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Abstract

This paper presents the use of the Aimsun microsimulation program to simulate vehicle vio-
lating behaviors and observe their impact on road traffic crash risk. Plugins for violations of
speeding, slow driving, and abrupt stopping were developed using Aimsun’s APl and SDK
module. A safety analysis plugin for investigating probability of rear-end collisions was
developed, and a method for analyzing collision risk is proposed. A Fuzzy C-mean Cluster-
ing algorithm was developed to identify high risk states in different road segments over time.
Results of a simulation experiment based on the G15 Expressway in Shanghai showed that
abrupt stopping had the greatest impact on increasing collision risk, and the impact of viola-
tions increased with traffic volume. The methodology allows for the evaluation and monitor-
ing of risks, alerting of road hazards, and identification of hotspots, and could be applied to
the operations of existing facilities or planning of future ones.

Introduction

Vehicle moving violations are a major cause of traffic crashes and road fatalities, contributing
to 75% of road crashes in China [1], 50% of all fatal crashes in Europe [2], and 56% of fatal
crashes in the United States [3]. Rear-end collisions are the most common type of freeway
crashes [4], representing 34% of all road crashes in China [5] and 51% of crashes on an Ameri-
can highway [6]. On freeways, vehicle violations reduce headways and reaction times creating
more crashes while high travel speeds generate more severe crashes [7]. Speeding, slow driving,
and abrupt stopping are behaviors closely related to rear-end collisions [5] [8] and evaluating
their impact on freeway safety is essential in reducing crashes and preventing loss of life. Of
the studies using historical crash data to evaluate the impact of violations on safety [1] [9] [10],
very few have considered the actual mechanism between violations and crash risk.

The impact of violating behaviors is both microscopic and macroscopic. Microscopically,
unexpected maneuvers from violating vehicles have a direct impact on surrounding vehicles
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(increased likelihood of conflicts). Macroscopically, violating vehicles indirectly impact traffic
flow by reducing average speeds and headways (increased turbulence in traffic). Predicting
crash risk and estimating the impacts of vehicle violations on freeway safety would assist in
improving road safety countermeasures, operations and safety management of existing roads,
and planning of future facilities. However, other than including vehicle violations as a factor in
traditional crash models, not much has been explored. While capturing violating behaviors in
real traffic is difficult and dangerous, traffic simulation produces virtual road scenarios that
closely mimic reality and has been widely used in research and practice to design, operate, and
evaluate transportation systems [11]. Simulated safety analysis does not require real collisions
to occur, allowing for the investigating of road safety in a microscopic way, at the individual
behavior level, and a macroscopic way, exploring the influence on traffic overall.

The purpose of this research is to develop and present algorithms for including vehicle vio-
lations in traffic simulation, to present a collision probability algorithm, to propose a frame-
work for estimating the macroscopic impacts of violations, and to demonstrate this framework
in a simulation experiment. This paper provides several contributions to the existing state of
research. First, most studies simulating the impact of traffic risks have assumed ideal vehicle
behavior [12] [13] [14]. This study presents a method for simulating various driver violating
behaviours in existing microsimulation software through user-defined add-ons. Second, this
paper adds to the state-of-the-art research on freeway safety assessment by improving methods
for simulated safety analysis. Though time-to-collision of stopping-sight-distance are some of
the most promising surrogate measures for assessing freeway safety, the lack of violating
behaviours in existing software has made these measures difficult to evaluate in simulated
environments. Third, by simulating individual violating behaviours, it is possible to examine
their microscopic and macroscopic impact on freeway safety. Though some studies have
explored the microscopic impact of vehicle maneuvers and violations, no studies have consid-
ered the macroscopic impact of violating behaviors. This paper proposes a method for analyz-
ing collision risk of various violating behaviours.

Literature review

The highlights of this work are directly related to the main areas of interest reviewed in the fol-
lowing sections, namely vehicle behavior, surrogate safety measures, and freeway collision
risk.

Traffic simulation and vehicle behavior

Traffic simulation techniques have improved since the late 1950s, from simple simulation for
studying signal control [15] to advanced simulations for traffic planning, road design, safety
evaluation, and behavioral analysis. Traffic simulation, as defined by the FHWA, includes
three levels. Macroscopic simulation focuses on relationships between flow, speed, and density
of the traffic stream. Microscopic simulation simulates the movement of individual vehicles
using car-following and lane-changing models. Mesoscopic simulation falls between micro-
and macroscopic approaches [16]. Numerous traffic simulation programs have been devel-
oped, including common packages such as Aimsun, SimTraffic, VISSIM, and EMME [16]
[17]. As violations relate to vehicle behaviors, simulating vehicle violations and observing their
impact on surrounding vehicles can be realized through microscopic simulation. The impact
of violating behaviors on traffic flow is one promising application of mesoscopic simulation,
requiring a microscopic software platform capable of reproducing precise vehicle violations
and simultaneously describing macroscopic traffic scenarios. Simulation is likely “the only
way to test driver/traffic models for safety applications” [18], and is a good solution for
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investigating the impact of driving violations on freeway safety. Studies to date largely focus on
aggressive driving behaviors rather than explicitly considering violations and their macro-
scopic impacts. Li compared three simulation platforms for investigating aggressive lane-
changing behaviors [19]. Punzo & Ciuffo utilized the SCANeR program in combination with
Aimsun to investigate non-normative driving behavior [18]. Habtemichael & de Picado Santos
used VISSIM to explore the impact of aggressive driving on collision likelihood and severity
under congested and uncongested conditions and found that impact of aggressive driving
increases in congestion [20]. This work contributes to the literature with developed methods
for simulating various violating behaviours.

