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Abstract

Hockey is a complex and multifaceted game, yet many of the statistical tools used to evalu-

ate performance are univariate. To garner a better understanding of hockey’s multifaceted

nature, two structural equation models (SEMs) assessing the interrelations between

offense, defense, and possession were built from three seasons of NHL data. Overall, it was

found that the concepts of offense, defense, and possession are best understood via a

small constellation of measured variables, and that offense mediates the relationship

between possession and defense such that higher levels of offense leads to poorer defen-

sive performance. These findings are discussed within the context of ranking player

performance.

Introduction

What is ice-hockey?

Ice-hockey (referred to as hockey for the remaining text) is a complex, fast-paced, team versus

team sport whereby each team tries to shoot a small puck into a net more times than their

opponent (each instance of which is referred to as a “goal”). Teams are allowed to have six

players on the ice at any given time (typically three forwards, two defensemen, and one goal-

tender), with the game being played in three, 20 minute, stop-time periods. Stoppages in play

occur when (i) a rule is broken, (ii) the goaltender covers the puck, (iii) the puck goes out the

defined playing area, or (iv) a goal is scored. Like other professional sports, there are different

“levels” at which the game is played, the highest being the National Hockey League (NHL),

which involves 30 teams spread across Canada and the United States.

Sport analytics

Since Bill James’ seminal work on sabermetrics (a set of statistical tools to assess team and

player performance in baseball), there has been a growing interest in the empirical analysis of

sport [1–3]. These types of analyses appear to have value in relatively slow-paced sports such as

baseball and golf [4, 5], as well as relatively fast-paced sports such as basketball, football, and
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American football [6–8]. Yet despite their effectiveness and wide-spread adoption, hockey has

been relatively slow to develop specialized data analysis tools.

Recent efforts in this regard have brought about a wide range of descriptive statistics, with

the entire corpus being referred to as “advanced statistics” by the hockey community. Fortu-

nately, the majority of these advanced statistics fit within a hierarchical structure such that

upward movement produces an increase in specificity, with this specificity being geared

towards capturing the complex, interactive effects prevalent within the game (see also [9]).

Hockey performance metrics

Level 1: Raw performance metrics. At the most fundamental level sits raw performance

metrics such as goals, assists, shots, and-so-forth. Although the number and variety of

advanced statistics at this level is vast, this paper focuses on a small number of metrics: corsi,

points, goals for, goals against, assists, and faceoff location.

Defintition 1. Corsi is the total number of shots that (i) were on net, (ii) missed the net, or

(iii) were blocked on route to the net.

Corsi values can be broken down into a number of different metrics, such as corsi for (corsi

events against the opposing team), corsi against (corsi events against the player’s team), corsi

for percentage (corsi for divided by the sum of corsi for and corsi against). Further, each of

these metrics can be broken down according to a variety of different grouping values (e.g, per

60 minutes of icetime). Finally, corsi is generally measured at the linemate level as individual

corsi metrics are captured by other measures (e.g., shots, shot attempts etc.) Thus, anytime a

corsi event occurs, that event is recorded for every player on the ice. Unfortunately, there exists

no standardized symboling system for corsi (or any other advanced statistic) within the aca-

demic literature, so I will adopt the following:

Time on ice = TOI

Corsi = Cgroupingmetric

Corsi for = Cf

Corsi against = Ca

Corsi for percent = Cp = Cf/(Cf + Ca)

Corsi for per 60 = C60
f = 60(Cf/TOI)

Corsi against per 60 = C60
a = 60(Ca/TOI)

Defintition 2. Goals are the number of times the puck is shot past the goalie and into the

net.

As is the case with corsi, goals can be broken down by metric and grouping:

Goals =Ggroupingmetric

Individual goals for = Gi

Goals for while on the ice (WOI, scored by player or linemate) = Gf

Goals against WOI = Ga

Goals for WOI per 60 =G60
f

Goals against WOI per 60 =G60
a

NHL player performance and SEM
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Individual goals for per 60 =G60
i

Defintition 3. An assist on a goal is awarded to a maximum of two players on the scoring

team, not including the goal scorer, that touched the puck in a way that helped facilitate the

goal, be it by shooting, passing, or deflecting the puck.

Assists = Agroupingmetric

Individual assists = Ai

Individual assists per 60 = A60
i

Defintition 4. Points are the number of goals plus the number of assists.

Points = Pgroupingmetric

Individual points = Pi

Individual points per 60 = P60
i

Level 2: Relative to team. The focus at this level is on taking raw metrics and situating

them within the context of the entire team [9]. For example, if one wanted to see a player’s Cp

relative to the rest of their team, all one would have to do is take that player’s Cp and subtract

the Cp of the team when the player is not on the ice.

Defintition 5. Off-ice metrics for a player are the metrics posted by the team when the

player is not on the ice during games the player participates in.

Defintition 6. Relative to team metrics are on-ice metrics minus off-ice metrics.

I have elected to signal these metrics by placing τ before the raw metric:

Corsi for percent relative to team = τCp

Corsi for per 60 relative to team = tC60
f

Corsi against per 60 relative to team = tC60
a

Goals for per 60 relative to team = tG60
f

Goals against per 60 relative to team = tG60
a

It should be noted that not every raw metric has an associated τ-metric, thus τ-metrics typi-

cally make use of raw metrics involving percentages or standardized groupings (e.g, per x min-

utes of ice-time).

