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Abstract

This study applies unsupervised machine learning techniques for classification and cluster-

ing to a collection of descriptive variables from 10,442 lung cancer patient records in the

Surveillance, Epidemiology, and End Results (SEER) program database. The goal is to

automatically classify lung cancer patients into groups based on clinically measurable

disease-specific variables in order to estimate survival. Variables selected as inputs for

machine learning include Number of Primaries, Age, Grade, Tumor Size, Stage, and TNM,

which are numeric or can readily be converted to numeric type. Minimal up-front processing

of the data enables exploring the out-of-the-box capabilities of established unsupervised

learning techniques, with little human intervention through the entire process. The output of

the techniques is used to predict survival time, with the efficacy of the prediction represent-

ing a proxy for the usefulness of the classification. A basic single variable linear regression

against each unsupervised output is applied, and the associated Root Mean Squared Error

(RMSE) value is calculated as a metric to compare between the outputs. The results show

that self-ordering maps exhibit the best performance, while k-Means performs the best of

the simpler classification techniques. Predicting against the full data set, it is found that their

respective RMSE values (15.591 for self-ordering maps and 16.193 for k-Means) are com-

parable to supervised regression techniques, such as Gradient Boosting Machine (RMSE of

15.048). We conclude that unsupervised data analysis techniques may be of use to classify

patients by defining the classes as effective proxies for survival prediction.

Introduction

The ability to estimate lung cancer survival based on disease attributes from past patient popu-

lations may be of value when treating particular patients, and could thus complement current

clinical practice. With the goal to minimize necessary expertise required for such database

analysis while also providing for the opportunity to obtain novel insight, in this study unsuper-

vised learning techniques are evaluated to automatically analyze lung cancer data available
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from the Surveillance, Epidemiology, and End Results (SEER) program of the National Cancer

Institute (NCI) [1, 2]. The SEER Program is an authoritative repository of cancer statistics in the

United States [3]. The SEER database enables outcome analysis for large number of patients based

on attributes broadly classified as diagnostic (e.g., surgical procedure, radiation therapy), demo-

graphic (e.g., age, gender, location), and outcome (e.g., survival time, cause of death). Further

detailed information about the lung cancer dataset can be found at the website of the NCI [4].

Past work has analyzed patient survival from the SEER database based on different attri-

butes for various cancers. These attributes have included age [5, 6], number of primaries [7, 8],

smoking status [9], and gender [10]. A comparative analysis of lung cancer incidence rates in

the U.S. was performed in [11]. Additional work has evaluated survival rates for rectal [12] and

limited stage small cell cancer [13]. Prediction models for survival time or a number of other

factors have been explored; typically, these efforts have involved supervised machine learning

classification techniques, data mining and statistics [14–25]. In terms of machine learning,

supervised learning algorithms categorize records based on labeled data. The process involves

collecting and labeling a particular dataset, and then developing or customizing correlation

techniques for the dataset. The functions inferred from the labeled training data can then be

used to classify new data. In contrast, unsupervised techniques do not use labeled data; the

process is based on measuring the similarity of “intra” classes and dissimilarity of “inter”

instances while minimizing a priori assumptions. For example, cluster analysis uses unlabeled

input data to create groupings that may facilitate data analysis. Of note, semi supervised tech-

niques use a small group of labeled data, with the model updated as new data is added to the

set. The application of any one technique may be complicated by factors such as incomplete

(missing) patient data, which can affect the quality of survival prediction [26, 27].

Application of supervised methods requires a certain level of technical expertise. Common

techniques include Decision Trees, Gradient Boosting Machine, and Support Vector Ma-

chines. Decision Trees decomposes a dataset into smaller subsets while creating a decision tree

associated with these data; the final designation of the subset is decided at a single leaf or end

node where the data subset cannot be further split. In particular, the Random Forest technique

creates a number of decision trees during training which split randomly from a seed point.

This process yields a “forest” of randomly generated decision trees whose outcomes are inte-

grated as an “ensemble” by the algorithm to predict more accurately than a single tree would.

