station C, the route travel time T7T,; and the route
energy consumption EC,; between the charging station C and the destination D, as well as the
charging time CT at the charging station C. If not, the selected route will be deleted from the
usable route set of EVs with charging demand, and another search for usable route will be con-
ducted until all the usable routes are selected. The following subsections describe the distribu-
tions of these cost components in degradable transportation network.

Link travel time. Among the degradable transportation network research, the study of Lo
and Tung [16] is the most representative, and the link travel time distribution model proposed
by them is also the most classical and most widely used model. Since this study is illustrative
only, we conduct our study based on the work of predecessors. For sake of completeness, some
of the results on link travel time distributions as derived in Lo and Tung [16] are restated as
follows.

The bureau of public roads (BPR) link performance function is adopted in this study.

6o =1+ 5(2) | )

a

where f3,n are the deterministic parameters. As capacity C, is a random variable, so is link
travel time T,,.
Then the mean and variance of T, can be written as:

bty =5+ pee| (%) | = -+ pn (L) @)

a

war(1,) = var(®) + (2 v | (2 ) | = ey svar () ()

a a
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Suppose the capacity degradable random variable C, is independent of the amount of traffic
on it, and follows a uniform distribution defined by an upper bound ¢, and a lower bound 0 ¢,
similar to the assumptions made in other previous studies (the generalization of the capacity
random variable as a function of the link flow can be found in Lo and Tung [16]). The mean

and variance of J; can be derived as the followings:
1 Ca 1 1 1— 01*?1
E - - — dcn = a4 4
@) - Lamme -z “
1 Ca 1 1 1— 91—271
E = L dC" = a 5
(@) I e ot e ey ©)

(&) ~#le) -] - ] ©

Based on Eqgs (2-6), the mean and variance of T, are, respectively:

E(T) =+ ﬂtoxﬂl_—w
R R Tr Ty

27,002 2n 1- 9172’1 1 - 9;4‘ :
var(T,) = p~(£)) x; {an(l —0,)(1—2n) [62(1 -0,)(1— ”)} } o

Since the capacity variable C, is assumed independent, the route travel time variable T;® can
thereby be expressed by summing the corresponding link travel time variables:

Ty =) 0T, ©)

a

As assumed that link capacity distributions are independent, the mean and variance of T}’
can be obtained as:

E(T¢) =) 0;E(T,) (10)

a

var(T7) = 3 87, var(T,) (1)

a

Energy consumption. In order to quantify the impact of link capacity degradation on
energy consumption for EVs and GV, it is necessary to compute the energy consumption in
link and route levels.

As introduced before, EV energy consumption is influenced by travel time significantly.
Since the link travel time is estimated by BPR link performance function based on the link traf-
fic flow, it can be concluded that the EV link energy consumption is also dependent on the
link traffic flow. Allowing for flow-dependent energy consumption, the EV link energy con-
sumption function is adopted as Eq (12) proposed by He et al. [10].

¢ = 0.108L, + 0.072T, (12)

Using Eqs (7) and (8), the mean and variance of EV link energy consumption are obtained
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as follows:

E(ef) = E(0.1081,) + E(0.072T,)

0.072°x"(1 — 01" (13)

= 0.108! 07289
0.1081, + 0.072¢" + 1= 0)0—n)

var(ef) = var(0.1081,) + 0.072*var(T,)

2 ,0\2..2n 1-— 93172" 1- Hiin ’ (14)
= 00055 (%) = {zzna —0)(1—2m) " [E:(l —0)(1- nﬂ }

On the other hand, based on the vehicle fuel consumption factor model estimated by Yao
and Song [27], the GV link energy consumption ¢ is calculated as the followings:

1.276 x 10°
EFS = =20 X 27 4 5008 (15)
¢ = EFS x L (16)
“ « 7 100

where the average vehicle speed v, is expressed as:

60!
= a 1

a

Therefore, the mean and variance of GV link energy consumption are, respectively:

. 5.2081, 1.276T,
Eel) =E(~150" ) TE(— g

(18)

0.0213(1 — 6"

—0. 02134) + Brix) -

0.05301, 4+ 0.0213£" + Bt'x" o(1—0)(1—n)

1.276T
var(eS) = 0.0530%var(L,) + W( 67(? )
) ) (19)
( 1_ -2 1—0" ’
= 0.000452° (£2) 2" v - [
0.0004524°(£)) " {an(l —0,)(1—2n) [cz(l = 0,)(1 - ”>]
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Similar to the calculation of route travel time distributions, the mean and variance of route

: ,E .G . .
energy consumption e;", ¢, for two types of vehicles are written as:

E(eF) = ) SrE(e) (20)
aEM;s'E

var(eft) = Z " var(el) (21)

rs.E
uEMk

E(ef) = ) OnE() (22)

5,G

aEMk

var(ef%) =) O var(ef) (23)

r5,G
aEMk

Moreover, it should be noted that we have adopted the over-simplified energy consumption
functions to estimate the vehicle energy consumption for EVs and GVs. The reasons are as fol-
lows. First, a series of findings have been published in the international journals [3, 25, 27, 28]
about the vehicle energy consumption estimation. In this paper, the energy consumption
model establishment is not the focus of this study. Second, the energy consumption functions
adopted in this study have considered the impact of link traffic flow on link energy consump-
tion, and have the simple function form, thus it is easy and convenient to calculate the mean
and variance of link energy consumption. As described above, the mean and variance of link
energy consumption are based on the integral of the probability density function of link capac-
ity, once the form of link energy consumption is too complicated, the corresponding mean
and variance are hard to be obtained. Third, the above models adopted in this paper have been
published in the leading journals in the field of transportation, the feasibility and applicability
of these two models have been verified by the peers.