Overall, the goal of τ-metrics is to get an idea of whether a player helps or hinders their

team’s overall performance. If a player has a positive tG60
f , then that tells us something impor-

tant about that player’s impact on their team, namely that the team scores a higher rate of goals

when the player is on the ice than when the player is off the ice.

Level 3: Relative to linemates. As beneficial as τ-metrics are, it is also helpful to know

how a player performs relative to their linemates. For example, if we wanted to see how a play-

er’s C60
f differs from their linemates, we would first find every linemate the player has had over

the course of the season, then calculate each linemate’s C60
f for the time they are not on the ice

with the player. Next, we weigh that C60
f by the amount of time they did spend on the ice with

the player. Once we have weighted values for each linemate, we simply take the average and

subtract it from the player’s C60
f [9].

NHL player performance and SEM
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Defintition 7. Relative to linemate metrics are a player’s raw metric, minus the weighted

average of their linemates’ raw metric while playing on a different line.

This approach is needed to strip away as much of the interaction between players as possi-

ble. That is, individual player performance is highly dependent on linemate performance; thus,

the thinking goes, because the player’s C60
f contains within it their individual performance and

linemate interaction, if we take out linemate performance while playing on a different line, we

are, in effect, taking out the contribution of linemates to the player’s performance. Otherwise

stated: if, on average, a player’s linemates perform better when they are on a different line,

then that player is, on average, worse than their linemates and drags down their linemates per-

formance. Obviously this is not an idea formulation as the interactive effects of linemates are

more than the sum of their individual parts, but it does provide us with a rough estimate.

I have elected to indicate relative to linemate metrics by preceding the raw metric with δ.

Corsi for percent relative to linemates = δCp

Corsi for per 60 relative to linemates = dC60
f

Corsi against per 60 relative to linemates = dC60
a

Goals for per 60 relative to linemates = dG60
f

Goals against per 60 relative to linemates = dG60
a

Prior research on hockey analytics

As previously noted, hockey has lagged behind other sports with respect to data analysis; how-

ever, some interesting results have still been produced.

For example, Macdonald [10] used a variety of raw metrics (goals, shots, hits, hits against,

and faceoffs) to build a ridge regression model predicting the number of goals a player would

score in the future. All told, their model produced a correlation between actual and predicted

goals of 0.69, and performed better than any of the raw metrics did individually. Perhaps more

interesting was that corsi produced the highest correlation (0.51) of any of the raw metrics,

which suggests corsi (and by virtue puck possession as you need to have possession of the puck

if you want to shoot it), is a key variable of interest.

In a similar vein, Thomas and colleagues [11] modeled goal scoring as a semi-Markov pro-

cess, and in the course of their investigation found that player performance is greatly influ-

enced by the interactions between a player and their linemates. For example, despite Sidney

Crosby and Evgeni Malkin being two of the best individual players in the world, when they

played together their performance did not improve, and actually led to more goals against

[11]. Conversely, when Brad Boyes and Jay McClement played together, they both performed

at a level beyond their individual abilities [11].

These findings are paralleled by the work of Gramacy and colleagues [12], who built a regu-

larized logistic regression model of players’ individual contributions to their team’s goal scor-

ing. Overall, the regression model served as a way to expand on the traditional plus-minus

statistic (which is calculated as Gf − Ga) by controlling for the contributions of teammates, and

found that a relatively narrow band of players had a significant effect on goal scoring, be it pos-

itive or negative [12].

The idea of quantifying individual performance was taken a step further by Schuckers and

Curro’s Total Hockey Rating (THoR), which is based on (i) every non-shooting on-ice event

for a player, (ii) whether the player had home-ice advantage, (iii) what zone the play started in,
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and (iv) everyone else that was on the ice with the player [13]. The model was fit using ridge

regression, with the THoR giving us an estimate of the number of wins created by a player

over the course of an 82 game season [13]. Overall, it was found that forwards are, typically,

responsible for more wins created than defensemen, with elite players producing over five

wins per season [13].

Shifting away from individual performance, work by Roith and Magel [14] demonstrated

that, given a full season of data, only the total number of goals against, the total number of

goals for, and the total number of takeaways are needed to accurately predict (87%) whether a

team would make or miss the playoffs. Moreover, the authors presented a logistic regression

model predicting which team would win a given game, and found that only a handful of vari-

ables pertaining to shots, faceoffs, and save percentage were needed to accurately predict the

winner (which further highlights the importance of corsi metrics in understanding NHL player

performance) [14].

Additional efforts have been made to classify NHL players based on their style of play

[15, 16], as well developing visualization techniques to assess the various spatial properties of

the game [17, 18]. However, as beneficial as the aforementioned research is, it has largely relied

on univariate regressions; that is, even though there are multiple independent variables, there

is only one dependent variable. Although these univariate methods are valuable when the

domain is limited to a single measure such as goals, core concepts such as offense and defense

cannot be fully captured by a single measure. Moreover, univariate techniques do not allow for

systems of regression equations; this is problematic as it does not allow a measure to simulta-

neously be a regressor and a regressand, which means the structural relationships between

multiple measures cannot be assessed in a single model (e.g. the way possession, offense, and

defense all effect one another) [19].