In comparison, Gradient Boosting Machine (GBM) uses weaker, smaller models to create an

“ensemble” to produce a final prediction. New weak models are iteratively trained with respect

to the current whole ensemble. The new models are built to be maximally correlated with the

negative gradient of the loss function that is also associated with the ensemble as a whole. In

contrast, Support Vector Machines (SVM) is an example of non-probabilistic binary linear

regression. Given a set of training data labeled as belonging to one of two sets, the technique

represents the sets in space and defines a hyper-plane separating them that is maximally dis-

tant from both sets. If a linear separation is impossible, the technique applies kernel methods

to perform non-linear mapping to a feature space, in which the hyper-plane represents a non-

linear decision boundary in the input space.

In recent years, supervised, semi-supervised, and unsupervised machine learning tech-

niques have found wide application to help analyze genomic, proteomic, and other types of

biological data [28–31], with Random Forest (e.g., [32–34]) and SVM (e.g., [35–37]) playing

major roles. Here, we explore the capability of unsupervised machine learning techniques

for lung cancer patient survival prediction. These techniques inherently involve less human

expertise and interaction than supervised methods, and thus minimize required intervention

for database analysis. A number of unsupervised techniques is applied to evaluate their perfor-

mance in clustering patients with similar attributes. Although unsupervised techniques have
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been previously applied to evaluate breast cancer patient survival [38, 39], to the best of our

knowledge this work represents the first time such approaches have been evaluated with

respect to lung cancer data. Longer term, the automated classification of patients into groups

may facilitate comparison and evaluation of prognostic as well as diagnostic considerations in

clinical practice.

Materials and methods

Disease variables

The SEER database contains hundreds of variables, with more than 30 of them meaningful to

the Lung Cancer patient group. Clustering, by its very nature, is designed to minimize the dis-

tance between similar data points–patients in this case–and maximize the distance between

dissimilar groups of points. For the purposes of this study, only variables that can be repre-

sented numerically were selected as inputs for machine learning. These variables include Num-

ber of Primaries (1–7), Age (22–87, in groups of 5), Grade (1–4), Tumor Size (0 to 989mm),

Stage (1–4), T (0–4), N (0–3), and M (0–1). Non-numeric information such as the types of pro-

cedures performed (“Beam Radiation”, Intra-“operative Radiation”, etc.) were excluded from

classification since some machine learning techniques do not directly support non-numeric

inputs. There are options–such as one-hot encoding of “dummy” variables–to facilitate

numeric analysis of categorical data, but they were excluded here due to the sparsity of popu-

lated data in these categories in our dataset and to minimize the pre-processing effort in what

is designed to be a black-box algorithm comparison.

The SEER Data Dictionary describes the selected variables as follows.

Age: Three-digit code that represents the patient’s actual age in years. (Here, a single 999

record was removed.)

Grade: Grading and differentiation codes 1 through 4 are defined in ICD-O-2; 1992 [2].

Grade represents cell appearance under microscopic examination, and is usually obtained

from biopsied tissue. Non-small cell lung cancer can be classified into four grades: Grade 1, for

which cells may look normal but with some evidence of proliferation; Grade 2, for which cells

look abnormal but growth seems restrained; Grade 3, for which cells look poorly differentiated

with clear evidence of growth; Grade 4, for which cells look poorly differentiated and with evi-

dence of strong growth.

Tumor Size: Records the tumor size in mm. Codes 991–995 indicate “Described as less than

x cm” where x is the last digit (1 through 5). The codes were converted for these ranges to

median tumor sizes (cm).

T, N, and M: These are the American Joint Committee on Cancer (AJCC) “T”, “N”, and

“M” components that are derived from Collaborative Stage (CS) coded fields, representing

“tumor,” “node,” and “metastasis,” respectively, using the CS algorithm, effective with 2004

+ diagnosis. See the CS site-specific schema for details [40]. The meaning of T, N, and M values

is described in Table 1 [41].