Charging time. The SOC, which is an indicator of the amount of usable battery energy, is
the criterion for an EV driver to decide whether or not to charge his/her vehicle. And the SOC
before charging can be obtained from Eq (24).

SE 1000
§S=s,— ekQXTU % 100% (24)

where Q is the nominal capacity of battery, Ah, and U is the battery voltage, V. These variables
are usually viewed as known constants in practice.
Thus, the charging time that an EV needs to wait for being fully charged is:

;= T,(1-5) (25)
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Similar to the calculation of route travel time distributions, the mean and variance of EV
charging time are listed as follows:

e x 1000

1000T,
E(TS) = TOE(1—80+ )= 1,0 - 5) + 20T §= 5o pen) (26)

QxU QxU vl
. ) e’ x 1000\ T2 x 10° s .
var(T}) = Tyvar( 1 -8, + QxU = Q x U? Z axvar(e,) (27)

aEMk

Generalized route travel cost

Based on the above distributions of travel cost components, the generalized route travel costs
for EVs and GVs can be written as:

C¥ = o7 + 1T + e 28)
Ce = aly + 7,e¢ (29)

And their mean and standard deviation are, respectively:

E(CE") = o[E(Ty7) + 2E(T)] + 7, (") (30)

o(CrF) = Vvar(aTy + oy Tj; + 1,65")

= JEITE + g T3 + 1,62 ) [E@TE + o T + 7,60

ovar(Ty) + o y*var(T;) + tivar(ef™) + 20y [E(TFT;) — E(T)E(T)]

+20, [E(Tyer") — B(Ty)E(er™)] + 207, [E(Tger™) — E(T)E(er™)] (31)

; 9 ; : ; 1000T,
a2var(TF) + o yvar(T%) + t2var(e)”) + 202y x 0.072 x L E s oar(T,)
‘ Q X U €M"5'E “
M

1000T,
+2u0t, % 0.072 Z orvar(T,) + 20y, x 0.072° x (;)(:(OUO Z ovar(T,)
1rs,E

1rs.E
aeM k

aEMk

E(C°) = aE(T}7) + 1,E() (32)

o(CiC) = V/var(aTp + 1,60°)

= JEGTE + o)) — 6T + o)

= \Jorvar(Ty) + tyvar (&) + 2om, [E(T7ef) — E(T7)E(e;)] (33)

1.276
= \/oc?var(T,f) + t2var(e]®) + 21, X 50 za: o wvar(T,)

In order to capture the stochastic change of generalized route travel cost due to the stochas-
tic perturbation on link capacity in degradable transportation network, based on the concept
of travel time budget (TTB), the route choice principle for EV and GV drivers can be expressed
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as follows:
bl = E(CP) + 4,0(C) i=EG (34)

According to the Central Limit Theorem, when the number of links with nonzero variance
is large enough for a route, the generalized route travel cost follows a normal distribution. As a
result, A,,, has a close relation with the probability p,, that a trip arrives within the travel cost
budget, and can be written as:

P{C" < by = E(CY) + 2,0(C)} =p,  i=EG (35)
Rearrange this equation leads to:

) i E 7s,i
P(Slck — Ck (Ck )

7s,i Sim) :pm lZE?G (36)
a(C)

where the left hand side in Eq (36) is the standard normal variate of C;”, S¢, ~N(0,1),and

the value of 1,, determined by the probability p,, influences the travel cost budget b} as in Eq
(34).

Model formulation

In this section, the modelling process is described in details. First, a reliability-based traffic
assignment model with the addition of EVs is proposed based on the route choice behavior
analysis. Then, an equivalent VI problem is formulated to depict the SUE conditions. Finally,
the solution algorithm used to solve the model is illustrated on the basis of the MSWA.

Equilibrium conditions

In this paper, it is assumed that all the travelers make their route choice decisions based on the
perceived generalized travel cost distribution. Since the multinomial logit (MNL) model exhib-
its the independence from irrelevant alternative (IIA) property, which is resulted from indepen-
dently and identically distributed (IID) assumptions inherited in using the Gumbel distributed
perception errors, the MNL model has a fatal weakness when used in degradable transportation
network equilibrium analysis. Specially, the variance of the Gumbel error term for routes whose
capacities are not degraded is obviously different from which for routes whose capacities are
degraded, i.e., these perception errors don’t follow the same Gumbel distribution. Therefore, a
nested route choice structure is employed to deal with the relatively larger perceived error dif-
ference among route alternatives through grouping routes considered to have similar percep-
tion error in hierarchies or nests. As shown in Fig 2, the routes that have or don’t have high
uncertainty (HU) are classified into the same nest respectively, leading to a two-level nested
logit (NL) route choice model: the bottom level focuses on route choice among the route set,
and further influences the top level route set choice.