Structural equation modeling

Structural equation modeling (SEM) is a relatively new, and increasingly popular, statistical

technique designed to address the issues outlined above by combining factor analysis with

tools such as regression and analysis of variance [19].

At its core, a SEM consists of two categories of variables (measured and latent) and a path

diagram that specifies the relationships between these variables [19–21]. Here, the idea is that

some constructs cannot be fully captured by a single measured variable. For example, the con-

struct of offense in hockey cannot be fully captured by points alone (a player with 20 goals and

80 assists is very different than a player with 80 goals and 20 assists), but rather exists as some

combination of multiple measured variables (e.g. points, goals, assists, and-so-on). Thus, mea-

sured variables in SEM are variables that one has observed and directly collected data on, with

latent variables being unobserved variables that are inferred from measured variables (e.g.

offense as inferred from goals, assists, points, and-so-on) [19, 22]. The relationship between

measured and latent variables is determined via a confirmatory factor analysis (CFA), with

each latent variable being a linear combination of its measured variables [22]. These relation-

ships can then be used to compute factor scores for latent variables, which gives us a measure

of how well a person scores on each latent variable [23]. The relationship between all of the

measured variables and all of the latent variables is called the measurement model; conversely,

the path diagram is referred to as the structural model, and specifies the relationships between

latent variables as calculated by a system of regressions, ANOVAs, or other similar techniques

[19, 21, 24].

One significant benefit of using SEM to analyze hockey data is SEM’s ability to deal with

multicollinearity. As discussed by MacDonald [10] and Gramancy et al. [12], NHL

NHL player performance and SEM
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performance metrics are often highly correlated, which introduces problems in univariate

regression. The problem of multicollinearity can be addressed in univatiate models by using

techniques such as ridge regression; however, in SEM, these measured variables are repre-

sented as a single factor (a latent variable) that presumes measured variables are highly corre-

lated (if they were not, then they would not represent the same latent variable), thus the

problem of multicollinearity is averted altogether [25].

Similarly, SEM’s use of latent variables and its ability to easily specify multivariate models

has made it a popular tool in fields that infer characteristics based on multiple measured vari-

ables [19]. Given that core concepts in hockey such as offense, defense, and possession are best

understood in terms of multiple measured variables, SEM affords us the unique ability to

assess how all of these measured variables impact one another, something that is currently

lacking in the literature. That said, it is important to note that a SEM is not a causal model, and

is only meant to determine (i) the factor structure of latent variables, and (ii) if latent variables

have direct and/or indirect effects on each other [19, 25]. Of course, the problem of causality

also arises in univariate models, and is an unfortunate byproduct of this field of research.

Overall, the goal of SEM is to specify a model whose estimated means and covariances

(referred to as parameter estimates) fit the observed data. If a model produces parameter esti-

mates that closely match the data, that model is said to be accepted; if the parameter estimates

do not match the data, then the model is said to be rejected.

Aims of current research

The univariate nature of prior research runs counter to the multivariate nature of hockey;

offense cannot be fully captured by a single measure such as goals or points, nor can possession

be fully captured by corsi for percentage, nor defense by goals against. Moreover, the concepts

of offense, defense, and possession are best described by a constellation of measured variables,

thus it is beneficial if assessments of performance include enough measured variables to suffi-

ciently capture the concepts in question. With this in mind, the aim of this research is to iden-

tify a system of regressions and a constellation of measured variables that fit both the data and

prior research. Extending the work of Macdonald [10] and Thomas et al. [11], I propose that

only a small number of measured variables are needed to sufficiently capture the multivariate

concepts of offense, defense, and possession, and that a system of regressions whereby offense

acts as a mediator between possession and defense will generate parameter estimates that fit

the data.

Materials and methods

Data used

To fit the model, I make use of three seasons worth of NHL data (2012/2013 to 2014/2015)

retrieved from a well-known public repository compiled from official game reports supplied

by the NHL (note: this repository, www.puckalytics.com, has since shut down as the website

owner has been hired by an NHL team. Additional repositories can be found here: [26]). I lim-

ited data to even-strength situations (when both teams had five skaters and one goaltender on

the ice), and to players who had combined for at least 200 minutes of icetime over the three

seasons of interest. These limitations were selected because (i) power-play and penalty-kill sit-

uations are relatively rare and require major changes to on-ice strategy, and (ii) a limited sam-

ple of icetime is unlikely to produce reliable performance data, and using a 200 minute

threshold removed players who, for whatever reason (e.g. injury), only played in a small num-

ber of games. Overall, the dataset consisted of 678 players who had between 200.80 and

1735.97 minutes of icetime (M = 843.98, SD = 334.83).

NHL player performance and SEM
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Model

In an attempt to build a more complete picture of how popular advanced statistics related to

each other, I built two SEMs with the same structural model, but differing measurement

models.