Traffic simulation and surrogate safety measures

Studies investigating road safety using traffic simulation rely on surrogate safety measures
(SSMs), which have gained popularity in road safety analysis [21]. Though many different
measures have been proposed [22] [23], the most popular SSMs for simulation are summa-
rized by Gettman and Head [24] and include time-to-collision (TTC) [25], stopping distance
index [26] [27], modified time-to-collision [28], and vehicle speeds and headways [29]. Piao
and McDonald studied the impact of speed limits on safety in different motorway sections
using SSMs including headway, speed difference, and frequency of lane changes in Aimsun
[30]. Habtemichael et al. used VISSIM and the Surrogate Safety Assessment Model (SSAM)
[31] to analyze the crash risk, severity level, and magnitude of perceived benefits (e.g. time
saved) of aggressive driving under congested and non-congested conditions [32]. Work on
this topic remains limited and insufficient.

The most promising measures for investigating freeway safety include TTC and stopping
sight distance (SSD). Both measures represent the available time and distance for a driver to
attempt evasive action, which is closely related to freeway crashes. TTC is the time remaining
before two vehicles collide if they maintain their current speed and direction, and is corre-
lated with rear-end collision occurrence [33]. Several studies have used TTC to estimate free-
way collision risk [30] [34] [35]. However, TTC techniques do not consider varying driver
response characteristics, are incapable of estimating risks during unexpected events including
violating behaviours, do not reflect conflict severity, and require the following vehicle to
travel faster than the leading one in order to estimate rear-end collision risk. For these rea-
sons, TTC may not work well for erroneous or risky driver behavior [36] and analyzing vehi-
cle violations.

SSD describes conflicts in a more microscopic way and considers different confounding
factors. SSD is the sum of braking reaction distance (distance travelled during perception-reac-
tion time) and braking distance (distance travelled during deceleration) [37] [38]. Though
SSD has been used effectively to measure rear-end conflicts in freeways, the measure is limited
in situations where vehicle pairs have a significant speed difference. Assume that leading vehi-
cle A and following vehicle B have an initial distance gap of L. At t = 0, A brakes suddenly, fol-
lowed by B after a perception-reaction period. The vehicle trajectories are illustrated in the
space-time diagram in Fig 1. Set the braking distance of A as D4 (for B, Dg). By the SSD
approach, situations are safe when Dg < D4 + L. This measure is not reliable when the leading
and following vehicles have significantly different speeds and deceleration rates, as vehicles
may collide before stopping completely even if Dg < D, + L. Clearly, a more accurate model is
needed. Though SSMs in general appear to be feasible [39] [40], they require additional
improvement before their widespread acceptance. By incorporating violating behaviors in
microsimulation, this paper enables simulated surrogate safety analysis of freeway facilities.
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Fig 1. Vehicle collision distance-time-velocity diagram.

https://doi.org/10.1371/journal.pone.0184564.9001

Traffic simulation and freeway collision risk

Macroscopic traffic flow and freeway safety have been investigated using two approaches [41,
42]. In the aggregate approach, the safety performance of a fixed area is considered and
impacts of “mobility characteristics, the transport system and the socio-economic characteris-
tics of the area itself” are uncovered [42]. The disaggregate approach investigates collision risks
at the event level, such as estimating collision probability by analyzing driver behavior [42].
The disaggregate approach should be applied when considering the impact of vehicle viola-
tions. Disaggregate studies of freeway safety typically rely on traffic conflict techniques, includ-
ing conflicts identified using TTC thresholds. Zhou et al. investigated collision risks in the
freeway network around Ningbo, China based on conflict counts and traffic volumes [43].
Jiang et al. used counts of dangerous conflicts as the criteria for evaluating collision risks over
a freeway network in real-time [44]. Some studies have considered the distribution of SMM
values (commonly TTC) and used their quintiles as thresholds for determining high-risk
states. For example, Xiang et al. proposed the 85™ percentile of TTC values as the collision risk
threshold to identify high risk states in freeway segments [45].

Simulation techniques allow for evaluation and prediction of safety in large road networks,
which is difficult using field-observed data. Song & Sun used VISSIM to identify expressway
on-ramp bottlenecks for safety and operational analysis purposes [46]. Yan et al. investigated
the causes of crashes at freeway ramps using VISSIM [47] by creating a collision risk index
based on the deceleration rate required for a following vehicle if the leading vehicle stopped
abruptly. Young et al. summarized past work on measuring road safety using simulation [48].
Freeway safety requires more consideration and more advanced safety, while violating
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behaviors, as key factors contributing to crashes, should be included in simulation. The final
contribution of this paper is presenting a method for evaluating the safety of freeway road
sections.

