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Abstract

Multidimensional systems coupled via complex networks are widespread in nature and thus

frequently invoked for a large plethora of interesting applications. From ecology to physics,

individual entities in mutual interactions are grouped in families, homogeneous in kind.

These latter interact selectively, through a sequence of self-consistently regulated steps,

whose deeply rooted architecture is stored in the assigned matrix of connections. The

asymptotic equilibrium eventually attained by the system, and its associated stability, can be

assessed by employing standard nonlinear dynamics tools. For many practical applications,

it is however important to externally drive the system towards a desired equilibrium, which is

resilient, hence stable, to external perturbations. To this end we here consider a system

made up of N interacting populations which evolve according to general rate equations,

bearing attributes of universality. One species is added to the pool of interacting families

and used as a dynamical controller to induce novel stable equilibria. Use can be made of the

root locus method to shape the needed control, in terms of intrinsic reactivity and adopted

protocol of injection. The proposed method is tested on both synthetic and real data, thus

enabling to demonstrate its robustness and versatility.

Introduction

Investigating the interlinked dynamics of an ensemble composed of units organized in homol-

ogous families, constitutes a universal challenge in science, of broad and cross-disciplinary

breath [1–3]. Each population is customarily identified in terms of its continuous density. This

latter evolves in time, as dictated by specific self-reaction stimuli, that generally bear nonlinear

contributions. In a complex and dynamical environment, species experience a large plethora

of mutual interactions, declinated via different modalities, notably pairwise exchanges. Coop-

erative and competitive interference are simultaneously at play, and shape the ultimate fate of

the system as a whole [4]. These fundamental ingredients, flexibly combined and properly inte-

grated, are at the roots of any plausible mathematical model targeted to community interac-

tions [5], from ecology [6] to neuroscience [7, 8], passing from genetic and human health [9],

through a full load of man-made technological applications [10]. Irrespectively of the specific
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realm of investigation, each population can be abstractly assigned to a given node of a virtual

graph. Directed or indirected edges among nodes exemplify the topological structure of the

existing network of interactions [11, 12]. The intricate web of inter-species connections, key

information to anticipate the expected dynamics of the system, is therefore encoded in the

associated adjacency matrix [13, 14].

In many cases of interest, it is important to drive the system towards a desired equilib-

rium, that is stable, and thus resilient, to external perturbations [15–19]. For example, hostile

pathogens could be forced to go extinct: the stability of the attained equilibrium would effi-

caciously shield from subsequent harmful invasion and outbreaks. Alternatively, it could

prove vital to robustly enhance the expression of species identified as beneficial for the sys-

tem at hand. Building on these premises, we here develop and test a general control strategy

[20–24] targeted to multidimensional systems consisting of a large number of components

that interact through a complex network. By inserting one additional species, the controller,

which configures as a further node of the collection, we will be able to manipulate the

asymptotic dynamics of the system, in terms of existence and stability of the allowed fixed

points.

To set the reference frame we will hereafter consider a system consisting of N species

(nodes) whose activities x = (x1, x2, � � �, xN)T obey the coupled nonlinear Eqs [6, 15, 16]:

_xi ¼ fiðxiÞ þ
X

j

Aijgiðxi; xjÞ i ¼ 1; . . . ;N: ð1Þ

The first term on the right-hand side specifies the self-dynamics of species i while the sec-

ond term stems from the interactions of species i with the other species. The nonlinear func-

tions fi(xi) and gi(xi, xj) encode the dynamical laws that govern the system’s components, while

the weighted connectivity matrix A captures the interactions between nodes. The elements Aij
can be positive or negative, depending on the specific nature of the interaction, i.e. cooperative

or competitive. Notice that system (1) is assumed in [15] as a reference model to analyze resil-

ience patterns in complex networks. Differently from [15], Aij can here take positive and nega-

tive values (see also [25]).

