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Abstract

Observing human motion in natural everyday environments (such as the home), has evoked

a growing interest in the development of on-body wearable sensing technology. However,

wearable sensors suffer from motion artefacts introduced by the non-rigid attachment of

sensors to the body, and the prevailing view is that it is necessary to eliminate these arte-

facts. This paper presents findings that suggest that these artefacts can, in fact, be used to

distinguish between similar motions, by exploiting additional information provided by the fab-

ric motion. An experimental study is presented whereby factors of both the motion and the

properties of the fabric are analysed in the context of motion similarity. It is seen that while

standard rigidly attached sensors have difficultly in distinguishing between similar motions,

sensors mounted onto fabric exhibit significant differences (p < 0.01). An evaluation of the

physical properties of the fabric shows that the stiffness of the material plays a role in this,

with a trade-off between additional information and extraneous motion. This effect is evalu-

ated in an online motion classification task, and the use of fabric-mounted sensors demon-

strates an increase in prediction accuracy over rigidly attached sensors.

Introduction

Advances in the manufacture of microelectromechanical systems (MEMS) has enabled the

development of very small form factor inertial sensors, such as accelerometers or gyroscopes

[1]. These sensors are sufficiently compact and lightweight (commercial IMUs are millimetres

in diameter [2]), to allow for the creation of small measurement systems for monitoring bodily

movement, while minimising both physical and visual invasiveness. In comparison to labora-

tory motion tracking equipment (e.g., cameras or high-accuracy IMUs [3]), these small sensors

are very inexpensive [4], ranging between $10 to $200. These facts combined have sparked

considerable interest in their use in ‘smart clothing’ (e-textiles), whereby MEMS sensors are

mounted onto a fabric substrate, such as clothing, for unobtrusive measurement of behaviour

[5]. By placing sensors within items of clothing, data can be collected in natural non-clinical

environments, such as the home. This provides a sensing platform suitable to long-term data

collection studies (e.g., studies lasting periods of weeks or even months). Applications can

include the detection and monitoring of movement disorders, for example essential tremor

(exhibited by approximately 5% of those over 65 years old [6]), or the progression of
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neurological disorders such as Parkinson’s Disease (PD) [7]. With the increasing life expec-

tancy rate in developed countries, wearable sensing systems have the promise to provide quan-

titative movement data for use in the rehabilitation of patients [8], or the detection of disease

specific conditions [9]. As these sensors are inexpensive and non-invasive, they can also be

used to collect data prior to a diagnosis. For example, in the clinical setting, people ‘at-risk’ of a

particular disorder can, by wearing these systems, provide a continuous stream of healthcare

progression and recovery data to a clinician, which can be used to both understand disorder

progress and provide an early warning.

All wearable sensor systems designed for non-invasive use, whether worn in clothing,

strapped to the wearer, or otherwise adhered, suffer from non-rigid attachment to the body.

Fabric-mounted motion sensors are especially prone to reduced accuracy due to movement of

the clothing by external forces (e.g., vibrations, air resistance), compromising their effective-

ness for activity recognition and monitoring [10]. The predominant way in which this is dealt

with, is to attempt to eliminate motion artefacts by: (i) minimising sensor motion with respect

to the body (e.g., through use of tight clothing [11], or placing sensors in locations affected

minimally by body motion [12]), and (ii) applying, for example, de-noising techniques from

signal processing [13] or statistical machine learning [14].