Methodology

The methodology for this project consists of four steps. First, the Aimsun microsimulation
program, along with its API and SDK modules, are introduced. Second, the plugins for pro-
gramming and simulating vehicle moving violations are presented. Third, a Monte-Carlo
model for estimating collision probability between vehicle pairs on freeway segments is pro-
posed. Fourth, a Fuzzy C-mean clustering algorithm is used to identify high-risk freeway seg-
ments based on the risk probability data for vehicle pairs. In total, four applications were
developed which contribute to the existing state of research. Three algorithms for simulating
moving violations and the Monte-Carlo collision probability model were created. Fig 2 illus-
trates the entire methodology.

Aimsun microsimulation program

The Aimsun program, developed by Transport Simulation Systems (TSS), was selected for this
project because it is widely used, is efficient for simulating traffic and vehicle behavior, pro-
vides a user-friendly software interface, and is semi-open source software which allows for sec-
ondary development of simulation models, including vehicle violations [49]. Aimsun uses the
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Fig 2. Methodology framework.
https://doi.org/10.1371/journal.pone.0184564.g002
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widely accepted Gipps’ vehicle-following and lane changing models, which are effective at
describing the behavior of interacting vehicles [50]. The vehicle-following model considers
two traits of the following vehicle; intention to drive at an expected speed and actual speed of
the following vehicle attempting to reach the expected speed. Gipps’ model considers human
factors of driver expectation and reaction and accurately describes vehicle-following behavior
in non-congested situations [51]. The model can be calibrated for non-steady-state conditions
related to aggressive driving or violations [51]. The model for this study was calibrated on real-
road traffic data collected from the Zhajiasu Expressway [52].

Another key driver behavior model for simulation is the lane change model. Aimsun uses a
further development of Gipps’ lane change model [53], where the decision to change lanes is
determined by three factors: 1) whether the driver can drive at their expected speed; 2) whether
it is desirable to change lanes, and; 3) whether it is possible to change lanes [54]. The lane
change model precisely mimics the entire lane change procedure from the driver perspective,
including perception, judgement, and action, with consideration of traffic flow factors of
speed and position and roadway geometric design [55]. These models can be manipulated to
simulate aggressive driving or violations.

API module. The Application Programming Interface (API) enables users to implement
an interface connection to user-defined and third party applications [56] [57] to improve the
default simulation settings. Fig 3 presents the flowchart of the Aimsun API. The API module
contains six main functions for communicating with the Aimsun model, including:

o int AAPILoad() {return 0;} / the loading function;
o int AAPIInit() {return 0;} / the initialization function;
o int AAPIManage() {return 0;} / the main function called at initialization of a time step;

o int AAPIPostManage() {return 0;} / the main function called after completion of a time
step;

o int AAPIFinish() {return 0;} / the finishing function;

Aimsun Aimsun API Module
Load [ AAPILoad) ]

Scenario
=====>>
I
I Init
I Simullation
p—— [ aaPmi) |
I *l —
I b o AAPIManagel...) | External Applications
[ . L —
i 1| Simulation Step f— User-defined applications
L | AAPIPostManage(...) | Third party applications

I End of [ AAPIFinish) ]
I Simulation
L ——=

Unload Scenario [ AAPIUnLoad) |

Fig 3. API module application flowchart.
https://doi.org/10.1371/journal.pone.0184564.g003
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o int AAPIUnLoad() return 0;} / the function for model uploading.

Aimsun loads the external application by calling the loading function, AAPILoad(), and
basic parameters, including the name and path of external applications, are loaded using
AAPIInit() function. After initialization, the main function of the external applications applied
at the beginning of a time step is loaded by calling the AAPIManage() function, while the
AAPIPostManage() function is called if the main function is to be applied after a simulation
time step. The AAPIManage() function is used to input data for simulation, and the AAPIPost-
Manage() function extracts, outputs, and saves analysis results. The AAPIFinish() function is
used to finish the processing after all time steps, followed by the AAPIUnLoad which discon-
nects the simulation from the external application.

SDK module. The Aimsun Software Development Kit (SDK) module allows for the crea-
tion of user-defined applications (plugins) to override default behavioral models using the
C++ programing platform [54]. Fig 4 presents how the SDK module loads external behavior
model applications. In each time step, the simulation first selects vehicles for the behavior
models. If external applications of behavior models are to be loaded, the SDK module will load
the external applications and apply it to the behavior of the selected vehicles (otherwise, default
internal models are used). The program checks if all the selected vehicles have been updated
with the behavior model before moving on to the next time step.