In ecological applications, the number of nodes reflects the biodiversity of the scrutinized

sample [6, 16, 26]. Distinct trophic layers materialize as coherent blocks in the adjacency

matrix, whose entries modulate the strength of mutual interactions [4]. These are often epito-

mized by a quadratic response function gi(xi, xj) [16]. Each species is then subjected to a reac-

tion drive fi(xi), usually a logistic growth with a prescribed carrying capacity [15]. Animals

displaying competitive predator-prey interactions or, alternatively, subjected to a symbiotic

dependence, such as in plant-pollinator relationships, are among the systems that fall within

the aforementioned scenario [4]. Furthermore, the complex community of micro-organisms

that live in the digestive tracts of humans and other animals, including insects, can be rooted

on similar descriptive grounds [6]. For genetic regulatory networks, the dynamical variables xi
represent the level of activity of a gene or the concentration of the associated proteins [27].

Species specific reaction terms fi(xi) account for e.g. degradation or dimerization. The pattern

of activation could be effectively modeled by sigmoidal Hill-like functions [1], as follows the

classical Michaelis-Menten scheme [28], which incorporates the known map of gene interac-

tions. On a more general perspective, understanding the emerging dynamics in social commu-

nities [29], grasping the essence of the learning organization in the brain [30], and

implementing efficient protocols for robot navigation in networked swarms [31] are among

the very many applications that can be traced back to one of the variants of Eq (1), with a suit-

able choice of the nonlinear functions fi(xi) and gi(xi, xj).

Control of multidimensional systems on complex network

PLOS ONE | https://doi.org/10.1371/journal.pone.0184431 September 11, 2017 2 / 12

https://doi.org/10.1371/journal.pone.0184431


Materials and methods

Adding a species to enforce stable equilibria in a multidimensional

system

Starting from the above illustrated setting, we will here discuss a suitable control scheme to

drive system (1) towards a desired equilibrium x� ¼ ðx�
1
; x�

2
; . . . ; x�NÞ

T
, which is linearly stable

to externally imposed perturbations. To reach this goal we shall introduce one additional spe-

cies, the (N + 1)-th component of the collection, suitably designed to yield the sought effect.

To set the notation, we indicate by u the component (e.g., concentration, activation level)

assigned to the controller and write:

_xi ¼ fiðxiÞ þ
P

jAijgiðxi; xjÞ þ aihiðxi; uÞ

_u ¼ � ðu � u�Þ � r
P

jbjðxj � x
�
j Þ:

(

ð2Þ

The controller u can exert a direct influence on every component xi, as specified by newly

added terms αi hi(xi, u) that modify the original system (1). α = (α1, α2, . . ., αN)T is a vector of

N constant parameters, to be self-consistently adjusted following the scheme depicted below.

hi(xi, u) is a generic, in principle nonlinear, function of the components xi and u that reflects

the modality of interactions between the controller and the existing species. The equation

for the dynamical evolution of the controller u displays two distinct contributions. The

first represents a self-reaction term, assumed to be linear just for ease of presentation. The

nonlinear self-dynamics of the controller u can be readily considered, with no further technical

complication. The rate of change of u is assumed to be contextually driven by a global

forcing that senses the relative distance of xi from its deputed equilibrium x�i . The parameters

β = (β1, β2, . . ., βN)T and ρ will prove central in enforcing the stabilization of the prescribed

fixed point. A few comments are mandatory to fully appreciate the generality of the proposed

framework, beyond the specific choices made for purely demonstrative purposes. Let us begin

by remarking that the controller u can represent an artificially engineered component or,

equivalently, belong to an extended pool of interacting populations. In the scheme here imag-

ined, it is assumed that the values of u and xi 8i, are accessible to direct measurements at

any time and that this information can be processed to set the controller dynamics. This is

largely reasonable for experiments that run under protected conditions like, e.g., the study of

microbial dynamics in laboratory reactors, but certainly less realistic for applications that aim

at in vivo multidimensional systems, think for instance to genetic regulatory circuits. The

dynamical equation for u can, however, be amended to a large extent and with a great deal

of flexibility, depending on the target application and the structural specificity of the

employed controller, while still allowing for an analogous methodological treatment. As a

matter of fact, we can equivalently assume a generalized equation for the controller of the type

_u ¼ fuðuÞ � rguðx; u; βÞ þ bwhere fu(u�) = 0 and b ¼ rguðx�; u�; βÞ. The dynamics of the orig-

inal, unsolicited, components and the functional form that specifies the controller feedback

bear unequivocal universality traits [15].

