
RESEARCH ARTICLE

Phylogeography and larval spine length of the

dragonfly Leucorhinia dubia in Europe

Frank Johansson1*, Peter Halvarsson1, Dirk J. Mikolajewski2, Jacob Höglund1
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Abstract

Presence or absence of predators selects for different kind of morphologies. Hence, we

expect variation in traits that protect against predators to vary over geographical areas

where predators vary in past and present abundance. Abdominal larval spines in dragonfly

larvae provide protection against fish predators. We studied geographical variation in larval

spine length of the dragonfly Leucorrhinia dubia across Western Europe using a phyloge-

netic approach. Larvae were raised in a common garden laboratory experiment in the

absence of fish predators. Results show that larvae from northern Europe (Sweden and Fin-

land) had significantly longer larval spines compared to larvae from western and central

Europe. A phylogeny based on SNP data suggests that short larval spines is the ancestral

stage in the localities sampled in this study, and that long spines have evolved in the Fenno-

Scandian clade. The role of predators in shaping the morphological differences among the

sampled localities is discussed.

Introduction

Spatial environmental variation act as a major source of divergent natural selection resulting

in phenotypic diversification within species and given enough time, might result in speciation

[1]. Predators represent a strong selective force, with abundance and type of predators showing

strong variation across environments [2]. Prey species have evolved a richness of highly effec-

tive morphological anti-predators traits to avoid and repel predators [3, 4]. Because many

morphological anti-predator traits are costly to produce, express and maintain, net differences

between antipredator trait costs and benefits only turn positive in the presence of predators

[5]. Thus, differences in predator abundance and occurrence are predicted to result in varia-

tion in anti-predator morphological expression among and within prey species [6]. Such varia-

tion could occur at larger geographical scales [7], and a good understanding of the

geographical variation in morphological traits that defends against predators will contribute to

a thorough understanding on how trait diversification evolves [6].

Phylogeography, the study of geographic distribution of genetic lineages [8], is a useful

approach to understand processes that have resulted into phenotypic differentiation amongst

populations. By mapping trait differences between populations on a phylogeny, an
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understanding of the rate and variation of such diversification can be achieved. For example,

by mapping body morphology of Anolis lizards on a phylogeny, Losos et al. [9] showed that

morphological diversification stemmed from several independent events across islands result-

ing into convergent phenotypes. Less well studied is the diversification of anti-predator traits

across lineages, but see e.g. Mikolajewski et al. [10] and Ge et al. [11]. Among anti-predator

defenses, morphological defenses such as spines and spikes have been at the center of interest

for decades. They represent prominent features to repel predators when already detected and

attacked by a predator, and such traits are present both in animals and plants [12, 13, 14, 15].

In this study, we focus on the constituent part of the phenotypic variation in larval spine length

across Europe in larvae of a dragonfly (Odonata) species. Odonate larvae express prominent

abdominal spines that feature as anti-predator traits, with selection by predatory fish shaping

occurrences and length of spines. The variation in spine morphology represent an ideal system

to understand how selection shapes anti-predator traits [16], however, how patterns of varia-

tion in spines occurrence evolved at the intra-specific level is less well understood.

Larvae of the dragonfly Leucorrhinia dubia (Vander Linden, 1825) express abdominal

spines, but show large intra as well as inter-population variation in dorsal and lateral abdomi-

nal spine length [17, 18]. Abdominal spines reduce predation risk, because fish have a longer

handling time when eating long-spined larvae [17]. In addition, studies on other Leucorrhinia-

species have shown that larvae with longer spines have higher rejection rates after an attack

[14, 15]. Parts of the inter-population variation in spines length among individuals stems from

longer spines being phenotypically induced by the presence of predatory fish [18, 19]. How-

ever, there is also strong non-plastic variation in spine length among individuals within and

among lakes with and without fish. For example, some none-fish lakes have larvae with a

mean spine length larger than that of some fish lakes [16], and this spine length variation

occurs at a micro-geographical scale of a radius of about 100 km. However, at a larger geo-

graphical scale we do not know how intraspecific larval spine length varies and how this varia-

tion has evolved. One way to study how spines as a defensive trait have evolved is to map

existing trait variation on a phylogeny. To study predator morphological defense evolution

within L. dubia we first raised larvae from six sampled locations across Europe from the egg

stage in the absence of fish under laboratory conditions. This gave us a good estimate of the

present variation in larval spine length across L. dubia’s main distribution in Europe. Second,

we reconstructed a phylogeny based on independent SNP-data, using individuals sampled

from 9 locations across Europe and mapped larval spines length on the corresponding tree. By

this, we detected variation in spine length on which natural selection via predation can work

as well as reveal how spines arise as an effective defense against predatory fish.