Top level | |
Route set without HU Route set with HU

Bottom level | T | | T |
Route 1 Route £ Route m Route n

Fig 2. Nested route choice structure.

https://doi.org/10.1371/journal.pone.0184693.9002
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The perceived generalized route travel costs for EV and GV drivers are represented as:
Bt = b+ i=EG (37)
where £F and £ denote the error terms.

And the possibilities P*'(wk) for EV drivers and GV drivers in class m choose route k
between OD pair (r,s) follow the logit-based principle.

Py(wk) = PyI(w) - P(kw)  i=E,G (38)

where P’*'(w) is the marginal probability of route set w being chosen, and P/ (k|w) is the con-
ditional probability of route choice given that route set w is selected. In this two-level NL
choice structure, P7'(k|w) can be expressed with a MNL expression as:

i) =P = kG (39
S~ o)
leky"
And P7/(w) can be calculated by:
Py = SRV ) g (40)
Zexp 'uQVrsw

IeN,,

where N,, is the number of alternatives on top level, V'** is the natural logarithm of the
denominator (i.e., log sum term) of P*'(k|w), it is viewed as the expected maximum utility of
routes set w (i.e., K\").

Vi = ——Inz exp(—, b)) i=E,G (41)

leky,"”

Besides, the expected maximum utility between the OD pair (r,s) can be expressed as:

Vit = —Inz exp(—u, V=) i=E,G (42)

Moreover, y; and y, are the scaling parameters for bottom and top level respectively, and
can be computed as shown in Eqs (43) and (44):

T
= 43
Hy m ( )
T
07 (44)

6(C;, +Gp)

where C7, and C7;, can be viewed as the minimum generalized route travel cost of routes and
of route sets respectively. It should note that all routes at same level are assumed to have the
identical variance, because scaling each route with a different scaling factor would violate the
logit-based SUE models” assumption [29].
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On this occasion, the conditions of the stochastic user equilibrium can be characterized by
the following equations:

Q. =Q+Q:
Q=2 fu i=EG
b

frsr Prsr( )Q;'sr]m l:E,G
fr:ik\tw—ofr“>0 1:E7G
Q. >0,Q >0 i=E,G

5= DD D DD b

where Q,; is total travel demand between OD pair (r,s); Q', is the travel demand between OD
pair (r,s) for mode i (i.e., EV or GV); Q" is the travel demand between OD pair (r,s) for mode
i choosing route set w; f1., ' is traffic flow between OD pair (r,s) for mode i choosing route k

given the route set w is selected s £ s traffic flow between OD pair (r,s) for mode i choosing
route set w; and 7,, is the population proportion of class m, %.

VI formulation

Mathematically, the SUE conditions (45) can be formulated as an equivalent VI problem as fol-
lows:

rs,Ex
2.2 2 (bzzﬁw i) +ﬂiz Jun e v, ) o

rs m kEKE HU
rsE

+Z Z Z ( Ky anJrEs
b rs G* i In f i _ oy G* r5,G rs,Gox
+ZZ Z kmlw kMIw + i ng (f km\w)

rs m keKCHU

rsG

+Z Z Z( " ,,] QG Vn G V::‘G*) (fnTwG _fr;sWG*) >0

(or b7S ) is the travel cost budget of

km|w

where the variables with * is the decision variables; bgﬁw
an EV (or a GV) on route k € KX (or k € K¢*V) between OD pair (r,s) in class m, CNY.

The equivalence of the VI formulation and the SUE conditions as well as the existence of an
equilibrium solution are given by the following propositions.

Proposition 1. The VI problem(46) is equivalent to the SUE conditions(45).
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Proof. The KKT (Karush-Kuhn-Tucker) conditions of the VI problem (46) are:

1 frs LE

oot Yo fini) - In i = Vi = 0 (47)
rs,E ., rs,E ( frs,E i erE rs,E rs,E __
ok R e VI V=0 (48)
7S, 7S, TS, ]‘ f;::”(‘;"’ rs,
Sot i i) - In 20 = iy = 0 (49)
75,G 75,G ( £15,G i f”S Y 7S, C r5,G __
where Egs (47) and (48) can be rewritten as:
ﬂ:ﬂﬁlf _ brsE 7s,E rs,E
n QEW - exp( ( km\w(j;(m\w) Vwm) (51)
frs,E
mw rs,E ¢ rrsE rs,E rs,E
n Qg exp(—4, (b, (fon ) + Vi — Vb)) (52)

Combining Eq (41) with Eq (51) leads to:

frrsnfw exp( blrfsrjw k’:ﬂf ))