The global fixed point (x�, u�) of the controlled system (2) should match the following con-

straints

fiðx�i Þ þ
X

j

Aijgiðx
�

i ; x
�

j Þ þ aihiðx
�

i ; u
�Þ ¼ 0 i ¼ 1; ::;N ð3Þ

which, provided the x�i and u� are assigned, ultimately set the values of the parameters αi. Con-

versely, as we shall illustrate in the following, one could assume the parameters αi as a priori

known and infer via Eq (3) the fixed point(s) to be eventually stabilized. The next step in the

Control of multidimensional systems on complex network

PLOS ONE | https://doi.org/10.1371/journal.pone.0184431 September 11, 2017 3 / 12

https://doi.org/10.1371/journal.pone.0184431


analysis aims at ensuring the stability of the selected fixed point. This will be achieved by acting

on the residual free parameters β and ρ. As routinely done, we perturb the equilibrium solu-

tion as xi ¼ x�i þ vi, u = u� + w and Taylor expand Eq (2) assuming the imposed disturbances

η ¼ ðv;wÞ small in magnitude. At the linear order of approximation one obtains:

_η ¼
G q

� rβT � 1

 !

η � Jη ð4Þ

where q is a N-dimensional column vector of components qi ¼ ai
@hi
@u ðx

�
i ; u

�Þ. The N × Nmatrix

G is defined as:

Gii ¼
@fi
@xi
ðx�i Þ þ

X

k

Aik
@gi
@xi
ðx�i ; x

�

kÞ þ ai
@h
@xi
ðx�i ; u

�Þ

Gij ¼ Aij
@gi
@xj
ðx�i ; x

�

j Þ:

The fixed point (x�, u�) is linearly stable if all eigenvalues of the Jacobian matrix J have neg-

ative real parts. The associated characteristic polynomial PðlÞ ¼ det ðJ � lIÞ can be cast in

the equivalent, affine in the ρ-parameter, form:

PðlÞ ¼ � ð1þ lÞdet ðG � lIÞ þ r
XN

i;j¼1

bj½adjðG � lIÞ�jiqi � DðlÞ þ rN ðlÞ

that is reminescent of the celebrated root locus method [32]. Here, [adj(Z)]ji = (−1)i+j

det[(Z)(i, j)] denotes the adjugate of matrix Z, (Z)(i, j) being the minor of Z obtained by remov-

ing the i-th row and the j-th column. The polynomials DðlÞ ¼ ð� 1Þ
Nþ1QNþ1

k¼1
ðl � pkÞ and

N ðlÞ ¼ ð� 1Þ
Nþ1QN� 1

k¼1
ðl � zkÞ have respectively degrees N+1 and N − 1, without loss of gen-

erality β can be chosen so that N ðlÞ assumes this form. With a slight abuse of language we

will refer to as poles the roots pk of the polynomial DðlÞ and zeros the roots zk of N ðlÞ. Notice

that for ρ = 0 the eigenvalues of the Jacobian J correspond to the N+1 poles pk. These latter

quantities are uniquely determined, once the fixed point (x�, u�) has been assigned. In particu-

lar it cannot a priori be ensured that the real parts of all pk are negative, as stability would

require. In other words, when ρ = 0, we can enforce the desired fixed point into the system but

cannot guarantee its stability. On the other hand, for ρ! ±1,N − 1 eigenvalues of J tend to

the zeros zk, which depend self-consistently on the free parameters β. As we shall show hereaf-

ter, it is in principle possible to assign the βi to force the real parts of all zk to be negative. The

two remaining eigenvalues of matrix J, in the limit of large |ρ|, diverge to infinity in the com-

plex plane. More precisely, they travel along opposite directions following a vertical (resp. hori-

zontal) asymptote, if ρ is bound to the positive (resp. negative) semiaxis. To confer stability in

the limiting case ρ!1 where N − 1 eigenvalues of J coincide with the roots of N ðlÞ, it is

therefore sufficient to (i) operate a supervised choice of β and (ii) impose the condition that

yields a vertical asymptote (ρ! +1), while, at the same time, requiring that this latter inter-

sects the negative side of the real axis. In this respect, it is important to remark that the inter-

section occurs in the point of abscissa l0 ¼
1

2

PNþ1

k¼1
pk �

PN� 1

k¼1
zk

� �
. Hence, the idea is to

interpolate between the two limiting cases ρ = 0 and ρ!1 by determining the minimal value

ρc of ρ beyond which the desired fixed point becomes stable. The existence of the threshold ρc
that makes the imposed fixed point attractive for any ρ> ρc is obvious, being stability already

assured in the limiting setting ρ! +1. For the sake of clarity we reiterate that this amounts to
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selecting Re(zk)< 0 for all k and further imposing λ0 < 0, by properly assigning the free

parameters β.