However, this precludes the possibility that the motion of the fabric itself may also contain
valuable information about the wearer’s body motion. Fabric exhibits features which may, in

fact, help in classifying wearer motions, including an increased range of motion and a deform-

able structure that allows for multi-directional movement, see Fig 1. In the performing arts,

this is implicitly exploited for choreographed dance routines: Loose and free-flowing garments

are used to exaggerate, emphasise, and express motions to a much larger degree than is possi-

ble solely with the human body [15]. Low stiffness materials such as nylon are often used to

Fig 1. Effects of motion on fabric. The soft, deformable structure of the fabric allows for an increased range of motion A, B, as seen in LED trails from

the top C, and side D of the fabric. Difference in motion signals in a comparison task E where motion sensors are located on both a rigid base, and loosely

attached to the base via fabric (note the different vertical scales).

https://doi.org/10.1371/journal.pone.0184642.g001
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create a “floating” effect around a dancer, while stiffer fabrics such as jersey grip the wearer

[16]. Varying the physical design parameters of textiles to emphasise or suppress particular

motion features has also been employed in systems such as vibration isolation (e.g., by varying

the knitting method to lower the resonant frequency of material [17]) and for structural defor-

mation (e.g., by introducing auxetic behaviour, whereby a material stretches perpendicular to

an applied force [18]).

Background

To understand how best to exploit such effects in the context of wearable sensing, it is impor-

tant to understand how the fabric moves when subject to user motion, and how this affects our

ability to interpret sensed signals for motion recognition. In the performing arts, choreogra-

phers and clothing designers use fabric to best exhibit factors of motion they wish to empha-

sise. For example, natural materials that easily deform can be used to “catch” the air during

motion [19] which allows for a large range of fabric motion from relatively little body motion.

This use of the motion of the fabric does not just express the wearer’s body motion on a larger

scale (amplification), but selectively emphasises parts of the movement, creating complex

motions that the human body could not perform on its own.

If these effects could also be exploited in motion recognition tasks, it may be possible to

gain additional information for more robust classifications of movement tasks. To design a

sensing system that also uses this effect, it is important to understand the role of the fabric

parameters (e.g., material properties such as weight) on motion recognition. One way to exam-

ine this relationship is to use detailed models of the fabric structure, including the behaviour of

individual yarns [20], to simulate interaction dynamics between wearer and fabric [21]. How-

ever, such simulations are computationally expensive (requiring several seconds of computing

time for individual animation frames [22]), and are of questionable accuracy due to the diffi-

culty in determining fabric parameters (e.g., weave, thread tension, worn position) and exter-

nal factors (e.g., wind, humidity).

Alternatively, one can directly analyse data from a physical fabric system and use statistical

learning methods to examine the effect of varying specific elements of the fabric structure. In a

wearable sensing system, this can be used to both create models of the user’s motion from

sensed movements, and quantify recognition improvement when varying fabric designs. By

statistically quantifying this accuracy, it can be shown explicitly which fabric parameters have

the greatest influence in emphasising motion.

By far the dominant approaches to activity recognition in wearable sensing systems are

distance-based statistical methods [23] such as K-Nearest-Neighbours or Support Vector

Machines (SVM) [24]. In this setting, the sensed movement (e.g., the sensed unidirectional

acceleration of an arm during a reaching task) is recorded and represented as a fixed length

vector y 2 RP , where y :¼ ðy1; y2; . . . ; yPÞ
T
, and yt is the sensed reading at time t. In classifi-

cation systems, these sample movements are then represented as points in some feature

space � 2 RJ , and the contrast between these points is used to determine the class label, see

Fig 2.

The key to success in such approaches is the selection of the feature space ϕ, which plays

an important role in building good predictors [25]. To find features in the data that may

result in highly accurate classifiers, processes such as feature extraction or dimensionality
reduction can be used. For example, principle component analysis [26] is often used to

decompose a data into a set of linearly uncorrelated variables, allowing for the removal of var-

iables that only contribute minimally to describing the data. These features can also be

selected a priori, for example in myopathic studies, decomposing raw electromyographic
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signals into frequency domain information often results in highly significant differences

between healthy and myopathic patients, increasing the accuracy when diagnosing neuro-

muscular disorders [27].

In the context of fabric-based sensing systems, the fabric itself can be thought of as a feature

space transformation from the wearer’s body motion. This transformation is defined as the

one-to-one mapping �ðyÞ : RJ 7!RJ between the sensed motion from the body and that of

the fabric (note that in this approach, J ¼ P). In other words, fixed-length motions y of a

given type are collected and transformed into the feature space ϕ = ϕ(y). Note that, by using

the fabric as the feature space transformation, the transformation is obtained simply by placing

sensors on the fabric itself, requiring no additional processing.

