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Abstract

The Hopfield model is a pioneering neural network model with associative memory retrieval.

The analytical solution of the model in mean field limit revealed that memories can be

retrieved without any error up to a finite storage capacity of O(N), where N is the system

size. Beyond the threshold, they are completely lost. Since the introduction of the Hopfield

model, the theory of neural networks has been further developed toward realistic neural net-

works using analog neurons, spiking neurons, etc. Nevertheless, those advances are based

on fully connected networks, which are inconsistent with recent experimental discovery that

the number of connections of each neuron seems to be heterogeneous, following a heavy-

tailed distribution. Motivated by this observation, we consider the Hopfield model on scale-

free networks and obtain a different pattern of associative memory retrieval from that

obtained on the fully connected network: the storage capacity becomes tremendously

enhanced but with some error in the memory retrieval, which appears as the heterogeneity

of the connections is increased. Moreover, the error rates are also obtained on several real

neural networks and are indeed similar to that on scale-free model networks.

Introduction

Human neuroscience has attracted increasing attention through various studies. Among such

activities, the retrieval or recall of associative memory in neural networks is a historically

noticeable issue [1, 2]. Associative memory means the ability to link, learn and remember the

relationship between independent and unrelated items such as one man’s name (e.g., Albert

Einstein) and his previous achievement (e.g., E =mc2). Neural network models of associative

memory have been used to explain how the brain stores and recalls long-term memories.

These models incorporate the so-called Hebbian rule for a cell assembly, a group of excitatory

neurons mutually coupled by strong synapses [3]: Memory storage occurs when a cell assem-

bly is created by Hebbian synaptic plasticity, and memory retrieval or recall occurs when

the neurons in the cell assembly are activated by a stimulus. Neural network models of associa-

tive memory assume that information exists alternatively as neural activity or as synaptic
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connections. When novel information first enters into the brain, it is encoded in a pattern of

neural activity. If this information is stored as memory, the neural activity leaves synaptic con-

nections modified. The stored information can be retrieved when the modified connections

again become active [4].

A Hopfield model was introduced in the year 1982 [5], following which there have been

enormous researches based on the premise that retrieval of associative memory occurs by way

of pattern recognition in collective excitations of associated neurons. The Hopfield model has

been thus accepted as a paradigmatic neural network model for associative memory retrieval.

A Hopfield network is composed of Ising-type neurons with two discrete states, that is, an

excitation pattern of each neuron is in a state either +1 or −1, representing excited and rest

states for transmitting or not transmitting a signal, respectively. Each neuron is supposed to be

connected to all other neurons and then the synaptic weight is updated by the Hebbian rule.

An associative memory was introduced as an activity pattern by collective excitations of the

associated neurons. A simple example of excitation updated by the Hebbian rule is presented

in Section 1 of the supporting information (S1 File).

In this model study, a mathematical quantity called energywas introduced to each memory

pattern. This quantity decreases as the retrieval activity proceeeds until the system reaches a

stable state, at which the retrieved pattern is consistent to a stored pattern. We will show why

such behavior occurs in the Hopfield model in Section 2 of the S1 File. This behavior is similar

to the dynamic process of a thermodynamic system toward an equilibrium state, at which a

free energy becomes minimum.

In associative neural networks, the number of patterns that can be stored in synaptic con-

nections is a central quantity to calibrate their performance. The maximal number of patterns

that can be stored before having total confusion divided by the total number of neurons in the

network is called the storage capacity of the network. If the cell assemblies share no neurons in

common, the number of patterns that can be stored is as many as the total number of neurons

in the network. If the cell assemblies share some neurons, however, interference may occur

among those cell assemblies. If too many patterns are stored in the network, the stored patterns

can be interfered and the quality of memory recall can be lowered. Therefore, interference

effect induces errors in memory retrieval and reduces the retrievability [4]. Furthermore, sto-

chastic processes in any real network system can occur. We thus consider a temperature T,

which is not to be understood as a physical temperature, but as a noise strength for the stochas-

tic process. In the limit of zero temperature (T = 0), the deterministic model is recovered. The

Hopfield model treated such noise effect in terms of temperature, and invoke the formalism of

Boltzmann statistical mechanics to obtain various properties of the retrievability as a function

of both the number of stored patterns and temperature, i.e., noise strength. Amit et al. calcu-

lated the storage capacity of the Hopfield model on a fully connected network at finite temper-

ature using a method in statistical physics [6, 7].