In order to study the assignability of the zeros zk by means of β, let us recall that for a

generic square matrix Z, adjðZ � lIÞ ¼ �
PN� 1

m¼0

PN� m� 1

l¼0
clþmþ2Z

ml
l
where ck stands for the

coefficients of the characteristic polynomial of Z, namely det ðZ � tIÞ ¼
PN

l¼0
clþ1tl. The poly-

nomial N ðlÞ can be consequently written as:

N ðlÞ ¼ �
XN� 1

m¼0

XN� m� 1

l¼0

clþmþ2½β
TGmq�ll �

XN� 1

n¼0

dnþ1l
n

ð5Þ

It is hence straightforward to establish a direct relation between the parameters β and the vec-

tor of coefficients d:

dn ¼ �
XN� n

k¼0

ckþnþ1½β
TGkq� ð6Þ

that can also be equivalently stated as:

d ¼ Hβ ð7Þ

where H is the matrix defined by:

Hnm ¼ �
XN� n

k¼0

ckþnþ1ðG
kqÞm: ð8Þ

The suited vector β is thus obtained from Eq (7), provided matrix H is invertible. This latter

request defines the condition of controllability for the scheme that we have implemented (see

Supporting Information, SI, for a discussion that aims at positioning this observation in the

context of standard control theory [33]). Notice that for obvious consistency reasons β must

have real entries. This follows naturally if one chooses the zeros zk to be real or complex conju-

gate in pairs, which implies that the coefficients dn of the polynomial N ðlÞ (see Eq (5)) are

real. All other quantities involved are real by definition.

Summing up, the devised strategy consists of the following steps. First, the fixed point is

selected and the parameters α frozen to their respective values as specified by Eq (3). Then the

complex roots zk are chosen so that Re(zk)< 0 for all k while, at the same time, matching the

condition that makes the vertical asymptote cross the horizontal axis with a negative intercept.

As we will clarify when discussing the applications, the zk can be chosen to coincide with the

poles pk, except for punctual modifications whenever Re(pk)> 0. Notice however that zk
should be real or come in conjugate pairs, as the coefficients dk are, by definition, real. Once

the roots zk have been fixed, one can readily compute the associated polynomial coefficients

dk, and hence proceed with the determination of β via Eq (7), provided that the controllability

condition holds. Finally, by selecting ρ> ρc> 0 we obtain a linearly stable fixed point (x�, u�)
for the controlled dynamics Eq (2).

Results

Testing the control method: From synthetic gene network to real

microbiota dataset

As a first application of the above technique, we will study the dynamics of an artificial gene

network [34–37]. In our example the network of connections is a regular tree with branching

ratio r = 4. It is further assumed that the genetic activation between nodes i and j is described
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in terms of a Hill function, with cooperation coefficient equal to 2. In formulae, Aij = 1 and

giðxi; xjÞ � gðxjÞ ¼ x2
j =ð1þ x

2
j Þ. Negative regulation loops are also accommodated for. These

latter could, in principle, be modeled by assuming paired interactions of the type 1 − g(xj),
while still setting to one the relative entry of the connection matrix. As described in the SI, we

can equivalently set Aij = −1, while assuming interactions to be modulated by g(xj) as indicated

above. At the same time, the reaction part should be modified with an additional term, ηi,
counting the number of negative loops that affects node i. More specifically, f(xi) = −γi xi+ηi,
where the first term mimics constitutive degradation. In our tests, matrix A contains an identi-

cal number of randomly assigned ±1. The parameters γi are random variables uniformly dis-

tributed over the interval [0, 1]. Working in this setting our aim is to control the equilibrum

state of the system and thus shape the pattern of asymptotic activity. For this initial application

we choose to operate with a simple linear control and set hi(xi, u)�h(u) = u, for all i. In this

case, u could e.g. represent the density of a suitable retroviral vector used to infect specific cell

lines [38]. To provide an immediate graphical illustration of the power of the method, we set

to stabilize two distinct fixed points. In the first example (see Fig 1, upper left panel) the con-

trol is designated so as to enhance the degree of activity of the peripheral nodes of the tree.