= 53
an%W Zexp ‘ul brsE ( )
which corresponds to the conditional probability of the NL model (Eq (39)).
Combining Eq (52) with Eq (42) leads to:
fab (Vi) 0

anE Z exp ‘uQVrsE

IEN,,

which corresponds to the marginal probability of the NL model (Eq (40)).
Similarly, Eqgs (49) and (50) can also be deduced through the above manipulations.
Therefore, it is easy to see that the proposed VI problem is equivalent to the SUE condi-
tions. This completes the proof.
Proposition 2. At least one solution of the VI problem (46) exists.
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Proof. Assume that the travel time is the strictly monotonic increasing function of the link
flow, let us set:
rs,E
1 fm\w _ Vrs.E (55)

(i) = b (i) +

1 rs,E
F(frsE) brsvlj rsE) +,u—1” fme + V;rf _ V::E (56)

2 m-<rs

1 ﬁ(rs‘G
rs,G r5,G rs,G mjw s,
F(ﬁ<m|w) = hkm\ (ﬁ(m\ ) ﬂ_I n QCW - WMG
1 m<rs

1 15,G
FUR) = Vi) + o vig — vz (58)
2 s

The derivatives of the above equations with respect to path flow variables are,

3F(f’fnfw> biﬁw(ffﬁv) 11 8V’5E biﬁw(f{;ﬁv)

%E.ﬁw (i) i 1 b}, (ﬁ'fnfw)

_ Prs.E k
8frsE #1 kr;;‘E m ( | ) afrsE

km|w km|w
rsE 75,E
mw(fm\w) 11
= (1= PyE(klw)) —Amg =+ g > 0
aﬁcmﬁ«/ 151 km\F;/

8F (frs E) abrsv]il TS, E) 1 1 8vrs,E szw (ﬁ’;ﬁv) ﬁ:;'fiw aVrrr_:,E abrsvlf TS, E)

Ot Of | mfa ) O O Ob(n) o

s, E rs,E 1 1 b” E 7s,E 7s,E rs,E(£rs,E
_ 617 ) + - + PVSTE(k‘ ) km\w(j]zcm\w) f;cm|w . P’S‘E(W) 817 i )
afrs E /12 rsV.VE m af’s afrs E m afrs E

km|w

PBEf) 11 OB, () O
00 | L1t oy o) Lo
afrx E Uy rs1;/E af afrs E

km|w

(60)

= (1 PF(w)) >0

aF(ﬁ(m‘(,) ;SG (fZSG) 1
L = (1 — PES (k| w) ) e TN 61

75,G .G ( £75,G a rs G 5,G 75,G
6F(f ) (1 _ PrS‘G(W)) abmw mw ) i 1 + PrS’G(k|W) km\w(fG;cm\w) fkm\w
afrs G m 6frs .G ,UQ r:i;/G m afrs 8f’5 G

km|w

>0 (62)

It can be easily seen that F(fi,.\, ), F(fF), (ﬂ(’;ﬁv) and F(f9) are the strictly monotone
increasing functions with respect to path flows. Moreover, since being composed of nonnega-
tive linear constraints, the feasible region of the VI problem is compact and convex. Thus, the

uniqueness of solution can be guaranteed. This completes the proof.

Solution algorithm

A number of methods can be used to solve the VI problem. Compared with optimization algo-
rithm, the heuristic solution algorithm is more practical and efficient, it can find an approximate
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suitable stepsize without evaluating the complex objective function, and finally converges to the
optimal solution through several iterations. Among the heuristic solution algorithm, the MSWA
is widely used to solve the stochastic user equilibrium problems [30-32]. This paper solves the

problem by a heuristic solution algorithm developed from the MSWA. Specific steps are as
follows:

Step 1. Initialization. Input the network characteristics and set the initial link flows x,. Mean-
while, let the iteration n = 1.

Step 2. Distribution update.

o Step 2.1: Update the means and variances of link travel time based on Eqs (7) and (8); the
means and variances of link energy consumption for EVs and GV, respectively, based on
Eqs (13), (14), (18) and (19).

o Step 2.2: Calculate the means and variances of route travel time via Eqs (10) and (11); the
means and variances of GV route energy consumption via Egs (22) and (23); the means
and variances of EV route energy consumption, including which on the routes that an EV
from the origin to the destination and on the routes that an EV from the origin to the
charging station, via Eqs (20) and (21).

« Step 2.3: Adjust the usable route set for EV drivers. If the initial usable battery energy of
an EV can meet the energy requirement, then the usable route set is the same as the GV
drivers. If not, the usable route set must cover at least one charging station, and ensure the
EV can reach the charging station also with acceptable SOC left.

« Step 2.4: Using Eqs (26) and (27), calculate the means and variances of EV charging time.
And update the generalized route travel cost budgets in class m via Eqs (30-34).

Step 3. Search Direction. According to the route choice probability formulas (Eqs (38-40) and

Eq (63) below, obtain the auxiliary flows on routesfkr:f and links x/,.

=33 DD Sk (63)

Step 4. Iteration. Update the link flows by the MSWA.