Methods

Ethics statement

L. dubia has a wide distribution and is common in the northern parts of its range in Europe. It

is categorized as least concern in Europe by International Union for Conservation of Nature

(IUCN), and the species is abundant at all the localities sampled in this study. Permits for sam-

pling Odonata at the localities in United Kingdom and Belgium was by provided by Natural

England and ANB-Flanders (Agentschap voor Natuur en Bos) respectively.

Spine length variation among populations across Europe

To examine spine length among European populations of L. dubia we reared larvae in a com-

mon garden experiment in the laboratory. Eggs from 5 females from 6 localities without fish,

across Europe (United Kingdom, Germany, Austria, Poland, Sweden, and Finland) were
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collected by dipping the females’ abdomen into glass jars filled with water from the lake/pond of

collection. Fish status was determined by several factors. First, repeatedly netting in at the locali-

ties did not reveal any fish. Second many of the sampled ponds/lakes are small and freeze all the

way to the bottom in the winter which kills all fish. Third, frequent communication with local

fishermen confirmed the absence of fish in the localities sampled. Eggs clutches were thereafter

brought to the laboratory where they were kept in 1.0 l. plastic containers filled with non-chlori-

nated tap water. Eggs from all females hatched after 2–3 weeks. Upon hatching we mixed larvae

from all females from one locality into a larger container and then randomly picked 25 larvae

from this pool of larvae for the experiment. The experiment was run in 0.5 l containers filled

with 0.3 l non-chlorinated tap water. Larvae were raised individually in these containers and fed

daily ad libitum with a mixture of Artemia nauplii and daphnids from laboratory cultures. The

temperature was 20˚C and the day/night cycle was 14 hour light/10 hour dark.

The rearing ended when larvae had reached their final instar. At this stage they were pre-

served in 80% alcohol for subsequent measurements of larval size and spine length. These mea-

surements were taken using a dissecting microscope with an ocular micrometer by placing the

larvae in a petri dish with alcohol. Size was estimated as head width, representing the outer-

most points on each eye when the larva was viewed from above. This length is a reliable mea-

sure of size in dragonfly larvae [20]. Length of dorsal spine number 4–7 and lateral spine 8–9

was taken as in Johansson [19].

Because spine lengths show patterns of multicollinearity within individuals, we performed a

principal component analyses (PCA) on the covariance matrix using all spine length measures

to reduce number of variables. The first PC axis explained the majority of the variation

(PC1 = 0.75, PC2 = 0.12, PC3 = 0.07) and therefore we retained the scores from this PC-axis

and used them in subsequent analyses as the spine length of each individual. We corrected

spine length for larval size by dividing spine length by larval size. Then we run an ANOVA on

spine length using all six sampling location as a factor, followed by a Turkey’s test for pairwise

comparisons. Residual error distribution of spine length did not deviate from normality. In

addition, we run an ANCOVA with sampling location as factor, larval size as covariate and

PC1 scores un-corrected by larval size as response variable.

Phylogeny

To examine the phylogenetic relationship among the six populations used for spine length esti-

mates we sampled adults and larvae from these locations in addition to three more locations,

resulting in a total of nine locations sampled (n range = 5–13 individuals, Table 1). Note that

Table 1. Name and coordinates of locations sampled, n denotes number of individuals sampled. The

sample from Poland is a pooled sample from four localities treated as one population (54˚02’45’’ N 17˚

52’45’’E, 53˚54.37 N, 16˚41.65’E, 54˚02’18 N, 17˚51’03 E, 54˚23’14’’ N 17˚58’00’’E).

Population Coordinates n

United Kingdom, Chartley Moss NNK 52˚ 51’ 04’’N, 01˚ 58’ 06’’E 13

France, Stany del Recó Pyrenees 42˚ 33’ 14’’N, 02˚ 00’ 30"E 5

Belgium, Naturo Reserv de Maten N 50˚ 57’ 02’’N, 05˚ 26’ 58"E 9

Germany, Blankesmoor, Leifered 52˚ 28’ 10’’N, 10˚ 25’ 26"E 11

Switzerland, Paluds dels Pelets 46˚ 29’ 25’’N, 10˚ 28’ 34’’E 5

Austria, Schwartzer See 46˚ 52’ 25’’N, 10˚ 28’ 34’’E 5

Poland, Loryniec and Koscierzyna 54˚ 02’ 45’’N, 17˚ 52’ 45’’E 10

Sweden, Grössjön 63˚ 47’ 29"N, 20˚ 22’ 01"E 7

Finland, Pieni Luotojärvi 67˚ 07’ 03"N, 24˚ 52’ 33"E 13

https://doi.org/10.1371/journal.pone.0184596.t001
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we did not raise larvae for spine length estimates from the additional localities: France, Bel-

gium and Switzerland.