These latter are characterized by a similar value of the activity, apart for slight randomly super-

posed fluctuations. Similarly, the nodes that define the bulk of the tree display a shared degree

(except for tiny stochastic modulation) of residual activity. In the upper right panel of Fig 1,

the dual pattern is instead obtained and stabilized: the peripheral nodes are now being silenced

and the activity concerns the nodes that fall in the center of the tree. Lower panel of Fig 1 dis-

plays the root locus diagram relative to the situation reported in the second panel. By properly

tuning ρ above a critical threshold ρc, we can enforce the stability of the obtained fixed point.

Two eigenvalues diverge to ±1 following a vertical asymptote in the complex plane. For each

chosen fixed point that is being stabilized the zeros zk can be selected so as to make the asymp-

tote intercept the horizontal axis in the left-half of the plane.

As a second application of the proposed control strategy, we set to study the dynamics of

the gut microbiota [6]. The intestinal microbiota is a microbial ecosystem of paramount

importance to human health [39]. Efforts are currently aimed at understanding the microbiota

ability to resist to enteric pathogens and assess the response to antibiotics cure of intestinal

infections. Recent advances in DNA sequencing and metagenomics make it possible to quanti-

tatively characterize the networks of interactions that rule the dynamics of the microbiota eco-

system. This was for instance achieved in [40] by analyzing available data on mice [41] with an

innovative approach which combines classical Lotka-Volterra model and regression tech-

niques. Eleven species were identified and thoroughly analyzed in terms of self and mutual

dynamics.

In the following we shall apply the method here developed to control the dynamics of the

whole microbioma [40] or a limited sub-portion of it. In this specific case, the self-dynamics

is assumed to be logistic, namely fi(xi) = xi(ri − si xi), while g(xi, xj) = xi xj. The constants ri
and si are provided in [40] and follow from direct measurements. The weighted matrix of con-

nections A presents both positive and negative entries, assigned according to [40]. Finally,

hi(xi, u) = uxi. The results of the analysis are organized under different headings that reflect the

three distinct control strategies explored.

Stabilizing an unstable fixed point by means of an external controller (Case A). Con-

sider the system of 11 species, as defined in [40] (see SI for a discussion on the bacterial species

involved). For illustrative purposes, we will restrict the analysis to all sub-systems that combine

5 out of the 11 species analyzed in [40]. The fixed points for the obtained 5 species systems are

calculated. Those displaying positive concentrations are then retained for subsequent analysis.
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The stability of each selected fixed point is established upon evaluation of the spectrum of the

Jacobian of the reduced dynamics. In Fig 2(a) the histogram of (λRe)max, the largest real parts

of the recorded eigenvalues, is plotted: several fixed points exist that correspond to unstable

equilibria. Starting from this setting, we will introduce a suitably shaped controller, following

the above discussed guidelines, in order to stabilize a slightly perturbed version of an originally

unstable fixed point, see pie charts in Fig 2(a). Denote by x� the fixed point to be eventually sta-

bilized and consequently assign the parameters αi so as to match Eq (3). The spectrum of the

Jacobian matrix obtained for ρ = 0 (blue circles in Fig 2) protrudes into the right half-plane.