Recent experimental results using the functional magnetic resonance imaging (fMRI) tech-

nique have revealed that functional neural networks in resting state are not fully connected

networks but the number of connections of each coarse-grained neuron are heterogeneous fol-

lowing a heavy-tailed distribution [8, 9]. For further discussion, the number of connections of

a neuron is referred to as degree using a term in graph theory. Even though it is not clear yet

how functional connections of an individual neuron is related to its anatomical connections, it

becomes more acceptable that neurons with similar patterns of connection tend to exhibit sim-

ilar functions [8]. This suggests that neural networks need not necessarily be a fully connected

network. Indeed, there exists supporting evidences: a structural neural network of the worm

Caenorhabditis elegans has a power-law tail in the degree distribution [10]. Mathematically,

this is expressed as Pd(k) * k−γ, where Pd(k) is the degree distribution, k denotes degree and γ

Enhanced storage capacity with errors in scale-free Hopfield neural networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0184683 October 27, 2017 2 / 12

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0184683


is the degree exponent. Such networks are referred to as scale-free (SF) networks. Recent

electrophysiological data [11] also revealed that the distribution of synaptic connections

strength follows a log-normal distribution, which has a heavy tail similar to that in the power-

law distribution. Moreover, it is known that the brain damages of schizophrenia [12, 13] or

comatose patients [14] are caused by the malfunctioning of hub neurons. Thus, hub neurons

that have many connections is likely to exist in a brain network.

This paper aims to investigate the properties of the retrieval patterns created by the Hop-

field model on SF networks at finite temperature analytically. We also compare obtained

results with previous numerical results obtained from fully connected networks and diverse SF

networks such as the Barabási-Albert model with γ = 3 [15] and the Molloy-Reed model with

several values of γ [16]. We also use the Chung-Lu model [17, 18] to construct uncorrelated SF

networks over the entire range of γ. The details of the Chung-Lu model are presented in the

Method section. Particularly we consider the limit γ! 2, which is the case observed in the

fMRI data [19–21].

The main results of our studies are presented in Figs 1 and 2. In Fig 1, we present properties

of the retrieval pattern for various degree exponents γ as a fuction of temperature T and stor-

age rate a. When γ< 2.04 (Fig 1(e) and 1(f)), the retrieval phase spans most of the low-temper-

ature (noise) region; thus memory retrieval in the system is appreciably enhanced compared

with the one of the original Hopfield model [6, 7]. In Fig 2, the error rate, a fraction of neurons

which fails memory retrieval, is obtained as a function of storage rate a� p/N, the number of

stored patterns per neuron, at zero temperature T = 0. Remarkably when γ = 2.01, the error

rate is almost zero when the number of stored patterns p is small, and gradually increases but

is less than 0.3 even when p is increased to the total number of neurons N. This implies that

the storage capacity becomes tremendously enhanced as the SF network becomes extremely

heterogeneous in structure, but there occur some errors. We remark that the previous solution

of the Hopfield model on fully connected networks [6, 7] revealed that the error rate is zero up

to a certain threshold, but beyond which it becomes one-half and the system falls into a total

confusion state. Based on these results, we think that the solution of the Hopfield model on SF

networks reflects more a normal brain in the point that it provides the case of imperfect mem-

ory retrieval with some error even when its storage capacity is small. Moreover, the result is

timely in accord with a recent experimental discovery that storage capacity of brain is in the

petabyte range, as much as entire web, ten times more than previously thought [22]. We hope

that our result will provide some theoretical development for modeling associative memory

networks in neuroscience.