To compute a classification model, M samples of motions ϕ in the feature space are used to

form a cluster Ψ 2 RP�M, from which a single model representing the full data set is derived

c 2 RP (e.g., the mean of the cluster). The similarity s between ψ and a new feature-space-

mapped motion sample ϕ0 scores the extent to which the latter belongs to this cluster of

motions. This is computed as the distance s = d(ψ, ϕ0) according to some chosen metric (e.g.,
the Euclidean or Mahalanobis distance [28]). A small value of s indicates that the new motion

sample ϕ0 is a member of the cluster C, while a large value (a large dissimilarity) indicates that

ϕ0 is a movement of a different type.

The present study empirically investigates whether varying the structure of a fabric-based

sensing system increases motion prediction accuracy due to selective emphasis of parts of the

motion. A statistical approach is taken whereby the physical fabric motions are analysed

through the statistical classification techniques described above.

For this, the data acquisition device shown in Fig 3(A) is used. In the experiments, motion

signals are recorded, varying factors of the experimental setup, including types of fabrics used

and similarities between motions. Given these motion signals, the similarity between types of

Fig 2. A Illustration of how two visually similar functions can be difficult to classify (signal 1 is the Gaussian function with μ = 0, σ = 2, and signal 2 is sinc(x)).

These signals can be more easily distinguished when one or the other signal is non-linearly transformed (Mapped Signal 2, is sinc(4x))). B Visual illustration

of the similarity s between a cluster meanψ of one signal, and a new signal y, for both the normal and mapped systems. C Similarity when representing

signals as points in a cluster classification system.

https://doi.org/10.1371/journal.pone.0184642.g002
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motion is analysed, to determine which factors of the fabric influence motion prediction

accuracy.

Materials and methods

Data collection

The data acquisition device (Fig 3(A)) used in this study consists of a weighted pendulum (of

length 57 cm), swinging freely in gravity on a single axis.

A fabric substrate (heavy weight jersey, two-way stretch, 95% cotton, 5% elastane, 18 cm
length when taut), is attached to the tip of the pendulum. The device is instrumented by three

inertial sensors (LilyPad ADXL335 tri-axial accelerometer) that simultaneously record the

acceleration of different points on its length. These sensors are attached at (i) the tip of the

rigid pendulum (denoted R1, 57 cm from the pivot), (ii) in the centre of the fabric (F2, 66 cm)

and (iii) at the tip of the fabric (F3, 75 cm).

The accelerometers are sampled using an Arduino Nano (Atmega-328P microcontroller,

16-bit ADC), and readings are transferred to an attached PC base-station for analysis. The

accelerometers are connected to the microcontroller by loose, thin, light-weight insulated cop-

per wiring to ensure minimal interference with the motion of both the pendulum and fabric.

All sensors are calibrated to one-another to remove inter-sensor variability, and collect data at

600Hz.

In each recorded motion, the pendulum is released from a static position (the horizontal),

and data is recorded from all three sensors for 10 seconds. External environmental factors,

such as vibrations and air currents, were minimised by performing the experiments in a closed

laboratory. During motion, acceleration signals are collected from the axis parallel to the

ground (when the pendulum is at rest) from all three sensors. Two sets of data are collected, in

the first the pendulum is weighted with 3N at the tip, and in the second the weight is removed.

This process of data collection is repeated to produce 10 independent motions per data set. All

motion signals are converted to standard gravity, then time-synchronised. For each data set, a

cluster of the 10 motions recorded over 6000 time-steps is then defined as the cluster matrix

Ψ 2 R6000�10, and the mean c 2 R6000 is taken to form the model of the motion.