Stage: This is the AJCC “Stage Group” component that is derived from CS coded fields,

using the CS algorithm, effective with 2010+ diagnosis. See the CS site-specific schema for

details [40]. The information from the T, N, and M components is combined to define the

Stage value, as described in Table 2 [41].

Classifying techniques

The unsupervised techniques evaluated in this study are common, widely available (particu-

larly through open source implementations), well researched and supported, and representa-

tive of available approaches.
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Table 2.

Stage TNM Category

Grouping T N M

1A T1 N0 M0

1B T2a N0 M0

2A T1 N1 M0

T2a N1 M0

T2b N0 M0

2B T2b N1 M0

T3 N0 M0

3A T1 to T3 N2 M0

T3 N1 M0

T4 N0 or N1 M0

3B T1 to T4 N3 M0

T4 N2 M0

4 T1 to T4 N1 to N3 M1

Stage grouping for Non-Small Cell Lung Cancer based on TNM category [41].

https://doi.org/10.1371/journal.pone.0184370.t002

Table 1.

“T” (Tumor)

T0 No evidence of a primary tumor

T1 Tumor is < 3 cm in diameter, has not penetrated the visceral pleura, and has not affected the main

bronchi branches. If tumor is < 2 cm, it is T1a stage; otherwise, it is T1b.

T2 Tumor is > 3 cm in diameter, or has penetrated the visceral pleura, or has partially occluded the

airways, or involves the main bronchus but is > 2 cm away from the carina. If tumor is < 5 cm, it is T2a

stage; otherwise, it is T2b.

T3 Tumor is > 7 cm in diameter, or has caused an entire lung to collapse or develop pneumonia, or has

grown into the chest wall, diaphragm, mediastinal pleura, or parietal pericardium, or involves the main

bronchus and is < 2 cm from the carina (without involving the carina), or two or more tumor nodules are

present in the same lung lobe.

T4 Tumor has grown into the mediastinum, heart, large blood vessels near the heart, trachea, esophagus,

spinal column, or the carina.

“N” (Node)

N0 No tumor spread to nearby lymph nodes

N1 Tumor has spread to lymph nodes within the lung or near the hilar lymph nodes. The affected lymph

nodes are on the same side of the body as the primary tumor.

N2 Tumor has spread to lymph nodes around the carina or in the mediastinum. Affected lymph nodes are

on same side as primary tumor.

N3 Tumor has spread to lymph nodes near the clavicle on either side, or spread to hilar or mediastinal

lymph nodes on opposite body side of primary tumor.

“M” Metastasis

M0 Tumor has not spread to distant organs or to the other lung or lymph nodes farther away than in those

specified in the “N” classification.

M1 Tumor has spread to distant organs or to the other lung or lymph nodes farther away than in those

specified in the “N” category.

Definition of T, N, and M categories for Non-Small Cell Lung Cancer [41].

https://doi.org/10.1371/journal.pone.0184370.t001
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Hierarchical Clustering–Relatively simple and established technique to iteratively divide a

data set into a tree of increasingly smaller clusters. The approach takes into account the Euclid-

ean distance between the scaled input variables and iteratively breaks the single data set into

more and more clusters as individual distance thresholds are crossed. The result is a tree struc-

ture where a “cut” can be made at any height resulting in a number of clusters between 1 and

the number of records.

Model-Based Clustering (MBC)–Complex technique focused on Expectation Maximization

(EM) through normal mixture models and cutoff estimation based on the Bayesian Informa-

tion Criteria (BIC), which attempts to select not only a particular underlying model, but an

optimal number of clusters without any extra guidance [42, 43].

k-Means Clustering–A common, simple classification technique which requires users to

specify the number of classes ahead of time. The technique, while unsupervised in the basic

sense, has no built-in mechanism for determining the optimal number of clusters, thus requir-

ing the number of clusters k to be provided manually. Unlike hierarchical clustering, for which

a cutoff needs to be supplied after building the hierarchy to establish classes, k-Means requires

the input k variable at the outset.