Simulating violations using Aimsun plugins

Violating behaviors were developed using the SDK module, shown in Fig 4, and loaded as pre-
sented in Fig 2. Users can select between default driving models or different violations types,
which are assigned to random vehicles (1 in 500 vehicles were assigned violating behaviors).
Plugins were developed for three moving violations; speeding, slow driving, and abrupt

Start
Simulation

SDK Module
Select
Vehicles

Inputting
Behavior Model

External Applications e—— U;e Use
Behavior models | i+ External Defaulted

All Vehicles
Updated

Yes

Next Time
Step

Fig 4. SDK module application flowchart.
https://doi.org/10.1371/journal.pone.0184564.g004
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stopping. The plugin code for the violation models is provided in S1 Appendix. Further details
are provided below.

Speed violation. Both slight and serious speeding violations were considered. Slight
speeding was defined as vehicle speeds 25% over the speed limit, and serious speeding was
50% over the limit. Speeding vehicles maintain their speed unless inhibited by a leading vehi-
cle, then change lanes or decelerate.

Slow driving violation. As with speeding, both slight and serious slow driving violations
were investigated. Slight slow driving vehicles were assigned a speed equal to 50% of the speed
limit. Serious slow driving vehicles speed was 25% of the limit. Slow driving vehicles always
remain in the same lane.

Abrupt stop violation. A vehicle that stops abruptly increases crash risk by reducing reac-
tion time and space for the following vehicle or by idling unexpectedly in the middle of the
freeway. Randomly selected vehicles were to stop suddenly for five seconds or more, at a ran-
dom deceleration rate between 3 and 7.5 m/s”.

Monte Carlo method for rear-end crash probability

With simulation, accurate crash scenarios can be investigated without risking human lives.
One objective of this paper is to investigate highway safety by estimating rear-end collision
probability. A technique based on the Monte Carlo method is introduced to investigate rear-
end collisions in a precise and microscopic way. Vehicle pairs were first classified according to
four scenarios based on reaction and braking periods, according to the method proposed by
Tsao and Hall [58]. The Monte Carlo method, a computerized mathematical technique that
accounts for risk in quantitative analysis [59], is used to predict the collision probability of the
vehicle pairs. This algorithm was developed and integrated using the API module, presented in
Fig 2. The code for the Monte Carlo collision algorithm is provided in S2 Appendix.

Classification of rear-ending collisions. To address limitations of existing safety mea-
sures in traffic simulation and to bridge the gap between conflicts and collisions, this study uti-
lizes the rear-ending collision model first proposed by Tsao and Hall [58]. The model
considers reaction, braking, and the chance of colliding before vehicles come to a complete
stop. Based on the status of the vehicle pairs at the moment of the crash, rear-end collisions
can be classified according to four scenarios:

o Scenario 1: The following vehicle is not braking and the leading vehicle has not stopped.
« Scenario 2: The following vehicle is not braking and the leading vehicle has stopped.

« Scenario 3: The following vehicle is braking and the leading vehicle has not stopped.

« Scenario 4: The following vehicle is braking and the leading vehicle has stopped.

Assuming the SSD of the leading vehicle at time ¢ is D(f) and that of the following vehicle is
D((t), a collision occurs when:

D, (t) +L = Dy(t) (1)

where, L is the initial distance between the vehicles. The leading vehicle stops when t = v//a;.
Therefore, t > v/a; indicates that the leading vehicle has stopped, while t < vj/a; indicates that
the leading vehicle is still moving.

Considering that actual braking reaction time (T) consists of both driver reaction time (7)
and time lag between activation (pressing the brake pedal) and the onset of deceleration (0),
T =1+ 6. For t < T, the following vehicle is not braking. If t > T, the following vehicle is brak-
ing. According to Eq (1) and the status of both the leading and following vehicles, the
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Fig 5. Descriptions of distance-time-velocity relationship in the four situations in the rear-end
collision model.

https://doi.org/10.1371/journal.pone.0184564.9005

relationship between time, velocity, and acceleration of vehicle pairs, the specific crash sce-
nario can be generated, as presented in Fig 5. Based on the scenario, the algorithm can calcu-
late the type of collision and the time and location of the crash. The probability of rear-end
collisions can then be predicted.

Collision probability of vehicle pairs. Gipps’ vehicle following model was designed for
traffic simulation and model parameters were designed mainly to avoid collisions. In this
study, a method was created for predicting collision probability between each vehicle pair as a
necessity for investigating highway safety. For each vehicle, initial position and speed is
extracted from the simulation. Behavioral parameters of deceleration rate and driver reaction
time are random variables. The Monte Carlo method is a statistical simulation method based
on the law of large numbers [60] that provides a good solution for investigating the probability
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of outcomes in a process involving random variables [59]. A large number of tests are con-
ducted with different values for the random variables. Based on the outcomes of these tests, the
probability of target outcome can be generated. For individual vehicle pairs, the probability of
collision is the probability that the following vehicle will hit the front vehicle when the front
vehicle conducts a braking maneuver. The deceleration rate of the leading vehicle is a random
variable dependent on sociodemographic traits, as is the reaction time of the following vehicle.
Avoiding a collision requires the driver of the following vehicle to decelerate at the maximum
possible rate.