Results

Model development

Hopfield model on a given network. In the Hopfield model, each neuron at node i of a

given neural network (denoted as G) has an Ising spin Si with two states, Si = +1 and Si = −1

representing excited and rest states for transmitting or not transmitting a signal, respectively

[5]. The Hamiltonian (corresponding to energy of the system) is introduced as

H ¼ �
X

ði;jÞ2G

JijSiSj; ð1Þ

where the coupling strength Jij between two connected nodes (i, j) 2 G, known as the synapse
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Fig 1. Phase diagram of the Hopfield model in the plane of (T, a). Here T and a denote temperature and storage rate, respectively.

Degree exponent γ is infinity in a, 5.0 in b, 4.0 in c, 3.0 in d, 2.04 in e, and 2.01 in f. P represents the paramagnetic phase, in which m = 0,

q = 0, and r = 0 because of thermal fluctuations. Here, m, q, and r are given by Eqs (29-31) of the S1 File, respectively. SG does the spin-

glass phase, in which m = 0, q > 0, and r > 0. In the P and SG phases, the retrieval of stored patterns is impossible. Thus, they are often

referred to as the confusion phase. The retrieval phase is denoted as R, in which m > 0, q > 0, and r > 0. The retrieval of stored memory is

possible. Finally, M does the mixed phase, in which the features of both the retrieval and the spin-glass phases coexist. As the degree

exponent γ is decreased from infinity in a through γ = 2.01 in f, the retrieval phase not only intrudes into the region of the SG phase, but also

raises the boundary of the phase P to a higher temperature region. Eventually the SG phase remains on the T = 0 axis when γ = γc’ 2.04, in

which the phase R spans most of the low-temperature region. Thus, memory retrieval is enhanced. The phase boundary was obtained by

performing numerical calculations for the Chung-Lu SF networks with the system size N = 1000 and mean degree K = 5.0. Solid and dotted

lines or curves indicate the second-order and first-order transitions, respectively. We note that the case a on ER network is nearly the same

as that in mean field limit obtained in the original Hopfield model.

https://doi.org/10.1371/journal.pone.0184683.g001
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efficacy, takes the Hebbian form,

Jij ¼
1

K

Xp

m¼1

x
m

i x
m

j : ð2Þ

K is the mean degree, i.e., the average number of edges of the network G of size N. x
m

i is another

quantity assigned to node i, which also has either +1 or −1. A collective quantity fx
m

i g repre-

sents a memory pattern denoted by μ that is stored in the system. The index μ runs μ = 1, . . .,

p, which means that the number of memory patterns stored is p. Whereas x
m

i is fixed through-

out the dynamics. Starting from some initial values of {Si(t = 0)}, the state of each spin is

updated asynchronously as

Siðt þ 1Þ ¼ sgn
X

j

JijSjðtÞ

 !

: ð3Þ

When ∑j JijSj(t) becomes zero, Si(t + 1) = +1 is assigned definitely.

Fig 2. Conceptual figures of the storage capacities and the error rates. a for an ER random network and c for a SF network. b and d

Plot of the error rate ne� (1 −m)/2 vs storage rate a for several γ values of the Chung-Lu model at T = 0. Here, numerical values are

obtained using N = 1000 and K = 5.0. The dotted lines for γ� 2.0 indicate the sudden jumps from small error rates to the state of ne = 0.5. (a

and c, Figure courtesy of Joonwon Lee.)

https://doi.org/10.1371/journal.pone.0184683.g002
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As the updating is repeated, the energy given by (1) reduces and the system reaches a local

minumum state. In this state, each spin Si becomes equivalent to x
m

i for a given pattern μ, and

the stored memory is retrieved. The underlying mechanism for such converging behavior is

explained in Section 2 of the S1 File. In real-world systems, however, the repeated dynamics

may not be deterministic as Eq 3, but it may include some noise. To take into account of noise

effect, the original study [6] of Hopfield model invoked the formalism developed in equilib-

rium statistical mechanics at finite temperature, in which temperature represents noise

strength.