Fig 3. A Side-view of pendulum with attached fabric at tip. Sensors are placed at the tip of the pendulum, and on the body of the fabric. B, C Schematic of

experimental setup. D, F Motion signals from both weighted and unweighted pendulum when sensor is attached rigidly to the pendulum at increasing

distances from the axle. E, G Motion signals when sensor attached to the end of the fabric.

https://doi.org/10.1371/journal.pone.0184642.g003
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Varying fabric material

To evaluate how the structure and physical properties of the fabric can influence the

similarity score, the same experiment is repeated with several other commonly-used cloth-

ing materials, denim (98% cotton, 2% elastane), jersey, and roma (four-way stretch 74%

polyester, 27% rayon, 3% spandex). The process is also repeated with the fabric replaced by

a rigid element, with sensors R2 and R3 placed at identical distances to the pivot as F2 and

F3.

Varying pendulum weight

To examine the effect of the motion itself, the experiment is repeated using the jersey material

with pendulum weights varied between 0.5N to 3N. This variation alters the speed of the pen-

dulum, thereby generating different motion signals. In the context of wearable sensors moni-

toring human motion, this simulates the common task of a wearer performing tasks with

different speeds (e.g. lifting weights for rehabilitation exercises [29]).

Statistical analysis

To examine the similarity between different motions, these experiments compute the Euclid-

ean distance between signals ϕ, normalised over the range of distances. One-way analysis of

variance is performed using the Matlab R2016b statistics toolbox. Depending on the experi-

ment, input data is either motion signals � 2 R6000 or similarity scores s, and data is grouped

according to their weight.

Motion classification

To perform classification and prediction, classification methods are trained using the data

collected from the fabric tipped pendulum, to predict whether the pendulum is swinging

with or without a weight attached. In these experiments, support vector machines (SVM),

(two-class, using the Matlab R2016b statistics and machine learning toolbox) and discrimina-

tive regression machines (DRM) [30] are used. For both competing methods, linear [24] and

Gaussian kernels [31] are used, with the hyper-parameters box-constraint and kernel scale
obtained via a five-fold cross-validation. Note that this implementation can be extended to

the multi-class setting by using common ensemble techniques such as “one-vs-one” or “one-

vs-all” [32].

For each of the three sensors, 10 samples of pendulum motion with a 3N weight and 10

samples without, are randomly segmented into two independent sets, a model training set con-

sisting of 19 motion samples and an independent testing set consisting of one sample.

As is common in wearable prediction systems that work from continuous streams of data

[33] (i.e. where it is not known when one motion finished, and another begins), an online

learning and prediction method is used. In this, time-discrete segments of the motion signal

are passed to the classifier as they are recorded. In this study, motion signals ϕ are segmented

into windows of size n (where n < P). A small value of n signifies that only a small segment of

the temporal motion signal is used to compute classification models and make predictions. As

n increases (i.e. n!1), more of the motion signal is used. Windows overlap by every n
2

time-

steps, with predictions made every n
2

time-steps. These windows can be defined as subsets of
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the full motion signal,

w :¼ ½ð�1; . . . ; �nÞ
T
; ð�n

2

; . . . ; �3n
2

Þ
T
; ð�n; . . . ; �2nÞ

T
; . . .�

To perform model training and prediction, initially the first n time-steps of the training

data are used to train a classification model, and predictions are then made on the first n time-

steps of the testing data. The window is then time-shifted forwards by n
2

time-steps, and process

is repeated. This repeats until the end of the signal is reached. To ensure robustness of the

modelling method, this online learning and prediction method is repeated 20 times, varying

the motion sample used for the testing set.

With this experimental setup, the effect of the window size used to segment the motion

data is examined, by evaluating the classifier accuracy for each sensor when varying the size of

the window between 15 milliseconds, and 1.5 seconds. From this evaluation, a fixed window

size is selected to examine the normal operation of the classifier.

Results

Effect on sensed motion signal

To examine how sensed readings from fabric-embedded sensors can be exploited in wearable

sensing systems, this section examines if significant differences between similar pendulum

motions can be observed.