The Monte Carlo method selects random variables selected from a probability distribution.
A normal distribution is best to describe deceleration rate of the leading vehicle (a;) [61]. g;
was assigned to be normally distributed with a mean of 5.2 m/s* and a variance of 1 m/s*. Reac-
tion time of the following vehicle (T) was assigned a log-normal distribution of LN(0.17, 0.44)
as suggested by Wang [62]. Vehicle pairs were assigned one of the four crash scenarios and
crash occurrence and time of the collision (#) were calculated based on the equations in Fig 5.
The probability of collision, used as a measure of safety, was calculated as the number of tests
resulting in collisions over the total number of tests. For each simulation step, the developed
plugin targeted a certain pair of vehicles, extracted their trajectory, and obtained their posi-
tional and behavioral information. The plugin then applied the Monte Carlo method to calcu-
late collision probability of the targeted vehicle pair.

Predicting freeway crash risk

Road segment collision risk based on crash probability of individual vehicle pairs. Col-
lision risk for road segments can be estimated based on the calculated crash probability of
vehicle pairs. Segments are defined by evenly spaced virtual loops. In a given time period (sim-
ulation cycle), each segment contains several vehicle following cases. The time periods, which
last several minutes, are based on the detection cycle of the virtual loops and cover several colli-
sion prediction simulation steps. Assuming that a simulation cycle contains m simulation
steps for which there are n vehicles on the segment, the collision probability for every pair of
vehicles can be written as an m x n matrix, presented in Table 1, where r;; represents the colli-
sion probability of vehicle i in the simulation step j, determined using the Monte Carlo colli-
sion prediction model.

Similar to [34], this study uses the 75™ percentile of collision probability to classify high
crash risk. During a simulation cycle, for vehicle j in the i simulation step, the collision proba-
bility with the front vehicle is r;;, calculated using Monte Carlo method. Define the collision
risk for the segment during the simulation step i (r;) as the 75H percentile value

r,=Qr,), i=12,....n} (2)

Table 1. Result matrix—vehicle rear-end collision probability on a certain segment in a certain simu-
lation cycle.

One Simulation Cycle

Step 1 Step 2 ... Step m-1 Stepm
Vehicle 1 riq ro 1 m-1 ,m
Vehicle 2 I21 rao 2 m-1 2,m
Vehicle n-1 -1 In-1,2 In-1,m-1 'n-1,m
Vehicle n I’y o In,m-1 I'n,m

https://doi.org/10.1371/journal.pone.0184564.t001
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The collision risk on the road segment during this simulation cycle can be represented as
the mean of the collision risk value of all simulation steps;

(3)

Risk evaluation using Fuzzy C-Means Clustering Algorithm. Traffic risk analysis relies
on long observation periods. Road traffic is dynamic and observations from several minutes
do not represent the general level of safety for a given road segment. Therefore, experiments
with a large number of simulation cycles are required to obtain sufficient data for safety analy-
sis. This study employs a Fuzzy C-Means Clustering Algorithm to evaluate the safety condition
of different freeway segments over the large number of repeated simulation cycles. A base case,
containing no violations, was used to set a threshold between normal and high risk for the
clustering procedure. Fuzzy Clustering is a common technique in data mining and machine
learning for complex data sets [63]. The Fuzzy C-Mean Algorithm (FCM) is the most popular
algorithm first proposed by Dunn [64] and improved by Bezdek [65]. The purpose of cluster-
ing is to find the centroid for different clusters and define which observations belong to which
clusters. For a given data set {x;}, (i = 1,2,. . .,N), the FCM analysis steps are:

Step 1: Select the number of clusters, C.
Step 2: Select level of cluster fuzziness, f>1.

Step 3: Initialize an N x C matrix (the fuzzy membership matrix, U) at random, with members
wij € [0, 1]. For each i;

>t 1 (@)

Step 4: Obtain the value function for clustering;
C n
E(U,V) = Zi:l Zj:1 (nuij)f(dij)z (5)

where, U is the fuzzy membership matrix, V = (V1,V,,.. , V.. ., Vo)Tis the matrix of the
cluster centers, V; is the vector of the cluster center for cluster i, d;; is the Euclidean distance
between data j and center of cluster i, expressed as d;; = ||x; — V7|

Step 5: Find the fuzzy membership matrix minimizing the value of E(U, V). Using the method
of Lagrange multipliers, E(U, V) is minimized when:

1

ZC (_ij)m2—1
=1 dlj
Then, cluster centers are defined;
N
Z’:l (lulj) j
vV, == = Lj=(1,2,...,N) (7)
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Highway collision risks for different segments are analyzed by the FCM algorithm to deter-
mine the high-risk threshold. Different cluster numbers were tested, starting with 2 and incre-
menting until the largest cluster center value became stable. The largest cluster center value,
Ve was selected as the high-risk threshold. Collision probability for each vehicle pair were
simulated and input into Matlab. Collision risk on different segments during each simulation
cycle were determined and clustered using the Fuzzy Logic Toolbox™ in Matlab. The largest
cluster center value was extracted as the high-risk threshold. Sections with collision risk higher
than this threshold were determined to be high risk, while sites with lower risk were consid-
ered normal.