1

n+l n
(xu> _('xu) +1+2+Vl X

Step 5. Convergence Check. If the merit function F satisfies the following formulation:

\/Z ()" = (x,)")
F _ acA < 6
Swy Y (©3)

acA

then stop, where v is the convergence criterion for F; otherwise let n = n + 1, return to Step 2.
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Numerical example

In this section, a set of numerical and computational analysis results with the proposed model
are presented to illustrate the effects of considering factors, including travelers’ risk attitude
toward network uncertainty, the network degradation degree, and the penetration rate of EVs.

The Nguyen-Dupius network shown in Fig 3 is adopted as an illustrative example. It con-
sists of four OD pairs, 19 links, and 13 nodes, where nodes 5 and 10 represent the public charg-
ing stations. The link characteristics can be found in Nguyen and Dupius [33]. The free-flow
speed on all links is set as 60 km/h, and thus the link distance of each link is approximated as
its free-flow travel time. In addition, a threshold of 30% SOC is adopted in this paper accord-
ing to the suggestion by the Beijing Automotive Industry Corp (BAIC). The link performance
function (Eq (1)) is with 8 = 1, n = 4. Additional parameter values such as the value of time o =
0.478 CNY/min, electricity price 7; = 0.488 CNY/kwh, gasoline price 7, = 9.076 CNY/kg, and
charging time for a dead battery to be fully charged under fast charging mode Ty = 37.5 min
are suggested according to the general situations in Beijing, China. It should be noted that this
paper focuses on a long-term network equilibrium pattern. The inputs and outputs are all at a
mean level. For the input parameter related to the charging time at the charging station, it can
be viewed as the average charging time including the waiting or searching time and the actual
charging time. The queuing at the charging station hasn’t been taken into account in this
study.

Moreover, suppose there are three classes of travelers with different degrees of risk-aversion
on the transportation network, namely low reliability (LR), medium reliability (MR) and high
reliability (HR) travelers. And EV drivers in the same class have the equal initial battery SOC
at their origins. Based on the survey data collected by Lo et al. [5], the parameters 4,, are set
as 0.1, 0.86, 1.72, corresponding to the within budget cost reliability of 54%, 81% and 96%,
respectively. The respective population proportions of these three classes of travelers are
49.5%, 38% and 12.5%. Besides, the initial battery SOC for LR, MR and HR EV drivers are set
as 50%, 60% and 70%, respectively given the risk-aversion degrees, i.e., the lower reliability the
driver is with, the less initial battery SOC the EV has, leading to a shorter driving range.

Table 1 enumerates the travel demands for all O-D pairs and all effective paths of the exam-
ple network, where 1(1-10-19) represents that route 1 is comprised by links 1, 10, and 19.

Origin
1

/
2 13 o
Origin
e 3 6—» 09— 16—
=

i

Destination
7 11 17—
P >
Destination
12

Fig 3. The Nguyen-Dupius network.
https://doi.org/10.1371/journal.pone.0184693.g003
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Table 1. OD demands and route composition.

OD pairs (1,2) (1,3) (4,2) (4,3)

Travel demands 400 800 600 200

Routes 1(1-10-19) 1(2-5-8-12) 1(4-7-11-17) 1(4-8-12)
2(2-6-9-16-19) 2(2-6-9-15-18) 2(3-6-9-16-19) 2(4-7-11-18)
3(2-6-9-15-17) 3(2-6-14-11-18) 3(3-6-9-15-17) 3(3-5-8-12)
4(2-6-14-11-17) 4(2-5-7-11-18) 4(3-6-14-11-17) | 4(3-6-9-15-18)
5(2-5-7-11-17) 5(1-13-9-15-18) 5(3-5-7-11-17) 5(3-6-14-11-18)

(

6(1-13-9-16-19) 6

7(1-13-9-15-17)

8(1-13-14-11-17)
https://doi.org/10.1371/journal.pone.0184693.t002

1-13-14-11-18) 6(3-5-7-11-18)

In the case of maximum degradable coefficient 8, = 0.7 for all links (i.e., moderate degrada-
tion of the entire transportation network), and EV penetration rate £ = 20% (i.e., the smaller
EV market share), the convergence performance of the MSWA-based algorithm is shown in
Fig 4 and Table 2.

Based on the convergence index mentioned in Eq (65), it can be observed from Fig 4 that
the algorithm terminates at iteration 18, indicating that this solution algorithm can solve the
proposed traffic assignment problem efficiently and can be easily applied to other networks.
And the value-related change process of convergence index and link flow is shown in Table 2.

The equilibrium route flow distributions for GVs and EVs are represented in Table 3.
Moreover, the effect of travelers’ risk attitude toward network uncertainty on route choice
behavior is also studied. As Table 3 shows, there is some difference in the route choice prefer-
ence among these three types of travelers, especially for the EV drivers. For example, between
OD pair (1,2), more EV drivers with LR use the route 2 while more with MR and HR use the
route 1. Due to the less initial SOC for LR EV drivers, the initial energy cannot meet the
requirement to reach the destination without charging, thus it needs to choose a route that
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Fig 4. Convergence of the solution algorithm.

https://doi.org/10.1371/journal.pone.0184693.g004
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Table 2. Change process of convergence index and link flow.

