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Abstract

In this article, we introduced an artificial neural network (ANN) based computational model

to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-),

multi-crystalline (multi-), and amorphous (amor-) crystalline. The prediction results are very

close to the experimental data, and were also influenced by numbers of hidden neurons.

The order of the solar generation power output influenced by the external conditions from

smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the

dependences of power prediction on the number of hidden neurons were studied. For multi-

and amorphous crystalline cell, three or four hidden layer units resulted in the high correla-

tion coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at

the hidden layer unit of 8.

Introduction

The renewable energy sources, such as photovoltaic (PV) cell power generation [1], will

become important in the future [2], as it has not only a great potential to solve the current

energy crisis but also is environment-friendly to solve the current environmental crisis [3].

The output power of PV cells depends on the solar radiation intensity, device material and

device temperature [4] and so on. For example, mono-crystalline, multi-crystalline, and amor-

phous crystalline silicon solar PV cells exhibit different characteristics in the external work

conditions. So, for potential cost savings of the PV power supply, a good prediction model of

home power demand and PV power supply is the essential [5, 6, 7, 8 and 9]. In all predicting

methods, the artificial neural network (ANN) method has received a considerable amount of

attention for power prediction [10]. This is because the ANN methods are used to model com-

plex nonlinear dynamic systems with great success. Specifically speaking, ANN-models do not

require the use of specific analytic formulations and physics-based derivations [11], do not

need an extensive amount of parameters or complicated calculations [12, 13], and perform bet-

ter than polynomial regression and multiple linear regression models [14] when modeling a

nonlinear system. Traditionally, the system dynamics can be emulated by feeding a measured
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database into the configured network to train the ANN neurons until either an acceptable pre-

cision or the maximum iteration number is reached. In all ANN-models, it is found that the

size of the hidden layer neuron is an important parameter [15, 16]. The prediction perfor-

mance of ANN depends on the selection size of the hidden layer. An underestimated amount

of neurons can lead to poor approximation and generalization capabilities, while the excessive

nodes could result in over fitting and eventually make the search for the global optimum more

difficult. In fact, the number of neurons in the hidden layers is very hard to determine, since

there is no ideal analytical formula to represent [17, 18, 19 and 20]. Therefore, some rule-of-

thumb methods are proposed to find the correct number of neurons. For example, Camargo

et al [21] provided a criterion for the choice of the number of neurons in the hidden layer,

which is based on polynomial interpolation theory. Kolmogorov’s theorem [22] indicated that

the network has only one hidden layer with exactly 2n + 1 node, where n is the number of

input layers. Yuan et al. [23] found that the number of hidden neurons can be decided based

on information entropy theory. In addition, in order to specify the scope of the number of hid-

den neurons, the lower and upper boundaries on the number of hidden neurons was given by

Jiang et al. [24] and Huang et al. [25]. They found that the lower boundary can accelerate the

learning speed, and the upper bound gives the stopping condition of constructive learning

algorithms. In order to further study the PV Power characteristics and evaluate the effects of

number of hidden neurons on different types of PV cells’ power prediction based on ANN, the

relevant researches were done by using random sampling studies. The optimal values of hid-

den layer units for these types of PV cells were decided.

In this article, an artificial neural network (ANN) based computational model was intro-

duced to predict the output power of three types of photovoltaic cells, mono-crystalline

(mono-), multi-crystalline (multi-), and amorphous (amor-) crystalline. The prediction results

were evaluated in terms of correlation coefficient (r) and mean of square error (MSE). The pre-

diction results are very close to the experimental data, and were also influenced by numbers of

hidden neurons. The order of the solar generation power output influenced by the external

conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In

addition, the dependences of power prediction on the number of hidden neurons were stud-

ied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the

high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were

achieved at the hidden layer unit of 8.

Material and methods

Experimental samples and setup

The experimental samples were 2.8 cm × 2.5 cm mono-crystalline, multi-crystalline and amor-

phous crystalline PV cells manufactured by QS Solar Company. The PV testing system (num-

ber SAC made by Chengdu ZKY Instrument Co., Ltd) was used for data acquisition. The

simulated sunlight was produced by Xenon light source. The intensity of the incident light

could be adjusted by a six tranches toggle switch. The light intensities of the 1st, 2nd, 3rd, 4th,

5th and 6th tranche correspond to about 600, 700, 800, 900, 1000 and 1100 W/m2, respectively.