Simulation experiment

A simulation experiment was conducted to investigate the impact of vehicle moving violations
on freeway safety. The experiment included various traffic conditions and volumes (1000,
1500, and 2000 veh/h) both with and without vehicle violations. Freeway crash risk high-risk
thresholds were determined and used to identify segments with high collision risk under vari-
ous traffic schemes.

Introduction of simulation scenario & data output

The simulation scenario was based on the geometric design of a section of the G15 Shen Hai
Expressway in Shanghai, presented in Fig 6. The section is 7 miles long with two lanes in each
direction and without any on- or off-ramps to avoid the effect of merging. The design speed is
120 km/h with a posted speed limit of 100 km/h. Traffic data of speed, volume, and occupancy,
were obtained using 15 virtual loop detectors at intervals of 0.5 miles, dividing the section into
14 segments. Traffic conditions included low volume (1000 veh/h), moderate volume (1500
veh/h) and high volume (2000 veh/h). Several variations of vehicle moving violation types
were tested, including

TSS o Draving Mode Project (5) 8x
L oy Type + 8
L‘l v @ Traffic Qates G 15 Shen Hai Gao Su
BN state car: 00:00 01:00
P9 state truck: 00:00 01:00
DATA ANALYSIS
|9 INFRASTRUCTURE
Ao SCRIPTS xinna  oco
M7 4 SCENARIOS
Q@
i 8 ‘.
(=]E)
&
@ -
8 miles
X
T|2  cso
! 5 x
‘ Simulating Replication 240: Replication 240
2016/1/5 00:03:15.066 M€ B M » B @ Less
BT ] = T |
#a
perinent: Dxperinent 236 (replication: Beplication 240) | = ad B PR xS ‘ G 15 Shen Hai Gao Su
a types  truck |23 o 99 0 0 0
or experinent’ Experinent 236 (replication: Beplication 240) lese 0 o 0 0 0 ‘ on 32
‘z k 0 8 0 0 0 |
a) Snapshot from the simulation scenario b) Map of the site

Fig 6. Aimsun interface of the simulated section.

https://doi.org/10.1371/journal.pone.0184564.g006
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1. No vehicle violation

2. Slight speeding violation (25% above limit)
3. Serious speeding violation (50% above limit)
4. Serious slow driving violation (25% of limit)
5. Slight slow driving violation (50% of limit)
Abrupt stop violation, idle for 5 s

Abrupt stop violation, idle for 10 s

Abrupt stop violation, idle for 20 s

v »® N

Abrupt stop violation, idle for 40 s

Therefore, 27 different situations (3 traffic volumes with 9 violations) were tested. Each situ-
ation was simulated 50 times, each consisting of 24 simulation cycles of 2 minutes each. This
results in 1200 collision risk measurements for each of the 14 segments, for all of the 27 traffic
situations, totaling 453,600 observations (16,800 for each situation)

Risk thresholds by Fuzzy C-Mean Algorithm

This study used data from the simulations with no vehicle violations to set the high-risk
threshold. The low, moderate, and high volume simulations were considered, and collision
risks for different segments were analyzed using the Fuzzy C-Mean Clustering Algorithm.
Table 2 shows an example of collision risk data for each segment extracted from the simulation

Table 2. Example of data for determining risk thresholds. Risk data from moderate traffic condition (Volume: 1500 veh/h).

No. of Simulation Cycle Risk for Different Segment

s 12 s23 s34 s45 s 56
1 0.2616 0.2779 0.2943 0.303 0.3102
2 0.2757 0.3312 0.3598 0.3809 0.3631
3 0.3449 0.3331 0.3374 0.3306 0.3554
4 0.3011 0.4048 0.4652 0.4845 0.4361
5 0.3102 0.3208 0.3332 0.3499 0.4008
6 0.291 0.2716 0.3085 0.3142 0.3835
7 0.3698 0.3424 0.3753 0.376 0.3187
8 0.3108 0.3306 0.3357 0.3887 0.4388
9 0.3127 0.3376 0.3482 0.3337 0.3583
10 0.2305 0.2513 0.2618 0.3074 0.3629
11 0.2612 0.3161 0.3303 0.3394 0.3231
12 0.3028 0.293 0.3044 0.2832 0.2862
13 0.3283 0.3668 0.3783 0.3525 0.369
14 0.2985 0.2985 0.3343 0.3275 0.3696
15 0.3287 0.3338 0.3581 0.3896 0.3658
16 0.3105 0.3456 0.3328 0.3499 0.3315

Note that: s_k_k+1 represents the segment between the kth and k+1th loop sensor

https://doi.org/10.1371/journal.pone.0184564.t1002
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Table 3. Largest cluster center with different cluster number.

Traffic Volume

Cluster center value for number of clusters

2 3 4 5 6
1000 veh/h 0.3429 0.3673 0.3775 0.3735 0.3789
1500 veh/h 0.4076 0.4311 0.4460 0.4536 0.4555
2000 veh/h 0.4487 0.4654 0.4762 0.4849 0.4871

https://doi.org/10.1371/journal.pone.0184564.t003

Table 4. Results of cluster centers.