The measurement model of the first SEM can be seen in Table 1. This is then compared

against a second measurement model (Table 2) that includes additional measured variables,

specifically individual goals for per 60 (G60
i ), individual assists per 60 (A60

i ), offensive zone face-

off percentage (the percentage of faceoffs that occur in the offensive zone; OZFOp), and defen-

sive zone faceoff percentage (the percentage of faceoffs that occur in the defensive zone;

DZFOp). G60
i and A60

i were selected because they provided detailed information above-and-

beyond P60
i . Similarly, OZFOp and DZFOp were selected on the grounds that faceoff metrics

have been linked to both team and player performance [13, 14]. OZFOp was placed under pos-
session as it was found to produce a better model fit than when under offense, with DZFOp

being placed under defense as it produced a better model fit than when under possession.

Although seemingly contradictory (would faceoff location not be an indicator of possession?),

this phenomenon can possibly be explained by icings, and how the team that ices the puck is

not allowed to substitute players. This can lead to tired skaters who may be more likely to

make a defensive mistake that leads to a goal against, thus placing DZFOp under defense, as

opposed to possession.

The structural model (Fig 1) has paths from possession to offense, possession to defense, and

from offense to defense. Further, all latent variables have disturbances to account for any

unspecified predictors. These disturbances are uncorrelated under the premise that defense
disturbances can largely be attributed to goaltender skill, which has no impact on offense; and

that offense disturbances can largely be attributed to individual skills such as shooting percent-

age (how often a shot leads to a goal), which have no bearing on defense. Moreover, possession
disturbances can largely be attributed to metrics such as offensive zone faceoff win percentage

and offensive zone entry metrics, which have no bearing on the skill metrics of offense and

defense. Finally, disturbances are not removed under the second measurement model as the

additional measured variables do not comprise an exhaustive list of all the measured variables

that comprise each latent variable.

The theory behind each SEM is simple: (i) if a team/line/player spends more time in posses-

sion of the puck, then they are not only more likely to score more goals/points, but also have

fewer goals scored against them; and (ii) players/lines with a high level of offensive output are

Table 1. Measurement model 1.

Latent Variable Measured Variables

Possession Cp, τCp, δCp

Offense P60
i , G60

f , tG60
f , dG60

f

Defense G60
a , tG60

a , dG60
a

https://doi.org/10.1371/journal.pone.0184346.t001

Table 2. Measurement model 2.

Latent Variable Measured Variables

Possession Cp, OZFOp, τCp, δCp

Offense P60
i , G60

i , A60
i , G60

f , tG60
f , dG60

f

Defense G60
a , DZFOp, tG60

a , dG60
a

https://doi.org/10.1371/journal.pone.0184346.t002
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more likely to have goals scored against them (possibly) due to missed defensive coverages

brought about by an overemphasis on offense.

Results

All analyses were conducted in R, and made use of the lavaan package for structural equation

modeling (using a maximum likelihood estimator) [27].

Descriptives

Descriptives statistics for measured variables can be seen in Table 3. Using a cut off of ±1 for

skew and ±3 for kurtosis, all of our measured variables were normally distributed except for

two kurtosis violations: tG60
a (3.85) and DZFOp (5.14), which suggests a large number of play-

ers’ scores for tG60
a and DZFOp clustered about the mean. Overall, the high level of univariate

normality exhibited by the data means it is unlikely the models will produce biased parameter

estimates that deviate from observed scores.

Assumption testing

Multivariate normality. Mardia’s multivariate normality tests revealed that none of our

latent variables were multivariate normal (Table 4). However, prior research on SEM suggests

that violating multivariate normality does not undermine findings. For example, there is

Fig 1. SEM diagram. The structural model with measurement model 1. Grey circles are latent variables, purple circles are disturbances,

with yellow boxes being measured variables.

https://doi.org/10.1371/journal.pone.0184346.g001
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compelling evidence that maximum likelihood estimation is robust to normality violations,

especially when sample sizes are large (e.g., N> 600), such as in this study (N = 678) [20, 21,

28, 29]. Moreover, as Winston and Gore [24] point out, normality should be evaluated at the

univariate level as demonstrating multivariate normality requires examining an infinite num-

ber of linear combinations of variables [24]. Further work by Muthen and Kaplen [30] found

that violations of multivariate normality had a negligible impact on parameter estimates and

fit statistics, except in cases of extreme violations of both multivariate kurtosis and multivariate

skew, in which case rates of model rejection actually increased. These findings are echoed by

Hallow [31], who found that violations of univariate and/or multivariate normality produced

unbiased parameter estimates, and by Curran and colleagues [32], who found that non-nor-

mality produced an overestimated chi-square test statistic, which makes model rejection more

likely. However, as Henly [33] points out, samples smaller than N = 300 produce biased

parameter estimates that lead to greater rates of model rejection, and that non-normal samples

should be N> 600 to ensure unbiased parameter estimates.

All that said, a visual inspection of the data (Figs 2–7) suggests the violation of multivariate

normality is due to a number of outliers. Although it is tempting to remove a subset of these

outliers to establish multivariate normality [34], I contend there is no good theoretical reason

to do so. On the one hand, a person could argue these outliers likely represent players who

Table 3. Descriptives for measured variables.