Ensemble average of the Hopfield model over different network configurations and

stored patterns. Thus far, we consider the Hopfield model on a given network. However,

connection profiles of SF networks can be different from sample to sample even though they

follow the same degree distribution. Thus, we need to take average of physical quantities over

the ensemble of different network configurations. To proceed, we consider the probability that

a given SF network G exists in the ensemble. That is given as

PKðGÞ ¼
Y

ði;jÞ2G

fij
Y

ði;jÞ=2G
ð1 � fijÞ; ð4Þ

where fij is the probability to connect a link between two nodes i and j. It was derived that

fij = 1 − exp(−NKwiwj) [17, 18]. The factor wi is a weight of node i reflecting heterogeneous

degrees of a SF network. The explicit form of the weight factor is presented in the Method sec-

tion. Then the ensemble average over different networks for any given physical quantity A is

taken as

hAiK ¼
X

G

PKðGÞAðGÞ; ð5Þ

where h� � �iK denotes the average over different graph configurations. A(G) represents any

physical quantity obtained in a graph G.

Next, we consider a situation in which stored patterns are not deterministic, but stochasti-

cally generated. This case is considered for the purpose of testing the efficiency of the algori-

tumc. Specifically, each pattern μ is created with the population of x
m

i ¼ 1 with probability 1/2

and that of x
m

i ¼ � 1 with probability 1/2 for each node i. Then, the probability that a pattern μ
is created is given as

Pðfxm

i gÞ ¼
YN

i¼1

1

2
dðx

m

i � 1Þ þ
1

2
dðx

m

i þ 1Þ

� �

: ð6Þ

We take the average of any given physical quantity A over the ensemble of different stored

patterns as

hAi
x
¼

Z

dx
m

i Pðfx
m

i gÞAðfx
m

i gÞ; ð7Þ

where h� � �iξ is an average over the quenched disorder of x
m

i .

Analytic solutions

The order parameters. We characterize the phases of the Hopfield model by three quanti-

ties, which are often called the order parameters in statistical physics as follows: i) The overlap

parameter defined asmm
a
�
PN

i wihx
m

i S
a
i i, which represents the extent of which the μ-th pattern

of memory ξμ and the α-th state of the system Sα overlap with each other. Thus, this quantity
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measures the retrieval success rate of the μ-th memory. We remark that the factor wi is

required to take into account heterogeneous degrees. wi is proportional to the degree ki of neu-

ron i [23–26]. Actually this weight wi is the same as that used in the Chung-Lu model intro-

duced in Methods. ii) The so-called spin glass order parameter qab �
PN

i wihSa
i S

b
i i

representing the extent of which the two states α and β of the replica overlap each other. The

replica is a quantity introduced in the spin-glass theory to resolve the technical difficulties in

taking the ensemble average h� � �iK and h� � �iξ introduced in Eqs (5) and (7). iii) A new quantity

is introduced as rab � ðN=pÞ
Pp

m¼2
mm

a
mm

b. This quantity is necessary to derive the first two

order parameters, and is interpreted as the sum of the effects of each non-retrieval pattern.

Next, we take the replica-symmetric solution by setting qαβ = q and rαβ = r for all α 6¼ β and

m1
a
¼ m for all α. Then the order parametersm, q and r at zero temperature are obtained as

m ¼
XN

i¼1

wi erf
ffiffiffiffiffiffiffiffi
Nwi

2ar

r

m

 !

ð8Þ

q ¼ 1 �
1

NK

XN

i¼1

ffiffiffiffiffiffiffiffiffiffi
2Nwi

par

r

exp �
Nwi

2ar
m2

� �

ð9Þ

r ¼
q

ð1 � K þ KqÞ2
; ð10Þ

which are used for obtaining the error rate. Here, storage rate a is defined as the number of

existing memory patterns p divided by the total number of neurons in a given network, i.e., the

network size N. Therefore, the storage capacity ac is the maximum value of storage rate a.

Detailed calculations for those parameters are presented in Section 4 of the S1 File.

Phase diagram and error rates. The phase diagram we obtained are shown in Fig 1 in

the T − a plane for different degree exponents γ but with fixed N = 1000 and K = 5.0. First, in

Fig 1(a), we consider the case of the Erdős and Rényi (ER) network, equivalent to the limit

γ!1. This phase diagram is nearly the same as that obtained on fully connected network in

Ref. [7]. There exist four different phases: i) The paramagnetic phase denoted as P, in which

m = 0, q = 0, and r = 0 because of thermal fluctuations. ii) The spin-glass phase denoted as SG,

in whichm = 0, q> 0, and r> 0. In those phases P and SG, the retrieval of stored patterns is

impossible. Thus, they are referred to as the confusion phases. iii) The retrieval phase denoted

as R, in whichm> 0, q> 0, and r> 0, and in which the retrieval of stored memory is possible.