Convergence step 1 5 10 15 20 25 30
Link flow 1 124 382 396 410 412 413 413
2 1076 818 804 790 788 787 787
3 640 445 435 444 443 443 443
4 160 355 365 356 357 357 357
5 149 377 472 436 439 438 438
6 1567 887 767 798 792 792 792
7 47 266 254 239 238 238 238
8 262 466 583 552 558 557 557
9 1567 923 783 819 810 810 810
10 85 300 333 340 342 343 343
11 87 312 300 289 290 290 290
12 262 466 583 552 558 557 557
13 40 82 63 70 69 69 69
14 40 46 46 50 51 52 52
15 754 529 421 456 448 448 448
16 812 394 362 362 362 362 362
17 103 306 305 298 296 295 295
18 738 534 417 448 442 443 443
19 897 694 695 702 704 705 705
Convergence Inf 0.06 0.02 0.01 0.00 0.00 0.00
index

https://doi.org/10.1371/journal.pone.0184693.t1003

covers charging stations. It should be noted that since the usable route sets for three types of
EV drivers are different from each other, the mean and standard deviation for generalized
route travel cost are not listed herein for lack of space. As for GV drivers, between OD pair
(1,3), more GV drivers with LR use the route 2 (a low mean but high standard deviation) while
more with MR and HR use the route 1 (a high mean but low standard deviation), indicating
that the higher degree of risk-aversion of a traveler is, the more reluctant to choose the route
with high standard deviation. Consistent with results in the previous studies (e.g., Lo et al. [5]),
some routes with high standard deviation are still used by the traveler whose degree of risk-
aversion is higher, it is reasonable in the sense that both types of routes achieve the same within
budget cost reliability and require the same travel cost budget.

Additionally, in order to investigate the impact of local network capacity degradation on
travelers’ route choice, it is assumed that maximum degradable coefficient 8, = 0.45 for link 7
and the other link capacities have not been degraded. The other parameters are the same as
those that are used above. As a result, route 5 between OD pairs (1,2), route 4 between OD
pairs (1,3), routes 1 and 5 between OD pairs (4,2), and routes 2 and 6 between OD pairs (4,3)
are directly influenced by the link degradation. The generalized cost standard deviations of
these routes are obviously higher than which of other routes. As shown in Table 4, the route
with minimum generalized cost is most popular for GV drivers when the standard deviation
of generalized cost equals to zero. When the route has a lower mean compared with a route
with high mean and 0-standard deviation, it still can be chosen by GV drivers although its
standard deviation is over zero, such as routes 5 and 8 between OD pairs (1,2), and the choice
difference narrows with the increase of travelers’ risk-aversion degrees. Moreover, the route
with high mean and high standard deviation is least attractive among the route set, such as
route 5 between OD pairs (4,2) and route 6 between OD pairs (4,3).Similarly, compared with
EV drivers with MR and HR, the EV drivers with LR have the charging demand, hence their
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Table 3. Equilibrium route flows under entire network capacity degradation.

OD pairs | Route GVs EVs
Flow #LR | Flow # MR | Flow #HR | Generalized cost mean | Generalized cost st. dev. | Flow #LR | Flow | Flow #HR
#MR

1,2) 1 151 118 39 40.71 0.92 0 27 9
2 5 3 1 44.07 1.45 13 1 0
3 1 0 0 46.15 1.40 11 1 0
4 0 0 0 50.45 0.56 6 0 0
5 0 0 0 51.13 0.43 10 0 0
6 1 1 0 45.82 1.34 0 1 0
7 0 0 0 47.91 1.29 0 0 0
8 0 0 0 52.17 0.09 0 0 0

(1,3) 1 136 127 50 45.35 0.83 23 35 8
2 152 94 23 45.22 1.41 25 15 3
3 2 2 1 49.52 0.57 20 0 2
4 1 1 1 50.19 0.44 11 0 2
5 26 18 5 46.97 1.30 0 11 2
6 0 1 51.24 0.14 0 0 3

4,2) 1 36 60 36 47.44 0.05 0 36 12
2 179 108 21 45.81 1.41 20 7 1
3 22 14 3 47.89 1.36 16 3 1
4 0 0 0 52.18 0.45 9 0 1
5 0 0 52.85 0.26 16 0 1

(4,3) 1 78 59 19 41.69 0.71 0 12 3
2 1 1 0 46.51 0.12 0 3 1
3 0 0 0 47.08 0.76 5 1 0
4 1 0 0 46.95 1.37 3 0 0
5 0 0 0 51.24 0.46 5 0 0
6 0 0 0 51.91 0.28 8 0 0

Note: Since the usable route sets for three types of EV drivers are different from each other, the mean and standard deviation for generalized route travel
cost are not listed herein for lack of space.

https://doi.org/10.1371/journal.pone.0184693.t004

route choice is distributed among the routes with at least one charging station, and shows dif-
ferent characteristics. It is important to note that the ratios of scaling parameters between top
level and bottom level for different types of travelers lie within the 0+1 range (respectively are
0.743 (GV drivers with LR), 0.744 (GV drivers with MR), 0.744 (GV drivers with HR), 0.814
(EV drivers with LR), 0.745 (EV drivers with MR), 0.746 (EV drivers with HR)), meeting the
condition for consistency with utility maximization in the NL model, and indicating that it is
appropriate to adopt the nested modelling structure to analyze travelers’ route choice when rel-
atively larger perceived error difference among route alternatives exists.