Traffic Volume

1000 veh/h
1500 veh/h
2000 veh/h

https://doi.org/10.1371/journal.pone.0184564.t1004

output. For each traffic condition, the risk threshold is calculated based on all 16,800
observations.

Table 3 and Fig 7 present the values of the largest cluster centers for three different traffic
flows and for different numbers of clusters. The largest value of the risk cluster center
increased gradually before the number of clusters reached four, at which point the value stabi-
lized. Accordingly, four clusters were used to group road section risks. Table 4 presents the val-
ues of the four cluster centers under three different flow conditions. The high-risk threshold is
the largest cluster center value.

Results of impact vehicle violations types on freeway safety

For every traffic volume and violation input, the number of high-risk segments in each simula-
tion cycle was determined over 50 simulations. The average number of high-risk segments was
calculated and compared. Results of the 27 simulation situations are presented in Table 5.

0.5
0.46 /’/"/‘——_‘
0.42
0.38

0.34

Value of Largest Cluster Center

0.3
2 3 4 5 6

Number of Clusters

1000 veh/h 1500 veh/h ——2000 veh/h

Fig 7. Largest cluster center value (V) with different cluster number for different volume conditions.

https://doi.org/10.1371/journal.pone.0184564.9007

Value of the cluster centers

the 15 the 2@ the 3" the 4"
0.2218 0.2805 0.3252 0.3775
0.2963 0.3428 0.3910 0.4460
0.3581 0.3981 0.4321 0.4762
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Table 5. The number of high-risk status before and after adding vehicle violations for different traffic conditions.

Traffic Volume Different Type of Traffic Violation
No Violation Speeding slow driving abrupt stop for 5 s
25% 50% 25% 50% For5s For10s For20s For40s
1000 veh/h 9.34 9.78 9.38 9.52 19.56 9.98 14.58 14.4 14.82
1500 veh/h 45.46 48.38 49.56 57.68 65.86 136.02 155.28 155.12 156.96
2000 veh/h 33.52 37.48 41.34 61.72 107.4 104.96 105.52 106.46 106.17

https://doi.org/10.1371/journal.pone.0184564.t005

Fig 8 shows the comparison of collision risk, represented by the average number of high-
risk states, for different types of traffic violation. Several phenomena affect the impact of differ-
ent violation types on freeway safety. Speeding vehicles increase risk mainly to surrounding
vehicles. Speeding vehicles attempting to change lanes mainly affect the leading vehicle or
vehicles in adjacent lanes. Slow driving and abrupt stopping vehicles affect both surrounding
vehicles and overall traffic flow. Slow vehicles inhibit following vehicles and reduce the average
speed, increasing traffic density and risk. Vehicles that stop abruptly have increased probability
of crash with the following vehicle due to high deceleration and also increased traffic density
and risk while idling.

Considering the impact of traffic volumes, in the low volume condition, presented in Fig
8a, slight speeding increased the number of high-risk segments by only 0.44 on, while serious
speeding increased the risk by 0.04 compared to the base case of no violations. The magnitude
of the effect of slight slow driving was similar. The greatest increase in risk was attributed to
serious slow driving, with more than twice as many high-risk states observed. Abrupt stopping
with 5 seconds of idling resulted in a minor increase in risk, while idling lengths greater than 5
seconds generally resulted in an increase in risk of approximately 55%.

Under moderate volumes, presented in Fig 8b, the effect of speeding and slow driving was
similar compared to low volume conditions. Speeding increased the average high risk state
counts by approximately 10%, slight slow driving had a 27% increase, and serious slow driving
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Fig 8. Comparisons of different types of violation.
https://doi.org/10.1371/journal.pone.0184564.g008
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increased risk by 45%. Abrupt stopping led to the greatest increase in risk. The average number
of high risk states increasing threefold or more for all idling lengths

In high volume conditions, presented in Fig 8c, speeding violations remained the least
impactful, though the impact of serious speeding became more significant. Serious slow driv-
ing tripled the number of high risk states, while slight slow driving nearly doubled it. Again,
abrupt stopping increased the average number of high risk states by a factor of three, regardless
of idling length.

In general, collision risk was observed to increase with violation severity. Though the
impact of speeding violations was significant, it was much smaller compared to other viola-
tions. Speeding violations are likely to affect surrounding vehicles, increasing risk for a small
proportion of traffic, while other violations have more macroscopic impacts.

The impact of violations on collision risk changes significantly with traffic volume. In gen-
eral, slight driving violations in low volume have only a slight impact on safety. Risk increases
both with violation severity and traffic volume. The percentage increase in observed high-risk
states compared to the base case is used to represent the impact on collision risk in Fig 9. The
impact of speeding violations increases with traffic volume, which is closely associated with
traffic density and headways and determines freedom for accelerating and lane changing
maneuvers. The impact of slow driving is most significant in high volume traffic. Though the
percentage increase for serious slow diving violations under low traffic violation is significantly
high, the absolute change is small. Abrupt stopping is less influential at low volumes than at
moderate or high volumes.