Self-Ordering (Kohonen) Maps–Self-ordering maps (SOMs) project high dimensional data

into lower dimensional (typically 2D) clusters [44]. SOMs apply the idea of splitting data into

classes, but rather than a single number of classes, the technique divides the data into a map;

essentially a 2-D grid of squares or hexagons that each represent an individual class. Because of

this approach, SOMs are often used to classify data into larger numbers of classes; typically

evenly sized grids of 5x5, 10x10, 20x20, or higher maps, resulting in tens or hundreds of clas-

ses. Unlike other classification techniques, these classes are related by their proximity on the

map. In other models there is no reason to believe that any pair of classes would be more or

less similar than others. Although the high number of classes is more difficult to manipulate

when manually comparing between classes and across models, SOMs lend themselves well to

data visualization using the grids as actual visual maps.

Non-classifying techniques

Some unsupervised techniques do not separate the dataset into classes directly; rather, they

build feature sets (variables) that attempt to condense the information in high density data sets

into a much smaller number of dimensions. The output can sometimes be converted to or

interpreted as classifications, but it is not necessarily considered a distinct goal. It has been

shown [45–49] that data with a large number of dimensions can cause over-fitting leading to

low generalizability of a model, information redundancy or noise, all of which can result in

low model accuracy and inefficiency. In this study the following techniques were evaluated to

explore whether reducing the system dimensions would optimize the feature sets.

Non-Negative Matrix Factorization–In NMF, a data set (X) is deconstructed into two

matrixes W and H such that X�W ×H where W and H are typically much lower dimension

matrixes than X [50]. Thus, NMF attempts to decompose input data into two matrixes which,

when multiplied, estimate the original data. This is not, strictly speaking, classification, how-

ever it is common to treat the rank of one of the matrices as a number of classes, and reverse

engineer the matrix multiplication to assign each record to one of those ranks based on which

rank contributes most to the record’s values. Like k-Means or hierarchical clustering, this

rank–r–must be supplied. NMF algorithms typically provide some mechanisms for estimating

reasonable values of r.

Principal Component Analysis–PCA builds a set of n highly orthogonal variables PCA1,

2, . . ., n that represent the original data set by reducing the correlation between any two
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variables; in theory there will be fewer of these principal components than there are original

variables in a real-life data set with interdependencies. PCA thus decomposes the input data

into variables in such a way as to reduce correlation between those variables; making them in

theory more independent, and reducing the number of variables in the process. The method

does not provide a direct way to classify individual records, although it still provides a means

for breaking down the variables into a smaller number of less highly correlated variables.

Code implementation

The language R was used for implementation, as it is an open source statistical programming

platform with access to machine learning algorithms. In order to maintain the “black box” ben-

efit of unsupervised methods intact, the parameters for the various chosen methods were mostly

kept to default values. When choices had to be made, the parameter selection is explained in the

individual model section (Results), while parameters such as the number of bins were chosen

to enable comparison across models. For instance, the Model-Based Clustering automatically

selected 9 buckets as optimal, so k-Means was also tested with 9 classes.

To ensure generally comparable results, a small amount of pre-processing (such as scaling

and centering the variables to be of comparable values in the distance measures used in

machine learning) was performed and included in the R code [51].

Number of records

A total number of 10,442 records from the SEER database for patients diagnosed with lung

cancer between the years 2004–2009 were in the chosen dataset for unsupervised classification

analysis.

Results

Hierarchical clustering

Applying Hierarchical Clustering to the SEER Lung Cancer data yields a hierarchy of cluster

separations which can be visualized as the dendrogram–a common representation of these

tree structures (Fig 1). In the figure, a dashed box is added that divides the data into six clus-

ters, selected by moving down the chart until a point is found where the horizontal line crosses

exactly six branches in the dendrogram. With over 10,000 records, the visualization becomes

very dense at the bottom of the tree, although for the purposes here there is no need to distin-

guish between the leaves.