M SD Min Max Skew Kurtosis

Cp 49.65 3.79 37.34 61.25 -0.09 -0.03

τCp -0.32 3.65 -15.10 9.18 -0.38 0.35

δCp -0.04 3.29 -14.38 9.08 -0.25 0.45

OZFOp 31.73 5.53 4.81 52.10 -0.25 1.63

P60
i 1.12 0.56 0.00 2.70 0.36 -0.60

A60
i 0.69 0.34 0.00 1.98 0.51 0.19

G60
i 0.43 0.32 0.00 1.39 0.56 -0.55

G60
f 2.09 0.56 0.47 3.83 -0.08 -0.11

tG60
f -0.07 0.69 -2.41 2.05 -0.03 -0.13

dG60
f -0.03 0.59 -1.49 1.75 0.17 -0.16

G60
a 2.15 0.46 0.88 5.21 0.57 2.67

tG60
a 0.00 0.53 -1.76 3.86 0.51 3.85

dG60
a -0.03 0.50 -1.71 3.01 0.37 1.70

DZFOp 31.96 5.42 9.29 64.91 1.00 5.14

https://doi.org/10.1371/journal.pone.0184346.t003

Table 4. Mardia’s multivariate skew and kurtosis.

Latent Variable χ2 (Skew) p-value Z-value (Kurtosis) p-value

Model 1

Possession 44.09 (0.39) p <.01 9.99 (19.20) p <.01

Offense 152.52 (1.35) p <.01 2.95 (25.57) p <.01

Defense 123.40 (1.09) p <.01 17.48 (22.35) p <.01

Model 2

Possession 85.96 (0.76) p <.01 11.68 (30.21) p <.01

Offense 277.88 (2.46) p <.01 52.41 (5.86) p <.01

Defense 269.59 (2.39) p <.01 21.95 (35.68) p <.01

https://doi.org/10.1371/journal.pone.0184346.t004
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Fig 2. Multivariate outliers. Possession in Model 1.

https://doi.org/10.1371/journal.pone.0184346.g002
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Fig 3. Multivariate outliers. Offense in Model 1.

https://doi.org/10.1371/journal.pone.0184346.g003
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Fig 4. Multivariate outliers. Defense in Model 1.

https://doi.org/10.1371/journal.pone.0184346.g004
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Fig 5. Multivariate outliers. Possession in Model 2.

https://doi.org/10.1371/journal.pone.0184346.g005
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Fig 6. Multivariate outliers. Offense in Model 2.

https://doi.org/10.1371/journal.pone.0184346.g006
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Fig 7. Multivariate outliers. Defense in Model 2.

https://doi.org/10.1371/journal.pone.0184346.g007
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were “called up” from lower leagues to fill in for injured NHL players and should thus be

removed; however, we (i) cannot reasonably conclude that from the data, and (ii) even if that

were to be the case, these outliers still received substantial on-ice time and should thus be

included in the data, even if they did not perform at an “NHL level”. Otherwise stated: we can-

not exclude a player simply because they are an outlier, especially given all the evidence sug-

gesting that normality violations in large samples produce unbiased parameter estimates (see

above).

Identifiability. A model is of little use if its parameters do not have at least one unique

solution (that is, there has to be at least one value for every unknown parameter, such as

regression and factor weights), thus we need to make sure both the measurement and path

models are identifiable [21]. As per MacDonald and Ho [21], identifiability of the measure-

ment model was established by demonstrating independent clusters within the factor loadings.

To achieve independent clusters, each latent variable had its raw metric loading fixed to 1.00

(in the case of offense, P60
i was arbitrarily chosen over G60

f ), and the model specified to not

allow correlations between the residual variances of measured variables (Tables 5–8). Similarly,

as per [21], identifiability of the path model was met by having (theoretically justified) uncor-

related disturbances between endogenous variables (referred to as the “orthogonality rule”).

Table 5. Factor structure of measurement model 1.

Latent Variable Measured Variable Unstandardized Standardized SE Z-value p-value

Possession

Cp 1.00 0.77 - - -

τCp 1.20 0.96 0.04 28.68 p <.01

δCp 1.11 0.98 0.04 29.03 p <.01

Offense

P60
i 1.00 0.63 - - -

G60
f 1.49 0.94 0.07 20.14 p <.01

tG60
f 1.89 0.96 0.09 20.50 p <.01

dG60
f 1.62 0.97 0.08 20.63 p <.01

Defense

G60
a 1.00 0.90 - - -

tG60
a 1.21 0.95 0.03 43.15 p <.01

dG60
a 1.17 0.98 0.03 47.06 p <.01

https://doi.org/10.1371/journal.pone.0184346.t005

Table 6. Model 1: Residual covariance between measured variables.

Cp τCp δCp P60
i G60

f tG60
f dG60

f G60
a tG60

a dG60
a

Cp 5.88 - - - - - - - - -

τCp 0.00 1.14 - - - - - - - -

δCp 0.00 0.00 0.47 - - - - - - -

P60
i 0.00 0.00 0.00 0.19 - - - - - -

G60
f 0.00 0.00 0.00 0.00 0.04 - - - - -

tG60
f 0.00 0.00 0.00 0.00 0.00 0.04 - - - -

dG60
f 0.00 0.00 0.00 0.00 0.00 0.00 0.02 - - -

G60
a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 - -

tG60
a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 -

dG60
a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

https://doi.org/10.1371/journal.pone.0184346.t006
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Testing the models

I first performed a visual inspection of the correlations between all relevant metrics (Table 9).