Finally, the mixed phase denoted as M, in which the properties of both the retrieval and the

spin-glass phases coexist.

The free energy of the system in each phase has also been investigated in Ref. [7]. In phase

R, a stored pattern, for instance, fx
m

i gi is matched to a state of the system fSa
i gi at the global

minimum of free energy. However, in phase M, a stored pattern is matched to a state of the

system in a metastable state, while the SG state lies at the global minimum.

For a = 0, which occurs when p � OðNÞ in the limit N!1, there exist two phases, P and

R. As a is increased slightly from a = 0, the SG and M phases appear between the phases P and

R. The transition between the P and the SG phases is a second-order transition, whereas that

between SG and M is a first-order transition. Likewise, the transition between M and R is also

first order. At T = 0, the transition between R and M occurs at am’ 0.114, and the transition

between M and SG occurs at ac’ 0.143. Therefore, as temperature is lowered from a suffi-

ciently high value, successive transitions occur following the steps P! SG!M! R for

Enhanced storage capacity with errors in scale-free Hopfield neural networks
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a< am. For am< a< ac, successive transitions occur following the steps P! SG!M, and

for a> ac, a transition from P! SG occurs.

Second, we obtain the phase diagram for finite γ values in Fig 1(b)–1(e). That undergoes

drastic changes depending on γ. Remarkably, the R phase intrudes into the region of the SG

phase, but it also raises the boundary of the P phase to a higher-temperature region. As γ
approaches 2.04 in Fig 1(e), we observe that the R phase prevails, whereas the SG phase shrinks

until it only exists at T = 0 in the region a> 0.6. Such changes in the T − a diagrams can be

understood analytically by examining the phase boundary between the P and SG phases. The

details are presented in Section 5 of the S1 File.

Third, we consider a particular case, the noiseless case T = 0 in Fig 2. The order parameters

m, q and r are given in Eqs (8–10). The figures show the behavior of the error rates ne as a func-

tion of a with N = 1000 and K = 5.0. The error rate means the relative error of the neural net-

works and is defined as ne� (1 −m)/2. This figure is obtained analytically for various degree

exponent values including γ’ 2.0. We first consider the case in which γ!1, i.e., the ER

limit. The result of this case is almost the same as that obtained in Ref. [7]. When a is less than

ac’ 0.143, ne is very small, such that the error rate is negligible and the system is almost in the

error-free state. The obtained value ac is close to ac’ 0.138, which was obtained on the fully

connected network in Ref. [7]. As a reaches ac, ne suddenly jumps to 0.5 as shown in Fig 2(b).

This means that for a> ac, the system is in the error-full state (i.e., the state of complete confu-

sion). As γ decreases, this behavior persists up to γc’ 2.7, and no longer holds for γ� γc. Note

that the value of ac slightly decreases with decreasing γ, but their dependences are almost

negligible.

Next, when γ approaches 2.0, ne noticeably changes from the step-function-like shape to a

monotonously increasing one as shown in Fig 2(d). As γ is lowered further and approaches

2.0, the range of a for the state of complete confusion, with ne = 0.5, disappears and ac cannot

be defined anymore. For instance, at γ = 2.01, the error rate becomes less than 0.3 for the entire

range of a. Therefore, when γ is lowered to as small as 2.0, while the range of a for the state of

ne = 0 (the state of perfect retrieval without error) is reduced, the range of a for the state of

ne = 0.5, the region of the state of complete confusion disappears. The details are presented in

Section 6 of the S1 File. These behaviors have never been observed yet in previous studies [15,

16, 27]. Fig 2 thus implies that as the network changes from the ER network to the extremely

heterogeneous SF network with degree exponent two, the storage capacity becomes tremen-

dously enhanced, but some error occurs. This result suggests that hubs play central roles in

memory retrieval.