More specifically, one eigenvalue exhibits a positive real part, so flagging the instability that

one aims to control. At variance, the crosses in Fig 2(b) stand for the roots zk of N ðlÞ, and fall

Fig 1. Stabilization of different fixed points for an artificial gene regulatory network. Upper left panel: the control is modulated so as to

enhance the activity of the peripheral nodes of the tree, as compared to the inner ones. Upper right panel: the control makes now the bulk

nodes more active as compared to the peripheral ones. Lower panel: the root locus diagram relative to the situation displayed in the second

panel is plotted. Blue circles stand for the position of the complex eigenvalues when ρ = 0, while green crosses identify the eigenvalue

obtained for ρ!1. The vertical red line represents the asymptote that attracts two of the modified eigenvalues, when ρ!1. The red dots

show the computed spectrum, calculated when increasing ρ. In this case the matrix A contains an identical number of ±1 entries. These are

randomly assigned and kept unchanged for all tests performed. The figure on the right is a zoom of the plot displayed on the left.

https://doi.org/10.1371/journal.pone.0184431.g001
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in the left side of the complex plane. The vertical (red, in Fig 2(b)) line identifies the location

of the two residual eigenvalues of the Jacobian matrix, when ρ!1. By tuning the parameter

ρ, one can continuously bridge the two above limiting settings, as graphically illustrated in

Fig 2(b). When ρ> ρc’ 0.01, the eigenvalues populate the left half-hand plane and stability is,

therefore, gained.

Acting with one species of the pool to damp the concentration of the pathogens

(Case B). Select now a stable fixed point, mixture of five distinct species. One of them is Clos-
tridium difficile, a species of Gram-positive spore-forming bacteria that may opportunistically

dominate the gut flora, as an adverse effect of antibiotic therapy. As controller we shall here

employ one of the other 6 species that compose the microbioma [42, 43]. The aim is to drive

the system towards another equilibrium, stable to linear perturbations, which displays a

decreased pathogen concentration. In this case the parameters α are determined a priori, once

the control species has been identified. Denote by �A the reduced 5 × 5 matrix that specifies all

paired interactions between the pool of populations involved in the initial fixed point. The

Fig 2. Control strategies applied to the microbiota dataset. Panel (a): a reduced 5 species subsystem of the microbiota is considered

(case A) and all possible fixed points computed. Only those displaying non-negative concentrations are retained and their stability assessed.

In the main figure, the histogram of (λRe)max, the largest real parts of the eigenvalues obtained after the linear stability analysis, is depicted.

The two pie charts refer to the initially unstable fixed point (upper chart) and the stabilized equilibrium (lower chart). Panel (b): the root loci

diagram relative to the case discussed in panel (a), is shown. Blue circles identify the position of the complex eigenvalues when ρ = 0, while

green crosses stand for the eigenvalues obtained in the limit ρ!1. The vertical red line is the asymptote that eventually attracts the two

residual eigenvalues. The red dots show the computed spectrum, when progressively increasing ρ. Panel (c): the goal is here to reduce the

concentration of the pathogen species, C. difficile, by employing as controller one of the species that compose the microbioma (case B). The

concentration of C. difficile is monitored over time for three different control strategies, turning on the control at the same time (t = 20 days).

The insertion of the species of uncl. Lachnospiraceae provoques a substantial reduction (50%) of the pathogen concentration, as also

displayed by the enclosed pie charts (for interpreting the color-code refer to panel (a)). Panel (d): we now modify a stable fixed point, by

driving to extinction one of the existing population, the pathogen C. difficile (here species 6), with an indirect control strategy (case C). The

obtained concentrations are reported in the left graph (pluses) and confronted with the initial unperturbed solution (diamonds). As anticipated

x�
6
’ 0. The components of α are plotted in the right graph. Notice in particular that α6 = 0.

https://doi.org/10.1371/journal.pone.0184431.g002
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equilibrium solution that can be attained by the controlled system is determined as

x� ¼ � �A � 1ðr þ αÞ, and clearly depends on the species used as controller. The only meaningful

solutions are those displaying non negative components x�i . In the example depicted in Fig 2

(c) only three solutions can be retained, namely the ones obtained by using uncl. Lachnospira-

ceae, uncl. Mollicutes and Enterococcus as respective control. In one of the inspected cases, the

amount of C. difficile is found to reduce, when the control is turned on. The asymptotic con-

centration that is eventually attained is sensibly lower than the one initially displayed. The pie

charts in Fig 2(c) represent, respectively, the initial fixed point and the final stationary equilib-

rium, as shaped by the control in the most beneficial case, i.e., when the concentration of C.

difficile is seen to shrink. The root locus plot obtained for this specific case is reported in the SI.