As expected, correlations between metrics comprising latent variables were moderate to

strong, correlations between metrics comprising possession and offense were moderate, with

weak to absent correlations everywhere else, the exception being DZFOp, which exhibited a

(mostly) moderate negative correlation with all the measured variables.

Looking at the standardized (β) and unstandardized (B) regression weights in Table 10, we

see that, for both measurement models, possession was negatively related to defense and posi-

tively related to offense, and that offense was positively related to defense. Moreover, with both

Table 8. Model 2: Residual covariance between measured variables.

Cp OZFOp τCp δCp P60
i G60

i A60
i G60

f tG60
f dG60

f G60
a DZFOp tG60

a dG60
a

Cp 5.85 - - - - - - - - - - - - -

OZFOp 0.00 24.59 - - - - - - - - - - - -

τCp 0.00 0.00 0.94 - - - - - - - - - - -

δCp 0.00 0.00 0.00 0.65 - - - - - - - - - -

P60
i 0.00 0.00 0.00 0.00 0.18 - - - - - - - - -

G60
i 0.00 0.00 0.00 0.00 0.00 0.08 - - - - - - - -

A60
i 0.00 0.00 0.00 0.00 0.00 0.00 0.07 - - - - - - -

G60
f 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 - - - - - -

tG60
f 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 - - - - -

dG60
f 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 - - - -

G60
a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 - - -

DZFOp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 29.09 - -

tG60
a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 -

dG60
a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

https://doi.org/10.1371/journal.pone.0184346.t008

Table 7. Factor structure of measurement model 2.

Latent Variable Measured Variable Unstandardized Standardized SE Z-value p-value

Possession

Cp 1.00 0.77 - - -

OZFOp 0.84 0.44 0.07 11.70 p <.01

τCp 1.20 0.96 0.04 28.68 p <.01

δCp 1.11 0.98 0.04 29.03 p <.01

Offense

P60
i 1.00 0.63 - - -

G60
i 0.40 0.46 0.04 11.54 p <.01

A60
i 0.60 0.64 0.04 15.49 p <.01

G60
f 1.49 0.94 0.07 20.14 p <.01

tG60
f 1.89 0.96 0.09 20.50 p <.01

dG60
f 1.62 0.97 0.08 20.63 p <.01

Defense

G60
a 1.00 0.90 - - -

DZFOp -1.12 -0.09 0.51 -2.21 p <.05

tG60
a 1.21 0.95 0.03 43.15 p <.01

dG60
a 1.17 0.98 0.03 47.06 p <.01

https://doi.org/10.1371/journal.pone.0184346.t007
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measurement models, the effect between possession and defense was weakened when

offense was introduced as a mediator (Model 1: β = −0.09 vs β = −0.15, Model 2: β = −0.08 vs

β = −0.14; Tables 10 & 11), with offense exhibiting an indirect effect of β = 0.06 under both

models (Table 11). Thus, offense appears to act as a partial mediator between possession and

defense (using Sobel’s method for p- and Z-values [35]).

Assessments of model fit can be seen in Table 12. As expected given our large sample size, a

significant χ2 was observed. However, in line with [21, 36], the χ2 metric was ignored in favor

of the standardized root mean square residual (SRMR), the Tucker-Lewis index (TLI), and

comparative fit index (CFI). The SRMR was selected as the indicator of absolute model fit, and

is simply the standardize difference between observed and predicted correlations (an SRMR of

zero implies perfect fit, with anything above.05 being a poor fit) [36]. For a measure of fit rela-

tive to the baseline model (where all measured variables are uncorrelated) I selected the TLI

with a cutoff value of .95 [36]. However, because the TLI is a centrality based measure, the CFI

(using a .95 cutoff) was also included [36].

Table 9. Correlations between measured variables.

Cp OZFOp tC60
p dC60

p P60
i G60

i A60
i G60

f tG60
f dG60

f G60
a DZFOp tG60

a dG60
a

Cp 1.00 - - - - - - - - - - - - -

OZFOp 0.46 1.00 - - - - - - - - - - - -

tC60
p 0.73 0.45 1.00 - - - - - - - - - - -

dC60
p 0.75 0.40 0.94 1.00 - - - - - - - - - -

P60
i 0.30 0.26 0.35 0.34 1.00 - - - - - - - - -

G60
i 0.24 0.21 0.26 0.27 0.83 1.00 - - - - - - - -

A60
i 0.27 0.23 0.33 0.31 0.86 0.43 1.00 - - - - - - -

G60
f 0.35 0.37 0.40 0.36 0.63 0.44 0.63 1.00 - - - - - -

tG60
f 0.33 0.39 0.45 0.39 0.60 0.41 0.59 0.90 1.00 - - - - -

dG60
f 0.31 0.35 0.40 0.37 0.61 0.43 0.59 0.91 0.94 1.00 - - - -

G60
a -0.13 0.05 -0.04 -0.07 0.03 0.04 0.01 0.07 0.10 0.08 1.00 - - -

DZFOp -0.43 -0.86 -0.43 -0.40 -0.25 -0.22 -0.21 -0.35 -0.35 -0.32 -0.06 1.00 - -

tG60
a -0.06 0.10 -0.06 -0.09 0.05 0.06 0.03 0.10 0.11 0.07 0.85 -0.09 1.00 -

dG60
a -0.06 0.08 -0.06 -0.10 0.03 0.04 0.01 0.07 0.07 0.06 0.88 -0.08 0.93 1.00

https://doi.org/10.1371/journal.pone.0184346.t009

Table 10. Direct effects for each measurement model.