The experimental sample was placed in a temperature control room that was primarily com-

posed of a semiconductor refrigeration device. The current-voltage curves and maximum out-

put powers (MOP) of the PV cells were measured under -10, -5, 0, 5, 10, 15, 20, 25, 27, 30, 35

and 40˚C, respectively. Therefore, there are twelve measurement conditions for each light

intensity tranches. For example, the measured conditions of light intensity and temperature

are, 6th tranche and 40˚C, 6th tranche and 35˚C, 6th tranche and 30˚C, 6th tranche and 27˚C,

6th tranche and 25˚C, 6th tranche and 20˚C, 6th tranche and 15˚C, 6th tranche and 10˚C, 6th
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tranche and 5˚C, 6th tranche and 0˚C, 6th tranche and -5˚C, and 6th tranche and -10˚C for

the 6th tranche, respectively. Then, 72 experimental data points were totally collected, 62 data

points among them were chosen to train the neuron network and the remaining 10 data points

were used to validate the prediction results.

Neuron network structure and settings

The structure of the proposed neural network consists of three layers: input, hidden, and out-

put layer as shown in Fig 1. The input layer has two nodes (the incident light intensity and

device temperature). The output layer has one node (the MOP of PV cells). The input neurons

receive data of light intensity and temperature, the hidden neurons receive signals from neu-

rons in the preceding layer, and the output neurons send prediction information to the exter-

nal part. Two MATLAB functions, Tansig and Purelin, were chosen as the transfer functions

in the hidden and output layer, respectively. A MATLAB function, Traingdm, was selected for

model training.

Results and discussion

Electrical characteristics of PV cells

Fig 2 shows I-V and P-V curves of mono-crystalline (a, d), multi-crystalline (b, e) and amor-

phous crystalline (c, f) silicon PV cells measured at two extreme conditions: the lowest light

intensity and temperature (the 1st tranche (light intensity) and -10˚C (temperature)), as well

as the highest light intensity and temperature (6th tranche and 40˚C), respectively. The short-

circuit current value changes from 28.370 mA (at the 6th tranche and 40˚C) to 12.526 mA (at

the 1st tranche and -10˚C) for mono-crystalline, 30.960 mA to 14.003 mA for multi-crystalline,

and 5.844 mA to 2.449 mA for amorphous crystalline. The open-circuit voltage of changes

from 2.647 V to 3.146 V for mono-crystalline, 2.642 V to 3.149 V for multi-crystalline, and

2.309 V to 2.666 V for amorphous crystalline. The relative changes of short-circuit current

are approximately 55.8%, 54.8%, and 58.1% for mono-crystalline, multi-crystalline and

Fig 1. The schematic diagram of network structure.

https://doi.org/10.1371/journal.pone.0184561.g001
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amorphous crystalline cells, respectively. The relative changes of open-circuit voltage of three

types of crystalline cells are approximately 15.9%, 16.1%, and 13.4%. The light intensity and

device temperature affect the short-circuit current more than the open-circuit voltage. The

findings are consistent with previous studies showing that the short-circuit current is directly

proportional to the effective radiation intensity [26], and exhibits a positive temperature coeffi-

cient [27]. However, the open-circuit voltage is mainly determined by the band gap of the

solar cell material [28].

In addition, the MOP of mono-crystalline, multi-crystalline and amorphous crystalline

cells changes from 56.6793 mW to 28.6407 mW, 56.7993 mW to 31.5958 mW, and 8.0477 mW

to 3.6296 mW, respectively. The relative changes are approximately 49.5%, 44.4%, and 54.9%.

The MOP of amorphous crystalline cell is far less than that of mono- or multi- crystalline cells

at the same condition. Amorphous thin-film solar cells are less susceptible to light intensity

and cell temperature and have lower efficiency rates because the silicon material of amorphous

crystalline cell is not structured or crystalized on a molecular level.

Predicting results under different numbers of hidden neurons using in the

algorithm

Fig 3 shows the MOP prediction results of mono-crystalline (a), multi-crystalline (b) and

amorphous crystalline (c) cells compared to experimental data using different numbers of hid-

den neurons (n = 3, 6, and 9) in the Neuron Network algorithm. The prediction results are

very close to the experimental data, and are also influenced by numbers of hidden neurons,

especially for crystalline cells at lower light intensity and temperature.