Fig 3(D) shows two motion signals from a trial generated by the apparatus, collected from

sensor R2, with the pendulum weighted with 3N, versus the unweighted pendulum. The addi-

tion of this small weight causes a change in motion of the pendulum, shown by the introduc-

tion of a phase offset over time. In Fig 3(F), the motion signal from sensor R3 (located further

along the pendulum) is plotted.

It is seen that, as expected, increasing the distance from the axle increases the amplitude of

the acceleration signal. This is due to the geometry of the set up; sensor signals have larger

amplitude with increased distance from the pivot (linear acceleration of the tip increases with

pendulum length). To examine if the sets of weighted and unweighted signals are significantly

different from each other, motion signals � 2 R6000 from each sensor is allocated to groups

according to their weight. It is seen that there is no significant difference between weighted or

unweighted motions observed either from sensors R1, R2 or R3 (p> 0.75). This shows that in

this setup, attempting to predict if a motion is weighted or unweighted by using rigidly

attached sensors, is a challenging task.

It is seen in Fig 3(E) and 3(G) that when the lower two sensors are mounted onto fabric,

there is a much larger difference between the two signals compared to that seen with a rigid

extension. The difference between motions is most noticeable in readings from the sensor

mounted furthest from the fabric attachment point Fig 3(G), where different oscillatory pat-

terns emerge between the motions due to changes in direction of the pendulum causing sec-

ondary swinging motions of the fabric. There is a significant difference between the two

motions, for both sensors F2 and F3 (p< 0.01). From this, it can be seen that there are signifi-

cant differences between motions, but only observed when sensing the motion of the attached

fabric.

Effect on classification algorithms

To examine how these observations affect distance based classification algorithms, this section

examines if contrasting motion signals observed from fabric-mounted sensors show greater

dissimilarity than rigidly attached sensors. Greater dissimilarity between motions is increased
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by the enhancement of contrasting features, and is the underpinning factor in many com-

monly used classification algorithms. To examine this, the following experiments examine the

similarity between the two sets of motions.

Initially when observing motion signals from the rigid pendulum (Fig 4(A)), it is seen that

the average similarity between the weighted and unweighted pendulum signals decreases as

distance from the axle increases (p<0.01). However, this difference between motions is small,

for all three sensors located rigidly on the pendulum. In comparison to this, there is a much

larger difference between motion signals when observations are recorded using fabric sensors

mounted onto jersey (Fig 4(B)). The greater distance between the two motions when using jer-

sey indicates that the signals observed from fabric-mounted sensors are not only less similar

(and thereby easier to distinguish in a classification system), but are more robust to in-class

variance in the sensed readings, increasing the confidence of the predictions. The signals from

sensors placed at the middle and end of the fabric also show more variance due to external

environmental factors (e.g., air movement, small variations in starting angle) causing greater

spread in the data cluster.

One possible explanation for the difference between motions, is that the fabric significantly

alters the motions of the pendulum (e.g. by increasing the air resistance and slowing down the

pendulum). To evaluate this, similarity measurement are taken from the signals recorded from

sensor R1, which is attached rigidly to the pendulum during all experiments (including fabric-

mounted ones). In this, it is shown there is no significant difference (p>0.9) in the similarity

measures when using either a rigid pendulum or with a jersey tip. This indicates that the

increase in distance is not caused by the additional fabric biasing the signal by altering the

underlying pendulum motion.

Effect of varying pendulum weighting

The similarity between motions when varying the pendulum weight (Fig 4(E)),shows a similar

trend: the average similarity score between motions for the sensor located on the pendulum

(R1) shows no significant difference (p> 0.50) across conditions (pendulum weights). For the

sensor located in the middle of the fabric (F2), the average similarity varies slightly between

conditions. As the centre of the fabric undergoes less deformation than the end of the fabric

(F3). At the end of the fabric there are significant differences across conditions (p<0.01).