B β SE Z-value p-value

Model 1

defense

possession -0.02 -0.15 0.01 -3.34 p <.01

offense 0.17 0.14 0.05 3.21 p <.01

offense

possession 0.05 0.42 0.01 9.70 p <.01

Model 2

defense

possession -0.02 -0.14 0.01 -3.20 p <.01

offense 0.16 0.14 0.05 3.20 p <.01

offense

possession 0.06 0.43 0.01 10.10 p <.01

https://doi.org/10.1371/journal.pone.0184346.t010
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Overall, model 2 proved to be a poor fit, with model 1 being a good fit. To test whether

model 2’s poor fit was due to the large residual covariances for OZFOp and DZFOp (see

Table 8), those variables were removed from the measurement model and the full SEM tested

again. However, this third model proved a similarly poor fit (SRMR = 0.09, TLI = 0.21,

CFI = 0.39). Further, an examination of the standardized residual covariances of each fitted

model (Tables 13 & 14) shows that the estimates generated by model 1 more closely match the

observations in the data than the estimates generated by model 2. For example, model 1 had

Table 11. Mediating effects of offense on the relationship between possession and defense.

Effect B β SE Z-value p-value

Model 1

Total -0.01 -0.09 0.01 -2.20 p <.05

Indirect 0.01 0.06 0.003 3.11 p <.01

Model 2

Total -0.01 -0.08 0.01 -2.01 p <.05

Indirect 0.01 0.06 0.003 3.10 p <.01

https://doi.org/10.1371/journal.pone.0184346.t011

Table 12. Assessments of model fit.

Fit Index Value Good/Bad

Model 1

χ2 232 Bad

SRMR 0.03 Good

TLI 0.96 Good

CFI 0.97 Good

Model 2

χ2 13582 Bad

SRMR 0.16 Bad

TLI 0.23 Bad

CFI 0.38 Bad

https://doi.org/10.1371/journal.pone.0184346.t012

Table 13. Model 1: Residual covariances of fitted model (implied versus observed).

Cp tC60
p dC60

p P60
i G60

f tG60
f dG60

f G60
a tG60

a dG60
a

Cp 0.00/NA NA 1.22 3.03 1.77 0.86 -0.35 -2.47 0.112 0.38

tC60
p -0.12 0.00/NA 0.14 3.38 1.67 4.31 1.19 1.91 1.49 1.73

dC60
p 0.05 0.01 0.00/NA 2.94 -2.72 -1.03 -5.31 0.41 -1.04 -1.78

P60
i 0.21 0.20 0.15 0.00/NA 3.09 -4.20 -2.59 -0.37 0.12 -0.75

G60
f 0.09 0.05 -0.05 0.01 0.00/NA NA NA -0.07 1.54 -0.15

tG60
f 0.05 0.15 -0.02 -0.01 -0.00 0.00/NA 0.69 1.51 2.74 -0.17

dG60
f -0.02 0.03 -0.05 -0.00 +0.00 +0.00 0.00/NA 0.43 0.14 -2.21

G60
a -0.12 0.06 0.01 -0.00 +0.00 0.01 +0.00 0.00/0.00 NA 0.29

tG60
a 0.01 0.04 -0.02 +0.00 0.01 0.01 +0.00 +0.00 0.00/0.00 +0.00

dG60
a 0.02 0.03 -0.02 -0.01 -0.00 -0.00 -0.01 +0.00 +0.00 0.00/0.00

Note: Lower triangle contains unstandardized residuals. Upper triangle contains standardized residuals. 0.00 refers to true zeros. +0.00 and −0.00 refer to

rounded zeros. Along the diagonal, the first term refers to the unstandardized residual, and the second term the standardized residual.

https://doi.org/10.1371/journal.pone.0184346.t013
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residual covariances of ±3 for three of the 55 values (3.38, −4.20, −5.31), whereas model 2

had ±3 for 26 of the 105 values (4.79, −10.38, 3.76, 3.34, 5.54, 6.17, 5.03, −17.01, 3.77, 3.19,

3.50, −10.44, −3.96, −5.87, −9.92, 13.49, 12.12, −6.24, 4.57, −9.14, −6.38, −5.49, −5.14,

−8.52, −8.53, −7.87), which constitutes 5.46% and 24.76% of all possible values, respectively.

That said, the preponderance of the ±3 values in model 2 come from OZFOp and DZFOp; how-

ever, as noted earlier, the removal of these two measured variables did not produce a good

model fit.

To assess model 1’s ability to generalize beyond the data it was fitted on, the parameter esti-

mates generated by the model were applied to a new set of data drawn from puckalytics for the

2015/2016 NHL season, once again using lavaan [27]. These parameter estimates calculated

predicted factor scores for latent variables, which were then used to compute predicted values

for measured variables; the error between these predicted values and the values observed in the

data were then compared (Table 15). I elected to use the mean absolute error (MAE) to get an

unweighted indication of accuracy, as well as the root mean square error (RMSE) to penalize

large errors.