Conclusion and discussion

We obtained the results that as the network changes from a hub-absent network to a SF net-

work with degree exponent just above two, the storage capacity becomes tremendously

enhanced, but some error occurs. These features seem to be in accordance with what we expe-

rience in everyday life and with a recent discovery of enormously high storage capability in the

human brain. Thus hubs, i.e., neurons with a large number of synapses, and other nodes with

heterogeneous degrees in neural networks play a central role in enhancing the storage capacity.

It is interesting that a normal human brain has such a structure, even though detailed struc-

tural properties such as modularity and degree correlation are not yet known. We consider the

effect of degree correlation near γ = 2.0 by performing a similar analysis of the static model

[23–26], the degree correlation of which is disassortative between 2< γ< 3. We find that cor-

related SF networks near γ = 2.0+ have lower values of ne than the uncorrelated ones. The

details are presented in Section 8 of the S1 File. We also checked the error rate ne on several

Enhanced storage capacity with errors in scale-free Hopfield neural networks
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real neural networks, having heavy-tailed degree distributions but with undetermined degree

exponents due to the small network size. The obtained patterns of the error rates are indeed

similar to the theoretical prediction. The details are presented in Section 9 of the S1 File.

Our results might provide some guidelines for constructing an artificial neural network,

provided that it is constructed on the basis of the Hopfield model: If we want to construct an

artificial neural network that is capable of perfect memory recall with a large value of ac, as a

basic topology of the artificial neural network, it may be more appropriate to choose an ER-

type random network or a fully connected one. However, if we prefer to construct an artificial

neural network that supports an extended range of storage rate and tolerate a small range of

errors, it may be more appropriate to choose an SF-type network with the degree exponent γ
’ 2.0. In this case, we can construct an artificial neural network with relatively low cost com-

pared with a fully-connected one which needs very many synapses of O(N2).

Methods

Construction of scale-free networks

To construct uncorrelated SF networks, we use the Chung-Lu (CL) model [17, 18]: We start

with a fixed number of N vertices. Each vertex i (i = 1, 2, . . ., N) is assigned a weight

wi ¼
ðiþ i0 � 1Þ

� n

PN
j¼1
ðjþ i0 � 1Þ

� n
; ð11Þ

where ν is a control parameter in the range [0, 1), and i0 is constant given by

i0 ¼
½10

ffiffiffi
2
p
ð1 � nÞ�

1=nN1� 1=2n ð1=2 < n < 1Þ;

1 ð0 � n < 1=2Þ:

8
<

:
ð12Þ

A pair of vertices (i, j) is chosen with the probabilities wi and wj, respectively, and they are

connected with an edge, unless the pair is already connected. This process is repeated NK/2

times. Then, the resulting network becomes an uncorrelated SF network following a power-law

degree distribution, Pd(k) * k−γ, where k denotes the degree and γ is the degree exponent with

γ = 1 + 1/ν. In such random networks, the probability that a given pair of vertices (i, j) (i 6¼ j) is

not connected by an edge, as denoted by 1 − fij, is given by (1 − 2wiwj)NK/2’ exp(−NKwiwj),
while the connection probability fij = 1 − exp(−NKwiwj).

As a particular case, when we choose i0 as 1 for all the values of ν, the CL model reduces to

the static model [23–26], which has correlations for the range of 1/2 < ν< 1 [23, 24]. There-

fore, the weights for the static model are given by

wi ¼
i� n

zNðnÞ
ð13Þ

where ν is a control parameter in the range [0, 1), and zNðnÞ �
PN

j¼1
j� n ’ N1� n=ð1 � nÞ. Note

that fij’ NKwiwj for finite K, however, fij’ 1 for 2< γ< 3 and ij� N3−γ.

For the Erdős-Rényi (ER) graph [28–30], ν becomes 0 and the weights of both models

become wi = 1/N, independent of the index i. Since wiwj = 1/N2, the fraction of bonds present

becomes fij’ K/N and the total number of the connected edges L is NK/2. So K becomes the

mean degree in the ER graph.