Fig 4. A-D Box plots of the difference between unweighted and weighted pendulum when using sensors located at the pendulum tip (red thin line), middle

(green dashed), or end (blue thick line). E Difference for jersey when varying weights from 0.5N to 3N.

https://doi.org/10.1371/journal.pone.0184642.g004
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These experiments show that while there are no significant differences between the motion

when observing from the rigidly attached sensors R1, differences in the similarity between

motions can be seen when using fabric.

Fabric structure and the relationship to similarity

In experiments varying the fabric material used, sensors placed on both the denim Fig 4(C)

and roma Fig 4(D) result in a larger dissimilarity between motion classes than the rigid pendu-

lum. It is seen that denim shows greater similarity than jersey or roma, due to the rigidity of

denim damping the signal, and reducing the oscillatory effects of the fabric in motion. In con-

trast, the dissimilarity of the sensed motions from the sensor placed on the roma fabric is

greatest (with the largest variance), due to the light, non-stiff structure of the fabric.

Activity recognition

In a classification setting, the above suggests the surprising result that it should be easier to dis-

tinguish between different motions with a sensor mounted onto clothing, than one rigidly con-

nected to the body. To evaluate this, a classifiers are used to predict whether the pendulum is

swinging with or without a weight attached, using the data collected from the jersey tipped

pendulum. In a motion recognition context, the sensors can correspond to sensors mounted

on a loose area of a garment, such as a sleeve. In this context, sensors F2 and F3 correspond to

mounting sensors at varying positions of the sleeve, while R1 (which is attached rigidly to the

body) simulates a body worn sensor. Classification is performed using the traditional linear

kernel, due to its simplicity in computing classification models (making it suitable for an

embedded low-cost system), as well as its straightforward interpretation as a distance-based

classifier. Models are also computed using the Gaussian kernel due to its common usage in

activity recognition [34] and the discriminative regression machine (DRM), due to its suitabil-

ity in dealing with similarities within classes of high-dimensional data with small sample sizes

[30].

Effect of window size

Using the online classification system, the results for varying the size of the window are shown

in Fig 5(A). Initially, it is seen that at a window size of 15ms, the prediction accuracy from the

rigidly attached sensor (R1) is approximately 40%, while the fabric-mounted sensors report

accuracies of 70% and 75%. As the size of the window increases, the prediction accuracy also

increases, as expected due to the additional information of the motion signal available to the

classifier. The fabric-mounted sensors continuously predict at a greater accuracy than the

body-mounted sensor. As the size of the window surpasses 300ms, the body-mounted sensor

predicts motions with 100% accuracy, while the fabric-mounted sensors F2 and F3 predict at

95% and 90% respectively. This result indicates that at small window sizes, where predictions

can be made more rapidly with fewer computations, fabric mounted sensors outperform their

body-worn counterparts. At larger window sizes, where there are greater time-periods between

predictions, the fabric-mounted sensors fall slightly short of the accuracies reported by the

body-worn sensors.

Online prediction

Closer evaluation of the classification results at a fixed window size of 250ms is shown in

Fig 5(B). In this, it is seen that on average the prediction accuracy using SVM from the rigidly

attached sensor is 83.9 ± 17.9% (linear kernel) 84.1 ± 20.6% (Gaussian kernel), while the

Activity recognition with wearable sensors on loose clothing

PLOS ONE | https://doi.org/10.1371/journal.pone.0184642 October 4, 2017 9 / 13

https://doi.org/10.1371/journal.pone.0184642


average accuracy from the sensor located in the middle of the fabric is 93.3 ± 8.6% (linear ker-

nel) 95.9 ± 6.1% (Gaussian kernel). Predictions made using the DRM classification method,

give accuracies from the rigidly attached sensor of 72.4 ± 1.7% (linear kernel) 80.3 ± 18.1%

(Gaussian kernel), and for the sensor located in the middle of the fabric 90.6 ± 9.1% (linear

kernel) 94.5 ± 6.7% (Gaussian kernel).