Importantly, the discussed scheme can be straightforwardly modified so as to account for a

generic nonlinear self-reaction dynamics for the control species, e.g., a logistic growth, that

could replace the linear Hookean-like term assumed in Eq (2).

Driving to extinction one species, the other being the target of the control (Case C). As

an additional example, we wish to modify a stable fixed point of the dynamics, by silencing

one of the existing populations with an indirect control. In other words we shall introduce and

stabilize a novel fixed point, that displays a negligible residual concentration of the undesired

species, by acting on the other species of the collection. This is for instance relevant when aim-

ing at, e.g., eradicating a harmful infection that proves resistant to direct therapy. With this in

mind, we consider a reduced ecosystem consisting of 6 species, selected among the 11 that

define the microbiota. A stable fixed point exists (black diamonds in Fig 2(d), left panel) which

displays a significant concentration of C. difficile, the pathogen species. Assign to this latter

species the index 6. We now insert a controller which cannot directly interfere with C. difficile.
This amounts, in turn, to setting to zero the corresponding component of vector α (α6 = 0).

We then require the concentration of the C. difficile to be small, i.e., x�
6
¼ ε� 1. This latter

condition translates into a constraint that should be matched by the other 5 species, namely
P

j6¼6
�A6jx�j ¼ ðs6 � �A66Þε � r6. Given x�k , the components αk, with k 6¼ 6, are chosen so as to

match the constraint ak ¼ ð� rk þ skx�k �
P

j6¼6
�Akjx�j � �Ak6εÞ=u�. A possible solution of the

problem is reported in Fig 2(d): in the left panel (plus symbols) the components of the fixed

point stabilized by the control are shown. As anticipated, the concentration of C. difficile is

small. The right panel of Fig 2(d) shows the components of the vector α that specify the charac-

teristics of the introduced controller. Notice that α6 = 0 so that the controller is not directly

influencing the rate of production of C. difficile.

Discussion

We would like to draw the attention on the interpretation of α. As stated earlier, α character-

izes the strength of the coupling between the controller u and every single species of the system

to be controlled. An alternative interpretation is however possible: u could represent a mixture

of different species and the components of α incorporate the relative abundance of the mixed

compounds. In light of the above, also the previously discussed control schemes which appar-

ently assumed dealing with an artificially designed control, could be realized via a proper mix-

ture of exisiting microbiota species so as to achieve the coupling α corresponding to the

desired fixed point.

Notice also that the control scheme here developed could be in principle exploited to drive

the system towards a stable fixed point of the unperturbed dynamics, starting from out-of-

equilibrium initial conditions. To achieve this goal u� needs to be set to zero, thus requiring

that the controller is turned off at equilibrium. In this case, α and β are not subjected to spe-

cific constraints, as the existence and stability of the desired equilibrium are a priori granted.
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Such parameters could hence be chosen so as to reflect the specificity of the target system. In

the annexed SI we demonstrate this intriguing possibility.

Conclusion

Summing up, we have here proposed and tested a method to control the dynamics of multidi-

mensional systems on a complex graph. The original system is made up of N interacting popu-

lations obeying a set of general equations, which bear attributes of universality. One additional

species, here referred to as the controller, is inserted and made interact with the existing con-

stellation of species. By tuning the strength of the couplings (or equivalently the composition

of the inserted controller), we can drive the system towards a desired equilibrium. The stability

of the achieved solution is enforced by adjusting the parameters that ultimately govern the rate

of change of the controller. Methodologically, we make use of the root locus method which

can be naturally invoked once the control problem is suitably formulated. The tests that we

have performed, both synthetic and drawn from real life applications, demonstrate the versatil-

ity and robustness of the proposed scheme. This latter configures therefore as a viable and

innovative tool to tackle a large plethora of inter-disciplinary systems, from life science to

man-made applications, that should be stably driven towards a desired configuration. In this

current implementation, and for purely pedagogical reasons, the control assumes that the state

of the system is accessible to direct measurement. Relaxing this working hypothesis is a possi-

bility that we shall explore in a future contribution.

Supporting information

S1 File. Control of multidimensional systems on complex network: Supplementary infor-

mation.

(PDF)
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