Spatio-temporal distribution of freeway risk

The risk states of road segments can be categorized, using 1 as the high-risk state and 0 as nor-
mal risk, and visualized using a space-time diagram. Here, time (simulation cycles) is set on
the vertical axis from top to bottom, while distance down the highway (road segments) is
horizontal from left to right. Conditions for the base case are presented in Fig 10 for the three
traffic volumes. In the charts, high-risk states are observed to form continuous and semi-con-
tinuous diagonal bands as collision risk moves from upstream to downstream over time. Aver-
age simulated vehicles speed is around 100 km/h. Within a 2 minute simulation cycle, vehicles
move approximately 3.3 km downstream, which covers 4 road segments (800 m each). This
matches the observation in Fig 10.

When violations are added, findings are similar to those above. Fig 11 shows the space-time
diagrams for moderate traffic conditions with different traffic violation inputs. Fig 11a

m speeding 25 % ®speeding 50 % m slow driving 25 % ®slow driving 50 %  ®stopping 5 s M stopping 10 s = stopping 20 s B stopping 40 s
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Fig 9. Influence of violation under different traffic volume.

https://doi.org/10.1371/journal.pone.0184564.9009
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¢) Slow driving d) Abrupt stopping

b) Speeding

Fig 11. Space-time diagram of traffic flow risk for different violation types.

https://doi.org/10.1371/journal.pone.0184564.g011

a) No violation input
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increasing high risk cases not only diagonally but also vertically (over time while remaining
stationary).

Conclusions

The purpose of this paper was to develop a method for evaluating the effect of vehicle moving
violations on freeway safety using a microsimulation program. Methodological and algorithm-
based solutions for quantifying the impact of violations on rear-end collision risk are provided
for the Aimsun simulation program. The Monte Carlo method is employed through the API
and SDK modules, which are open to users for secondary development. Based on simulation
output, this paper also presents a Fuzzy C-mean Clustering algorithm for identifying high risk
collision states on freeway segments. A simulation experiment, which used the geometric
design of a section on G15 Shen Hai Expressway in Shanghai, was conducted to illustrate these
developed tools and methods. Several key conclusions are drawn from the above work.

« Aimsun, a widely used simulation platform, uses Gipps’ vehicle following and lane changing
models to provide accurate microscopic traffic simulation. Algorithms for vehicle violations
were built based on realistic maneuvers, simulation outputs appeared reasonable, and safety
results are explained by traffic flow theory.

o The impact of different violations varies with traffic volume. The impact of speeding is not
as significant as other violations, given that speeding vehicles mainly affect surrounding
vehicles rather than affecting traffic in general. Slow driving and abrupt stopping continu-
ously block passing vehicles, increasing crash risk especially when other vehicles attempt to
overtake.

« Asvolume increases, density increases and headways decrease, and less space is available for
lane changing or adaptive maneuvers. This explains why the impact of violations is closely
related to increases in volume.

Space-time diagrams of collision risk state demonstrate how collision risks change over time
and space. Crash risk normally moves downstream over time. Risk from speeding violations
tend to be isolated, and do not move diagonally in the diagram. Slow driving and abrupt
stopping have a continuous and higher impact on traffic.

As key contributions, plugins were created for simulating traffic violations, one of the most
important factors leading to freeway crashes which are difficult to investigate in real road envi-
ronments. This study improves computer-based technologies for simulating and examining
road user behavior, especially on freeways where severe crashes are more likely. Using simula-
tion and the violation plugins, rich vehicle trajectory data can be continuously extracted for
detailed investigation of the impact of violations in different traffic environments, which has
previously been conducted through field observations or video-based tracking techniques at
single sites [40] [66]. The paper provides a method for investigating the impact of microscopic
traffic behaviors on macroscopic safety, which has rarely been explored, and provides a
detailed and novel framework for investigating freeway risks based on the trajectory data
extracted from the simulation. Though three types of violations were considered, the methods
could easily be extended to other behaviors. The Monte Carlo method provides a promising
solution for predicting crash risk between vehicle pairs with consideration for different ran-
dom variables. In practice, these methods can be applied for purposes including hazard predic-
tion and monitoring, evaluation of road design, and hotspot identification.

In the future, the entire methodology should be validated and further calibrated using his-
torical crash data. The simulation algorithms could be improved to model violations and
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consider additional factors with the development of simulation technologies. New technolo-
gies, such as LIDAR sensors, may enable the study of vehicle violations in real road environ-
ments which may assist the development of violation models. Though reliable, Gipps’ vehicle
following and lane changing models could be further calibrated to better describe driver
behavior when violations are involved, or substituted with better models. The method of using
space-time diagrams can be further explored, and the safety evaluation measures can be fur-
ther validated. Lastly, though rear-end collisions are the most common type of crashes on free-
way conditions, other collisions cannot be ignored, and future work must consider other
collision types.
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