The samples were stored in 80% ethanol after collection awaiting DNA extraction. DNA

was extracted using a modified high salt protocol [21], from either flight muscle in adults or

abdominal muscles of last instar larvae. Double Digest Restriction Associated DNA (ddRAD)

library data was created using a modified version of protocols from Parchman et al. [22], Peter-

son et al. [23] and Mastretta-Yanes et al. [24]. In short, DNA was cut by the enzymes EcoR-

I-HF and MseI, individual tags and primer sites ligated with T4 DNA ligase and PCR was

conducted with Q5 DNA polymerase (New England Biolabs, Massachusetts, USA), see Mas-

tretta-Yanes et al. [24] for full details. To avoid PCR bias, each sample was used four times in

individual PCRs, and randomly located on the PCR plate. Each sample was uniquely tagged.

After PCR, the samples and replicates were pooled and size selections were performed in the

same gel. The library was then sequenced in a single separate lane on an Illumina HiSeq200

from both directions (2x125bp) in high throughput mode at SciLifeLab, Uppsala, Sweden.

STACKS v1.34 [25] was used to quality filter and demultiplex samples. The demultiplexed

samples were de novo assembled using STACKS and one SNPs per stack were extracted for the

dataset. In total 1674 SNP was used for the subsequent analysis.

To create a phylogeny of the nine sampled populations, the data set was imported into

BEAUti v2.3.2 [26], where the data were prepared for analyses with the SNAPP v. 1.2 plugin

[27] in BEAST v. 2.4.1 [26]. Parameters were set at default values, e.g. coalescent rate k = 10,

and h defined by a c prior with shape parameter α = 11.75 and scale parameter β = 109.73. Pri-

ors for forward (u) and reverse (v) mutation rates were set to be estimated. BEAST runs were

carried out for 297,000 generations and the chain was sampled every 250 generations. Tracer

v. 1.6 [28] was used to assess convergence and the run was considered acceptable when the

effective sample size (ESS) value was over 200. A low ESS means that the trace contains a lot of

correlated samples and does not represent the posterior distribution well. In our analysis the

ESS was 456, see supportive information, S1 File. Output was visualized in Densitree v. 2.2.4

[29]. Burn-in was set to 10% of the samples. Finally, we mapped spine length visually on the

phylogram. This was done by using the score value from the PCA on spine length.

Results

Spine length variation among populations across Europe

Larvae took between 175 and 394 days to reach the final instar, but there was no correlation

between larval spine length and duration to reach final instar (r2 = 0.23, d.f. = 62, P = 0.24).

Spine length differed between sampled localities (F5,67 = 34.6, P < 0.001) (Fig 1). A subsequent

Turkey’s test showed that larvae from the Swedish localities had significantly longer spines

than larvae from all other localities (P < 0.001), and that larvae from the Finnish locality had

significantly longer spines than those from Germany and United Kingdom (P< 0.001). All

other pairwise comparisons did not differ significantly (P> 0.07). The ANCOVA using larval

size as a covariate showed qualitatively similar results with an overall significant sampling site

effect (F5,63 = 22.3, P = 0.003).

Phylogeny

The SNAPP analyses recovered a tree that revealed one well-supported clade and some basal

uncertainties. The well-supported clade consisted of the sampled locations in Poland, Ger-

many, Finland, Sweden, Belgium and Austria (Fig 2). The locations in England, Switzerland

and France formed a basal grouping, with somewhat less congruence since some alternative

branching pattern occurred (Fig 2). Nevertheless, the sampled English location appears to
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belong to a separate lineage, and the Swiss and French sampled localities seem to be less sup-

ported compared to the other lineages (Fig 2).

The Swedish and the Finnish sampled population had the longest spines and these two

localities group together in the tree. These two sampled localities were however nested within

Fig 1. Abdominal spine length (PC scores) of larvae from six localities across Europe when raised in

a common environment in the laboratory. Error bars with 95% confidence intervals. Letters above

confidence interval bars denote statistically significant differences between treatments (Tukey test, p < 0.05).

https://doi.org/10.1371/journal.pone.0184596.g001

Fig 2. Relationships among the 9 sampled Leucorrhinia dubia populations across Europe based on

1674 SNPs from ddRAD sequence data. Thin lines represent densities that represent the branches.

Alternative topologies are drawn in different color, where blue represent the most supportive, followed by red

and green. The triangles to the right represent cartoons of larval spine length showing the proportional

differences in length. Note that in reality the longest spines are also wider at the base.

https://doi.org/10.1371/journal.pone.0184596.g002

Phylogeography and larval spine length

PLOS ONE | https://doi.org/10.1371/journal.pone.0184596 September 13, 2017 5 / 9

https://doi.org/10.1371/journal.pone.0184596.g001
https://doi.org/10.1371/journal.pone.0184596.g002
https://doi.org/10.1371/journal.pone.0184596


the well-supported clade in which the larvae from the Germany/Poland clade had evolved

shorter spines lengths (Fig 2). In summary, in our sampled localities short spines was the

ancestral stage and the localities in Sweden and Finland have evolved longer spines.