Fig 5 summarizes the effects of EV penetration rate and maximum degradable coefficient
for the transportation network on total system travel cost budget (i.e., the amount of routes’
travel cost budgets for all users). It can be concluded that the higher the EV penetration rate is,
the lower the total system travel cost budget achieves, so is the maximum degradable coeffi-
cient. It is particularly worth mentioning here that the lowest total system travel cost budget is
not at the highest maximum degradable coefficient or the maximum EV penetration rate uni-
laterally. Instead, the total system travel cost budget achieves lowest when there is a higher EV
penetration rate and network reliability simultaneously. The reason behind this phenomenon
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Table 4. Equilibrium route flows under local network capacity degradation.

OD pairs | Route

(1,2)

(1,3)

4.2)

1
2
3
4
5
6
7
8
1
2
3
4
5
6
1
2
3
4
5
(4,3) 1
2
3
4
5
6

47
35
17
9
8
24
12
6
99
72
36
33
51
26
45
101
50
25
16
33
10
15
11
6

36
27
13
7
6
19
9
5
76
55
28
25
39
20
34
78
39
19
12

GVs EVs
Flow #LR | Flow # MR | Flow #HR | Generalized cost mean | Generalized cost st. dev. | Flow #LR | Flow | Flow #HR
#MR
12 38.34 0.00 0 7 2
9 40.61 0.00 10 7 2
4 45.69 0.00 10 4 1
2 50.62 0.00 9 0 1
2 51.24 0.22 10 0 1
6 43.13 0.00 0 5 1
3 48.22 0.00 0 3 1
2 53.15 0.00 0 0 1
25 42.52 0.00 20 27 5
18 44.84 0.00 21 17 3
9 49.77 0.00 20 2 2
8 50.39 0.22 18 2 2
13 47.36 0.00 0 13 3
7 52.29 0.00 0 1 2
11 48.11 0.22 0 12 3
26 42.90 0.00 16 19 5
13 47.99 0.00 15 11 3
6 52.92 0.00 14 2 2
4 53.54 0.22 15 0 1
8 39.38 0.00 0 6 2
2 47.25 0.22 0 3 1
4 44.81 0.00 5 3 1
3 47.13 0.00 4 2 1
1 52.06 0.00 5 0 0
1 52.68 0.22 5 0 0

Note: Since the usable route sets for three types of EV drivers are different from each other, the mean and standard deviation for generalized route travel
cost are not listed herein for lack of space.

https://doi.org/10.1371/journal.pone.0184693.t005

might be that when the transportation network is more reliable, the variation related to the
generalized route travel cost will be reduced. And when more EVs are introduced, the travel
cost related to energy consumption will decrease.

Fig 6 displays the standard deviation distribution of system travel cost under various EV
penetration rates and maximum degradable coefficients. Different from the variation pattern
of total system travel cost budget in Fig 5, the lower EV penetration rate and higher maximum
network degradable coefficient lead to the reduction for total system travel cost standard devi-
ation. Due to the usable routes for EV drivers change with the network conditions (EV pene-
tration rate and maximum degradable coefficient), the variation trend is in the form of highly
nonlinear nature. Moreover, when the reliability of transportation network is higher, the influ-
ence of EV penetration rate on system standard deviation is not obvious.

Therefore, from what has been discussed above, it would be reasonable to believe that the
widespread adoption of EVs can cut down the total system travel cost effectively only when the
transportation network is more reliable.

Furthermore, given that the energy prices for gasoline and electricity might differ greatly in
different countries or regions, both the gasoline consumption of GVs and electricity consumption
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Fig 5. Total system travel cost budget variation with EV penetration rate and maximum degradable coefficient.
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Fig 6. Standard deviation variation of system travel cost with EV penetration rate and maximum degradable
coefficient.

https://doi.org/10.1371/journal.pone.0184693.g006
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Fig 7. Total system standard coal consumption variation with EV penetration rate and maximum
degradable coefficient.