What Hierarchical Clustering fails to do is provide an idea of where one should draw the

line splitting the resulting clusters. It simply generates every successive classification descend-

ing into the tree until every record is individually separated. If one had a number of classes in

mind, such as the 6 chosen in Fig 1, this would be a useful approach, but more information is

required to generate a useful collection in a completely unsupervised fashion.

Model-based clustering

Running a Model-Based Cluster (MBC) with no additional tuning results in a set of 9 clusters,

with the distribution of records as in Table 3.

k-means clustering

With k = 9, as an example selected manually to match the automatic number of classes from

the MBC, a different distribution of classes is obtained (Table 3). Interestingly, the classes do

not comprise the same members for both models. In general, the purpose of using multiple
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unsupervised clustering techniques is to be able to compare results between them. For exam-

ple, k-Means can be compared to the previous MBC, obtaining the distribution of classes as

shown in Table 4. This mostly serves as a check that the models agree in some facets while dif-

fering in others. The k-Means clusters 3 and 7 are associated with MBC clusters 1 and 5 respec-

tively, while k-Means cluster 4 is predominately associated with MBC clusters 4 and 7, while

MBC cluster 9 is split between k-Means clusters 1 and 9. The order of the clusters is essentially

random, which is why agreement does not follow the diagonal as may be expected.

Visualizing cluster results

With even just a few variables, visualizing clusters becomes difficult. One solution is to exam-

ine any two variables at a time and examine the class correlation. The cancer Stage and Grade

variables (converted to numbers), yield the classifications shown in Fig 2.

Fig 2A presents the Stage (x-axis) and Grade (y-axis) classified with k-Means with k = 6.

Stages 1A, 1B and 2A are dominantly in a single class regardless of grade, while Stage 2B seems

Fig 1. Hierarchical clustering dendrogram with class selection.

https://doi.org/10.1371/journal.pone.0184370.g001

Table 3.

Technique Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

Model-Based 1588 1314 637 835 1071 727 774 939 2557

k-Means 992 1098 1154 1612 1146 651 1232 926 1631

Distribution of records based on applying the Model-Based and k-Means clustering techniques.

https://doi.org/10.1371/journal.pone.0184370.t003
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to have a variety of pink and green classes, which are more segregated in Stages 3A and 3B,

while Stage 4 is dominantly blue. In contrast, the grades appear evenly distributed in terms of

color. Note that scaled proxy values were used in the models and not the categorical stage indi-

cations of 1A, 1B, etc. The clinically recognizable values were used where not directly referenc-

ing the model inputs in order to make the charts more readily interpretable. These results

show that the k-Means algorithm with six classes was able to separate patients with cancers in

different stage, while grade was not necessarily a distinguishing characteristic between these

classes.

In Fig 2B, the k-Means algorithm with 9 classes was able to separate grade as well as stage

into multiple classes for certain combinations. The yellow and pink classes (colors are not

comparable between panels (A) and (B); they simply represent groupings within a chart), are

split between Grades I/II and III/IV, with Grades I/II having more yellow while Grades III/IV

Table 4.

Model-Based k-Means

1 2 3 4 5 6 7 8 9

1 0 36 1094 28 0 429 1 0 0

2 21 95 0 63 17 214 44 860 0

3 26 101 21 61 117 8 240 18 45

4 0 87 0 675 52 0 9 12 0

5 0 18 39 15 52 0 938 9 0

6 0 727 0 0 0 0 0 0 0

7 0 0 0 754 20 0 0 0 0

8 0 12 0 16 888 0 0 23 0

9 945 22 0 0 0 0 0 4 1586

Comparison of k-Means to the Model-Based Clustering. While there are some areas where hundreds of members are modeled into the same class, few

member counts dominate both the Model-Based and k-Means based classification at the same time, implying that there is some, but not too much,

agreement between the two methods.

https://doi.org/10.1371/journal.pone.0184370.t004

Fig 2. Colored classification exhibited by cancer Stage and Grade using k-Means algorithm. (A) Classification with k = 6. (B) Classification with

k = 9. Some jitter was added to allow the individual points to be more discernable within boxed regions.

https://doi.org/10.1371/journal.pone.0184370.g002
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are dominantly light blue or pink for stages 2B and 3A, respectively. In comparison, stage 3B

splits grades differently, with Grade 1 being mostly yellow, while Grades 2, 3, and 4 are darker

blue.