Discussion

Our study on the morphological variation in larval spine length in L. dubia, consisted of a

small, but wide spread sample across Western Europe. Variation in the expression of defensive

spines can stem from genetic differentiation as well as phenotypic plasticity. Since we used a

common garden approach we can exclude phenotypic plasticity as a source of variation of

spine length for our result on L. dubia. We found that spine length differed among popula-

tions, and with populations in Northern Europe (Sweden & Finland) having evolved consider-

ably longer abdominal spines. Large parts of the variation in abdominal spine length is

associated with the presence/absence of fish predators within and among species of Leucorrhi-
nia, such that populations and species that co-occur with fish on average are having longer

spines [17, 18, 30]. In addition, theses larval spines are adaptive, since they provide protection

against fish predator attacks [14, 15, 17]. We therefore suggest that the difference in spine

length among populations is driven by natural selection by predatory fish, and fish abundance

in our study area is discussed below. Patterns of differential predation regimes that drive varia-

tion in spine length has been found in allopatric populations of sticklebacks [31, 32], and

experimental evidence showed that this differentiation is due to natural selection from fish

predators [33]. Direct experimental evidence that natural selection by fish predators cause

selection for longer spines is however lacking for L. dubia larvae. But direct experimental evi-

dence has shown that invertebrate predators, which are the dominant predators in fishless

lakes select for shorter spines in congeneric L. caudalis larvae [34].

Leucorrhinia dubia and other dragonfly species disperse for quite large distances covering

more than 1 km in the adult stage [35, 36], and genetic studies show little genetic differentia-

tion in many species, e.g. Damm and Hadrys [37] and Johansson et al. [38], suggesting that

dispersal between pond and lakes is common. Thus selection for longer spines that increase

survival from fish predation is probably acting over a larger area than the size of a pond or

lake. We suggest that L. dubia is relatively more frequently in lakes with fish in Northern Euro-

pean countries (Sweden and Finland) compared to the rest of the area we sampled, even

though absolute abundance of L. dubia is higher in lakes without fish in the north [39]. For

example L. dubia do occur in much higher densities in Northern Europe, and is commonly

found in bog ponds without predatory fish and as well as lakes with predatory fish [39], but

note that our northern samples came from ponds without fish. In contrast, occurrence of L.

dubia in the rest of Europe seems to be restricted to small bog ponds without predatory fish

[40, 41, 42]. However, quantitative data are needed to confirm this suggestion as we have no

data on the abundance and diversity of fish in the sampled areas. Furthermore, we sampled

only two location in the northern area where L. dubia is abundant and do occur with fish,

although in lower abundance. Had we sampled more localities in these region we predict that

these population should show long larval spine length as was shown by Johansson and

Samuelsson [17] who sampled 7 lakes with fish in Northern Sweden. We would also predict a

low population differentiation between northern populations compared to populations is cen-

tral and southern Europe, since high population density [43] and dispersal would cause less

differentiation in the north.

Among Leucorrhinia-species with defensive spines, L. dubia is categorized as a short-spined

and non-fish lake species [30, 44]. The two populations from Northern Europe which had the

longest larval spines were nested within the Central European populations, suggesting that
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long spines have evolved from shorter spine length in the ancestor of this lineage, and that the

short spines is the ancestral stage. However, a sample size including more populations might

reveal a different ancestral stage. A phylogeny covering all 14 currently accepted species of the

genus Leucorrhinia showed that long larval spine represents the ancestral stage among these

species [44], and the authors suggested that spines were lost as populations invaded fish free

areas. Thus, the among species comparison [43] and the within species comparison we present

here suggest that larval spine length can evolve in both directions (shorter and longer) within a

genus during evolutionary time scales.

Apart from genetically determined spine length differences between individuals, spine

length in L. dubia is also plastic such that longer spines can be induced by predatory fish cues

[19]. Many studies show a genotype by environment interaction at the population level and

also a population by environment interaction with regard to induced defenses, i.e. individuals

and populations differ in their degree of plasticity [19, 45, 46], but see [47]. Therefore, we can-

not be sure that the relative spine length differences observed among the populations would

show the same patterns if larvae had been raised in the presence of fish. However, under the

assumption that spine length is an adaptation we see no obvious reason for why spine length

should be shorter in the presence of fish areas with high abundance of fish relative to popula-

tions from areas without fish.

In summary, our study show that spine lengths in L. dubia vary geographically across West-

ern Europe and it suggests that longer spines have evolved from shorter spines in the studied

clade. Whether the variation across the geographical scale is related to the presence of fish

across the landscape awaits further investigations.
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