These results show that not only is the average prediction accuracy higher for the fabric-

mounted sensors, but the lower variance in the predictions indicates that the classifiers used

are more robust. This follows on from the similarity analysis (see above), which shows that the

greater distance between types of motion signals from fabric-mounted sensors results in a

greater confidence when making predictions. It should also be noted that the body-mounted

sensors (Fig 5(B)) demonstrate oscillating dips in prediction accuracy. This is due to pendulum

moving in and out of phase between the weighted and unweighted motion signals (e.g., at the

apex of a swing, where the recorded acceleration is zero), resulting in high similarity between

the signals. In contrast the fabric does not exhibit this effect, as the deformable structure of the

fabric allows for complex movement in other axes, resulting in motion trajectories that are sig-

nificantly dissimilar, at similar positions of the pendulum. The similar results seen in all three

classification methods demonstrate that the exploitation of the fabric dynamics plays a greater

role in achieving high accuracy, than the complexity of the classifiers used.

Discussion

In this paper, an empirical investigation into the the use of fabric-mounted sensors has been

performed, to examine if the non-rigid, deformable nature of fabric can be exploited to pro-

vide additional information about a wearer’s movement, enhancing activity recognition sys-

tems. The findings outlined here show that mounting MEMS inertial sensors onto loose fabric

can lead a greater contrast between different types of measured motion. Even when signals

from a rigidly attached sensor are not significantly different, the fabric’s ability to deform in

multiple directions allows for an increased range of motion, making it easier to distinguish

between different motions. In motion classification tasks using streaming data, the use of fab-

ric mounted sensors can result in a greater prediction accuracy, with smaller windows of data,

Fig 5. Mean accuracy of Gaussian SVM over 20 trials (± standard error). A when varying window size between 15ms and 1.5 seconds, and B mean

accuracy of online motion prediction with window size fixed at 250ms, using data from the sensors attached to the pendulum and fabric. Similar results for

both experiments are also seen for linear SVM, and both linear and Gaussian DRM.

https://doi.org/10.1371/journal.pone.0184642.g005
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allowing predictions to be made more quickly and at lower computational cost compared to

the rigidly attached equivalent. This high accuracy coupled with a relatively simple linear SVM

classification algorithm, demonstrates that this approach of exploiting the dynamics of the fab-

ric can enhance this classification accuracy with no need for greater computational power,

even in comparison to using learning methods which explicitly account for high dimensional

data and small data sets.

The effects seen in this paper depend on factors such as the speed and amplitude of the

motion and the material properties of the fabric such as its length and stiffness. However, it

is robustly reproduced in a number of fabrics commonly used in ordinary clothing. Fabrics

with a low stiffness flow more easily, subjecting sensors to greater accelerations. However,

this low stiffness also means that the fabric motion is more sensitive to environmental fac-

tors (e.g., air flow), and results in larger within-class variance. There is a trade-off between

using motion artefacts to emphasise selective features, and limiting the effect of motion arte-

facts on the predictions. This is especially important when applying this method to real-

world motion tasks, where poor control of this trade-off may result in highly unpredictable

motion artefacts, masking the intended signal. Nevertheless, the experimental results on

integrating sensors into deformable materials presents the first evidence that noise and
motion artefacts can be beneficial to motion recognition tasks. With the advent of modern,

model-free statistical approaches to activity recognition, requiring that motion artefacts

always be eliminated is not only unnecessary, but fails to exploit information implicit in the
textile motion.

In the context of real-world activity recognition, this method in its current form would find

utility in classifying controlled motion tasks (e.g. rehabilitative weight-lifting exercises for

muscle strengthening [29]). This approach shows a promising baseline for future work involv-

ing unconstrained human motion. The exploitation of soft sensor deformation has wider

implications outside the field of sensorised clothing. The observations reported here may also

find utility in other soft sensing based applications, e.g., healthcare monitoring devices such as

sensorised mattresses for measuring cardiac and respiration during sleep [35], or capacitive

textile sensors in car seating to capture whole body motion to detect impaired driving [36].

Not only would the ability to make sensitive predictions enhance current applications, but the

revised view of utilising motion artefacts enables the development of systems previously

thought to be too noise-corrupted.
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