When K approaches N, this network becomes a fully-connected one or a regular lattice with

infinite-range interaction. Note that previous studies on the Hopfield model focused mainly

on such extreme cases of K! N [2, 6, 7, 31, 32].
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Supporting information

S1 File. Supporting information for the main paper. This supporting information contains

the detailed calculations of the free energy and order parameters using the replica analysis.

(PDF)

S1 Fig. A simple example of simulation of the Hopfield model. (a) A network of size N = 9

and mean degree K ¼ 5

3
. (b) Two patterns ξ1 and ξ2 are encoded by the Hebbian rule. In (c)

and (d), we start from two random patterns. After some updates using Eq (1) of the S1 File, the

patterns ξ1 and ξ2 are retrieved.

(EPS)

S2 Fig. Phase diagrams shown in Fig 1 of the main paper are redrawn with the Almeida-

Thouless(AT) line (Eq (32) of the S1 File). Note that the dotted black line near zero tempera-

ture in each panel represents the AT line. Thus, we check that the replica-symmetric solution

is valid over almost the entire region in the plane of (T, a).

(EPS)

S3 Fig. Phase diagrams of the Hopfield model in the plane of (T, N) on the Chung-Lu

model of SF networks with (a) γ = 5.00 and (b) γ = 3.00. Here, a is fixed as 0.1.

(EPS)

S4 Fig. Phase diagrams of the Hopfield model in the plane of (T, a) on the static model of

SF networks with (a) γ = 2.35 and (b) γ = 2.01. Those phase diagrams correspond to Fig 1(e)

and 1(f) of the main paper for the CL model, respectively. P represents paramagnetic phase,

SG spin glass phase, and R retrieval phase. The SG phase remains only on the axis T = 0 when

γ = γc’ 2.35, then the R phase spans the entire region of a at the lower temperatures. Thus,

the static model shows better memory retrieval than the CL model. To obtain the phase

boundary, numerical calculations were performed for the static model with plugging N = 1000

and K = 5.0 into the formulas. Solid and dotted curves indicate the second-order and the first-

order transitions, respectively. Note that black dotted line in each panel near the T = 0 line rep-

resents the AT line (Eq (32) of the S1 File). Thus, replica-symmetric solution is valid over

almost the entire region of the phase space.

(EPS)

S5 Fig. Plot of the error rate ne� (1 −m)/2 vs storage rate a for γ = 2.01 and 2.35 for the

static model at T = 0, which corresponds to Fig 2(b) of the main paper for the CL model.

Here, numerical values are obtained using N = 1000 and K = 5.0.

(EPS)

S6 Fig. Plot of the error rate ne vs storage rate a for (a) γ = 2.01 and (b) γ = 2.04 for the CL

and the static model at T = 0. These figures provide the comparison of the error rate between

for the CL model and for the static model. Here, numerical values are obtained using N = 1000

and K = 5.0.

(EPS)

S7 Fig. Plots of the number of neurons (nodes) with degree larger than k vs degree k of the

real neural networks (left column) and of their error rates ne vs storage rate a (right column):

(a) and (b) for the visual cortex network of macaque monkey, with N = 30 and L = 311. (c) and

(d) for the corticocortical connectivity network in the visual and sensorimotor area of

macaque monkey, with N = 47 and L = 505. (e) and (f) for the cortex network of cat, with

N = 52 and L = 818. The red lines of (a), (c) and (e) are guidelines with slope −1 for eye drawn

to compare the data points with the scale-freeness of γ = 2.0. The red curves of (b), (d) and (f)

Enhanced storage capacity with errors in scale-free Hopfield neural networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0184683 October 27, 2017 10 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0184683.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0184683.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0184683.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0184683.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0184683.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0184683.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0184683.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0184683.s008
https://doi.org/10.1371/journal.pone.0184683


are drawn to compare the simulation data (•) with the analytic solution (red curve) using Eq

(40) of the S1 File under the same conditions of N and L. Here, the γ values we used for wi in

Eq (40) of the S1 File were 2.0035 (b), 2.0050 (d), and 2.0035 (f), respectively.

(EPS)

S1 Data Set. Supporting information for the “S7 Fig”. This is another supporting informa-

tion which contains the data set necessary to replicate the “S7 Fig”.

(XLS)
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