Every possible pair of classes is plotted on a single chart in Fig 3, colored with the groups

from the k-Means with 9-classes. The TNM staging components are of interest, for example:

M values are split such that M = M1 are almost entirely in one class and the remaining classes

are in M0. N and T share some classes; N = N0 and N1 contain the yellow class, which is stron-

gest in T = T3, and these are common with large Tumor Sizes. This is what the T factor indi-

cates; interestingly, it is T3 and not T4 that is most strongly associated with large actual Tumor

Sizes for the yellow class, so one cannot deduce that yellow is solely a proxy for large tumor

sizes; it is also associated with N = 0 and stages 2B, 3A, and 3B. The class colored green is dom-

inant in records with Stage 1–2 and a low number of primaries. The red clusters are associated

with low grades, and medium-high stages. These class insights can lead to further detailed

analysis, and it is noted how quickly such analysis could be performed with little actual data

preparation or up-front intervention. Note that the original class labels were applied rather

than the scaled values, while the underlying models were built with the described pre-pro-

cessed numerical values.

Self-ordering maps

Seeding a 20x20 map, which results in 400 classes, yields a result which is not as easy to inter-

pret or compare as with other mechanisms, but it does allow for visualization of the distribu-

tion of the data. Fig 4 helps to describe how variables relate to each individual grid point on

Fig 3. Pairwise plot of classes for all variables for k-Means with 9 groups.

https://doi.org/10.1371/journal.pone.0184370.g003
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the map. Although the models were run on scaled data, the charts are plotted against the origi-

nal, unscaled data in order to visualize the distribution of classes against these clinical data.

Both Tumor Size and Number of Primary sites have strong outliers–points that are more

than a few standard deviations from their mean. This makes the maps of these variables less

diverse; tumor size in particular shows a fairly even distribution except for one small set of grid

points that house the highest tumor sizes. The M field, on the other hand is binary, and it is dis-

tinctly spread between the grid points. Points with M = 1 are in red while points with M = 0 are

in blue. It is also allowable in these maps to correlate between maps, i.e., data elements in red

classes in the Stage map correlate highly to classes with red in the M map, which is visually

observable. It is also apparent that Age and Grade are more evenly distributed across the classes.

Non-negative matrix factorization

The charts in Fig 5 are created by running NMF with ranks ranging between 2 and 9 for both

the original and a randomized version of the data. Fig 5A seems to indicate that after 4 ranks

Fig 4. Feature specific class assignments for self-ordering maps.

https://doi.org/10.1371/journal.pone.0184370.g004
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the random data and the original data diverge, indicating that there may be some overfitting.

The algorithm would not calculate for more than 7 ranks, so this value was the maximum that

could be considered. Fig 5B clearly peaked and plateaued after 4 ranks. It thus seems that 4 or

5 ranks (or classes) is likely optimal for this algorithm. Selecting r = 5, an evenly distributed set

of classes can be built as shown in Table 5.

Principal component analysis

When a naïve PCA analysis is performed on the dataset, a set of 8 variables is created with low

pairwise correlation which in principle maintains a significant amount of knowledge of the

original data (Fig 6). The language R includes a map designed for PCA which shows the rela-

tionship between the output principal components and their relative correlation statistics. This

is valuable in determining that the PCA is not over-trained; i.e., the result includes only highly

orthogonal result vectors, even though there is not necessarily a particular meaning to the orig-

inal data set of the individual values as there was with the previous classification methods.