https://doi.org/10.1371/journal.pone.0184693.9007

of EV's are converted into coal equivalent consumption to verify the impacts of EV penetra-
tion rate and maximum degradable coefficient on total system energy consumption [28]. Par-
ticularly, the conversion formulas for GVs and EVs are adopted as y¢ = 1.471 x e¢ and

pE =10.326 x e£/[(1 — 6.62%) x 97%], respectively. The former formula means that 1.471kg
standard coal will be consumed to produce 1kg gasoline, and the latter formula indicates that
the energy generated by 0.326kg standard coal equals to which by 1kwh electricity. Mean-
while, 6.62% is the power line loss and 97% is the charge-discharge efficiency of EV battery.
Consequently, the total system standard coal consumption variation with EV penetration
rate and maximum degradable coefficient is exhibited in Fig 7. As shown, the total system
standard coal consumption is most affected by EV penetration rate compared to maximum
degradable coefficient. However, both the increases of EV penetration rate and maximum
degradable coefficient will decrease the total system standard coal consumption, indicating
that the popularization of EVs in large scale can save total system energy consumption signifi-
cantly. By contrast, since the increase of EV penetration rate can save more total system ener-
gy consumption (the energy efficiency of EVs is higher than GVs), the effect of improving the
reliability of transportation network is not remarkable although the total system energy con-
sumption can be reduced a little.

Fig 8 shows the EV charging demand variation with different network conditions (EV pen-
etration rate and maximum degradable coefficient). It can be seen that maximum degradable
coefficient has no significant impact on EV charging demand when EV penetration rate is at a
lower level. However, with the increase of EV penetration rate, the poor network operation
condition will result in the increase of EV charging demand. Therefore, to provide a better
charging service to the majority of the network users, it is necessary to consider both the influ-
ences of EV penetration rate and maximum degradable coefficient on EV charging demand
when locating EV charging infrastructures. Specifically, EV charging demand needs to be esti-
mated under different combinations of EV penetration rate and maximum degradable coeffi-
cient to test the serviceability of EV charging infrastructures.

PLOS ONE | https://doi.org/10.1371/journal.pone.0184693  September 8, 2017 25/29


https://doi.org/10.1371/journal.pone.0184693.g007
https://doi.org/10.1371/journal.pone.0184693

@° PLOS | ONE

Degradable network equilibrium with the addition of electric vehicles

Charging demand of EVs

2000
1800 L et T

1000 ...
5004

- 0O
12

"""" 1500

11000

05

’ .

0 1

Fig 8. EV charging demand with EV penetration rate and maximum degradable coefficient.
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Conclusions

The introduction of EVs calls for fundamental changes to the existing traffic assignment
modeling tools for accommodating urban mixed gasoline and electric vehicular flows, espe-
cially in the degradable transportation network. This paper has begun to address this issue by
presenting a reliability-based network equilibrium framework for capturing travelers’ route
choice behaviors and the induced constrains with the addition of EVs. Specifically, given the
unique energy consumption characteristics of EVs, the flow-dependent energy consumption
cost and travel time, charging demand and charging time are given fully consideration in gen-
eralized route travel cost calculation in degradable network, while only the former two are
incorporated in for GVs. The means and variances of link and route travel time are derived
firstly, and the distributions of link and route energy consumption, as well as the EV charging
time distribution are presented subsequently. Furthermore, based on a nested route choice
structure, the route travel cost budgets are viewed as the principle of travelers’ route choice,
and a reliability-based traffic assignment model with the addition of EVs is formulated. Finally,
through developing a heuristic solution algorithm from the MSWA to solve the proposed
model, the effects of travelers’ risk attitude, transportation network reliability and EV penetra-
tion rate on network performance are fully analyzed based on the example application. In the
numerical example, the ratios of scaling parameters between top level and bottom level for dif-
ferent types of travelers lie within the 0+1 range in NL model, demonstrating that it is suitable
to employ the nested modelling structure to analyze travelers’ route choice for accommodating
different uncertainty degrees of the routes with and without degradable road links. And the
equilibrium route flow distributions under different network degradation conditions reveal
that the initial SOC and energy demand will determine the usable route set for an EV driver to
reach the destination and further reshape the network traffic flow. In this study, a route with
high mean but low standard deviation is more popular among the GV drivers with higher
degree of risk-aversion. But some routes with high standard deviation are still used by the trav-
eler whose degree of risk-aversion is higher due to the same within budget cost reliability and
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the same travel cost budget. Besides, the study on impacts of EV penetration rate and maxi-
mum degradable coefficient on total system travel cost budget and system travel cost standard
deviation shows the highly nonlinear nature of these influencing factors, indicating that the
widespread adoption of EV's can cut down the total system travel cost effectively when the
transportation network is more reliable. Specifically, the total system travel cost is relatively
low (nearly lower than 6000 CNY) when the network maximum degradable coefficient is
higher than 0.9 and the EV penetration rate exceeds 70%. Meanwhile, the analysis of EV charg-
ing demand variation under different network conditions points out that it is necessary to take
EV penetration rate and network reliability into consideration when planning EV charging
infrastructures. In particularly, when the network maximum degradable coefficient is lower
than 0.7 and the EV penetration rate exceeds 45%, there will be an obvious increase of EV
charging demand.

The presented modelling method in this paper is helpful to understand travelers’ route
choice behavior in unreliable transportation network with the addition of EVs, and further
aids in the travel demand forecasting and transportation development plan evaluation.
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