In order to understand the effect of the number of hidden neurons on the prediction accu-

racy, ten-fold cross-validations were performed at different numbers of hidden neurons (from

3 to 9). The average correlation coefficients (shown in Fig 4), and the average MSEs between

experimental and prediction results (Fig 5) were calculated. As shown in Fig 4, the average

value of the correlation coefficient is greater than 0.95 for all three types of cells using any hid-

den layer numbers, which indicates that there is almost a perfect positive linear relationship

Fig 2. I-V and P-V curves of mono-crystalline (a, d), multi-crystalline (b, e) and amorphous crystalline (c, f)

silicon PV cells measured at two extreme conditions: the 1st tranche (light intensity) and -10˚C (temperature),

as well as 6th tranche and 40˚C.

https://doi.org/10.1371/journal.pone.0184561.g002
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between them. Furthermore, those results prove the accuracy and reliabilities of the neuron

network algorithm. In addition, it can be seen that the prediction results are affected by the

number of hidden layer units in the algorithm. The curve of the average correlation coeffi-

cients VS hidden layer units for mono-cells is gradually lifted upwards, then approaches the

saturation level and finally drops down. The curve for multi- cells almost doesn’t change

within those numbers of hidden neurons. However, the curve for amor- cells is significantly

decreasing with the numbers of hidden neurons increasing. Therefore, it can be concluded

that the relationship between prediction MOP results and the number of hidden units is not a

simple function. Finally, it can be seen that, for multi- and amorphous crystalline cell, three

Fig 3. Mono-crystalline (a), multi-crystalline (b) and amorphous crystalline (c) cells compared to experimental

data using different numbers of hidden neurons (n = 3, 6, and 9).

https://doi.org/10.1371/journal.pone.0184561.g003

Fig 4. The average correlation coefficients at the different number of hidden layer units in the neuron

network algorithm.

https://doi.org/10.1371/journal.pone.0184561.g004

A neural network and photovoltaic power forecast

PLOS ONE | https://doi.org/10.1371/journal.pone.0184561 September 12, 2017 5 / 8

https://doi.org/10.1371/journal.pone.0184561.g003
https://doi.org/10.1371/journal.pone.0184561.g004
https://doi.org/10.1371/journal.pone.0184561


hidden layer units gave the highest correlation coefficient. For mono-crystalline cell, the best

results were achieved at the hidden layer unit of 8.

The average MSEs between experimental and prediction results for all three types of cells

were shown in Fig 5. It can be seen that the average MSEs between experimental and predic-

tion results nonlinearly change with the hidden layer units for mono-, multi- and amor- cells.

Those results further prove that relationship between prediction MOP results and the number

of hidden units is not a simple function. In addition, similar to Fig 4, three or four hidden

layer neuron units gave the low MSEs for multi- and amorphous crystalline cell. For mono-

crystalline cell, the lowest MSEs are achieved at the hidden layer unit of 8. Therefore, the

results show that there is no a universal principle (such as Kolmogorov’s theorem [20]) to

select the number of neurons in the hidden layers for all types of silicon photovoltaic devices.

Conclusion

In this paper, we built a neural network based computational model to predict the output

power of three types of photovoltaic cells. The effects of the number of hidden neurons on the

prediction of the output power of mono-, multi- and amorphous crystalline silicon cells were

also investigated. Firstly, the order of the solar generation power changes influenced by the

external conditions from smallest to biggest is: multicrystalline (multi-), monocrystalline

(mono-), amorphous (amor-) crystalline silicon cells. The multi- cell characteristics are less

susceptible to light intensity and cell temperature. Secondly, the neural network (ANN) pre-

diction results are very close to the experimental data, and are also influenced by numbers of

hidden neurons. Thirdly, the relationship between prediction results and the number of hid-

den units is not a simple function. For multi- and amorphous crystalline cell, three or four hid-

den layer units resulted in high correlation coefficients and low MSEs. For mono-crystalline

cell, the best results were achieved at the hidden layer unit of 8.

Supporting information

S1 Data. I-V and P-V curves of mono-crystalline, multi-crystalline and amorphous crystal-

line silicon PV cells measured at two extreme conditions. To confirm the effects of light

Fig 5. The average MSEs varying with the number of hidden units for mono-(a), multi-(b) and amor-(c) cells.

https://doi.org/10.1371/journal.pone.0184561.g005
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intensity and temperature on PV cells electrical characteristics, the I-V and P-V curves of

mono-crystalline, multi-crystalline and amorphous crystalline silicon PV cells measured at

two extreme conditions: the lowest light intensity and temperature (the 1st tranche (light

intensity) and -10˚C (temperature)), as well as the highest light intensity and temperature (6th

tranche and 40˚C) was given.

(DOC)

S2 Data. The measured output max power of mono-crystalline, multi-crystalline and

amorphous crystalline silicon PV cells at different conditions. The experimental dataset of

output max power of mono-crystalline, multi-crystalline and amorphous crystalline silicon PV

cells under different conditions were given. Those experimental data points were used to train

the neuron network and to validate the prediction results.

(DOC)
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