Although the pairwise correlations with PCA remain low, certain patterns emerge. PCA2,

for example, seems particularly discrete with what appear to be nine discrete groupings (in col-

umn two of the chart). The intersection of PC3 and PC6 has a separation into what appear to

be two merging clusters, and some other clusters such as PC5 and PC7 also have discretization

in four and six sets respectively. Interestingly, the PC1 is skewed to one side, which can be

attributed to the same issue that made Tumor Size an outlying feature in the Self-Ordering

Map and k-Means charts; namely, that Tumor Size is a skewed metric.

Comparison of the models

Metrics exist to compare the distance within and between clusters, but having the best fit does

not necessarily make a model the most useful. The primary outcome available in the SEER

Fig 5. Default output from Non-Negative Matrix Factorization Package for rank selection. Solid lines: original version of the data; dashed lines:

randomized version of the data.

https://doi.org/10.1371/journal.pone.0184370.g005

Table 5.

Class 1 Class 2 Class 3 Class 4 Class 5

3610 2787 2197 410 1438

Set of classes built from Non-Negative Matrix Factorization (r = 5).

https://doi.org/10.1371/journal.pone.0184370.t005
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data is Survival Time, so the output of the unsupervised techniques is used to predict survival

time, with the efficacy of the prediction representing a proxy for the usefulness of the classifica-

tion. In practical application, once the utility of unsupervised classification has been estab-

lished, it can be applied without this step, and a supervised analysis could be used to ensure the

meaningfulness of the results. Here, a basic single variable linear regression against each unsu-

pervised output (i.e., survival time vs. the output of the classification) is applied, and the associ-

ated Root Mean Squared Error (RMSE) is calculated as a metric to compare the results. This is

analogous to assessing patients based solely on the results of the unsupervised classification.

Predicting against the full data set and measuring RMSE against this naïve linear regression,

the results are obtained as in Table 6.

The Self-Ordering Maps shows the best performance with an RMSE of 15.591, while the k-

Means (RMSE of 16.193) has the best performance of the simple classification techniques. In

comparison, the RMSE of Gradient Boosting Machine is 15.048, which is better than all of

these unsupervised results, but is the outcome of a significantly more complex analysis using a

fully supervised technique. The coefficient of determination (R2) value varies as expected with

RMSE (lower RMSE correlates almost directly with higher R2). Although these results cannot

be compared to those of typical regressions, here the regression has been effectively performed

on a single variable (the resulting class) which can assume only a small number of values (the

number of classes in the classification itself) as a proxy to compare the classifications. Thus,

Fig 6. Pairwise scatterplots of PCA decomposition components.

https://doi.org/10.1371/journal.pone.0184370.g006
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while unsupervised classification can distill information into a single class, such classifications

may have meaningful (RMSE comparable to other methods) but limited (low R2) predictive

power by themselves.

PCA has the second-best performance overall, but it is difficult to compare to other unsu-

pervised techniques which perform classification; PCA is really performing decomposition

into components with no direct clinical meaning. The first component is effectively a mathe-

matical attempt to describe the data in each record for all variables in a single number; the

second component adds a second dimension to the decomposition and so on, but these

dimensions relate only mathematically to the data, not in a readily-understandable way that

can be exploited for clinical use. For this reason the components cannot be treated as classes

either; all the records should have most of their information distilled in the first components,

and only outliers should have strong values in higher PCA components. Nevertheless, PCA is

a common unsupervised method that can be applied, and the results may be of use in compar-

ative evaluations.

Discussion

This study evaluated unsupervised machine learning techniques to automatically classify lung

cancer patients into groups based on disease specific variables in order to estimate survival

with minimal human intervention. While models were run numerous times with varying ran-

dom seeds, they were not tuned in such a way that any particular output was optimized, as is

often done with supervised models and models used for specific predictive purposes. The

models were intentionally blind to the final output of survivability, which was only used at the

end to evaluate whether the classification was informative. Also, the most typical parameter

selections and options, such as distance functions and evaluation metrics, were selected to

avoid reliance on manual tuning. The only exception was in the selection of the number of

classes in some of the models (e.g., as with k-Means). Further, other than a basic scaling and

centering option to ensure that models sensitive to skewed distance measures were not overly

impacted, there was no significant pre-processing. The purpose of unsupervised classification

is to avoid human work (supervision); the inputs used here are already clinically measured and

represent straightforward parameters. Ultimately, exploration of these models could be useful

if deployed in situations where data is available and quick, unsupervised, “black-box” (where

the definitions of the classes are not directly apparent) analysis is practical.

Minimal manual processing was applied in advance of model training in order to ensure

the unsupervised learning techniques were exposed to data that represented patient clinical

Table 6.

Classification Technique Root Mean Squared Error of Linear Regression Coefficient of Determination (R2)

Hierarchical Clustering 16.202 0.06819

Model-Based Classification 16.250 0.05659

k-Means Classification 16.193 0.06731

Self-Ordering Maps 15.591 0.13539

Non-Negative Matrix Factorization 16.589 0.01923

Principal Component Analysis (PCA) 16.085 0.07969

Root mean squared error of linear regression and coefficient of determination values for the various classification techniques evaluated. While PCA did not

have specific classes, regression against the component values themselves can be performed, which makes the comparison possible albeit slightly less

meaningful.

https://doi.org/10.1371/journal.pone.0184370.t006
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information. As such, records with missing values were largely kept as-is, and classes were not

manually balanced, which is considered a better reflection of clinical data. Previous work has

sought to address such issues [26, 27]. This study did not attempt to achieve an explicit statisti-

cal result, where such considerations would have impact, but instead sought to assess how

unsupervised methods could behave on real, untidy clinical data.

Unsupervised techniques may enable classification of patients into groups in an automated

fashion, which would allow for caring for patients in the same group in a less subjective man-

ner. This has limitations, however; while computer models are decisive, their output may not

make immediate sense, and may lack the empathy or flexibility that a clinician can provide.

Still, these analyses remain a potential tool that may reduce complexity. For example, assume

that a patient is evaluated for lung cancer; TNM staging is assigned, grade and stage are

recorded. Both patient and doctor may be concerned with how the diagnosis compares to

other patients in the same category. The unsupervised classifications may be able to indicate

more quantifiably which cases are most similar, and what worked or did not work for their

treatment. Suppose the patient has T3, N0, M0 values for TNM categorization, thus being clas-

sified as a Stage 2B, and the associated histological grade is 3. From Fig 2B, one can see that

Stage 2B/Grade 3 is mostly teal with some pink, green, black and blue, while Stage 2B/Grade 2

has both teal and yellow with some black and Stage 2B/Grade 4 is teal and pink. Seeing that the

teal is a shared classification between these grades, one could assess how this patient group has

performed, and what options would be common to the other groups. One may also be able to

more easily determine if the patient is an outlier in other areas, e.g., to ascertain whether a par-

ticular combination of TNM was rarely seen in patients classified with a low stage or more

than two primary sites. This information could later be confirmed, and if not confirmed, it

could lead to a re-classification and a change in treatment.

As recently shown in demonstrating new prediction/classification methods (e.g., [52–57]),

user friendly and publicly accessible web servers offer the potential to significantly enhance the

impact of studies applying machine learning techniques [58]. Accordingly, future work will

evaluate providing a web server for the methodology reported herein. Limitations of this study

include the restriction of including variables that are numeric or that could be easily converted

to numeric; a broader set of both numeric and categorical variables needs to be evaluated in

terms of their role in the prediction of survival analysis. Other unsupervised learning tech-

niques such as deep learning and neural networks may be of value in this analysis and should

be further explored. The pairwise analysis of classes could be extended to elucidate in more

detail relationships between the clinically-relevant variables which determine patient out-

comes. Additional variables than in the set chosen here may be evaluated for how they affect

the analyses. Inclusion of more detailed patient datasets, including of the–omic categories,

may additionally enable translation of these analyses to personalized clinical application.
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