Here, the model provided accurate τCp and δCp predictions, with MAEs/RMSEs of

0.72/1.01 and 0.33/0.46, respectively. That said, the MAE for Cp predictions was 2.01

(RMSE = 2.38), which is approximately one half of a standard deviation in observed Cp scores.

Table 14. Model 2: Residual covariances of fitted model (implied versus observed).

Cp OZFOp tC60
p dC60

p P60
i G60

i A60
i G60

f tG60
f dG60

f G60
a DZFOp tG60

a dG60
a

Cp 0.00/

0.04

4.79 NA 1.85 2.61 2.44 1.80 1.31 0.40 -0.83 -2.66 -10.38 -0.07 1.66

OZFOp 2.44 0.00/

NA

1.91 NA 3.76 3.34 2.95 5.54 6.17 5.03 2.21 -17.01 3.77 3.19

tC60
p -0.22 0.30 0.00/

NA

0.54 2.78 2.19 2.19 0.50 3.50 -0.35 1.65 -10.44 1.15 1.30

dC60
p 0.11 -0.58 0.01 0.00/

NA

2.42 2.33 1.45 -3.96 -2.07 -5.87 -0.02 -9.92 -1.54 -2.37

P60
i 0.17 0.42 0.16 0.12 0.00/

NA

13.49 12.12 1.37 NA NA -0.44 -6.24 0.06 -0.84

G60
i 1.00 0.22 0.08 0.08 0.09 0.00/

0.00

4.57 -0.11 -9.14 -6.38 0.33 -5.49 0.65 0.06

A60
i 0.07 0.20 0.08 0.05 0.08 0.01 0.00/

NA

2.12 NA NA -1.05 -5.14 -0.60 -1.40

G60
f 0.07 0.58 0.01 -0.07 +0.00 +0.00 +0.00 0.00/

NA

NA 0.19 -0.10 -8.52 1.53 -0.20

tG60
f 0.02 0.81 0.11 -0.04 -0.01 -0.01 -0.01 -0.00 0.00/

NA

1.54 1.49 -8.53 2.70 -0.18

dG60
f -0.04 0.55 -0.01 -0.07 -0.01 -0.00 -0.01 +0.00 +0.00 0.00/

NA

0.42 -7.87 0.13 -2.08

G60
a -0.13 0.20 0.05 -0.00 -0.00 +0.00 -0.01 +0.00 0.01 +0.00 0.00/

NA

1.10 NA 0.33

DZFOp -8.84 -25.72 -8.56 -7.27 -0.75 -0.37 -0.38 -1.05 -1.30 -1.01 0.04 +0.00/

0.11

-1.23 0.15

tG60
a -0.00 0.39 0.03 -0.03 +0.00 +0.00 -0.00 0.01 0.01 +0.00 +0.00 -0.04 0.00/

0.00

NA

dG60
a -0.01 0.30 0.02 -0.03 -0.01 +0.00 -0.01 -0.00 -0.00 -0.01 +0.00 +0.00 +0.00 0.00/

0.00

Note: Lower triangle contains unstandardized residuals. Upper triangle contains standardized residuals. 0.00 refers to true zeros. +0.00 and −0.00 refer to

rounded zeros. Along the diagonal, the first term refers to the unstandardized residual, and the second term the standardized residual.

https://doi.org/10.1371/journal.pone.0184346.t014
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With respect to offense, MAE and RMSE values for G60
f , tG60

f , and dG60
f suggest a high level

of accuracy in the model’s predictions, but P60
i predictions were less accurate, with a MAE

roughly 63% of a standard deviation in observed P60
i scores.

Defense indicators followed a similar prediction pattern as possession and offense indicators,

with G60
a seeing the greatest prediction error; however, it is of particular note that goals against

metrics were predicted with nearly the exact same accuracy as goals for metrics. It should also

be noted that although the greatest prediction errors involve measured variables whose factor

loadings were fixed to 1 while fitting the SEM, this is merely a coincidence, and selecting dif-

ferent variables to fix at 1 does not alter predictions. The most probable explanation for why

these variables generate the worst predictions is that raw metrics exhibit the most year-over-

year variability, which makes them the hardest to predict. Given that all of the correlations

between predicted values and observed values were strong, and that only P60
i had a MAE

greater than one half of a standard deviation in observed scores (with most falling substantially

below that), it is reasonable to conclude that model 1’s parameter estimates generalize beyond

the data they were derived from.

Finally, although correlations between predicted values and observed values were high

across all measured variables, P60
i ’s correlation was noticeably weaker than the rest.

To examine the stability of performance predictions across a longer time-period, parameter

estimates from model 1 were used to generate predicted values for the 2010/2011 and 2016/

2017 NHL seasons (drawn from puckalytics; Table 16), which are both one full season

removed from the data our model was fitted on (2012/13–2014/2015), and have five full sea-

sons in-between them, which is approximately the length of an average NHL career [37].

Once again, a similar pattern emerged whereby Cp, P60
i , and G60

a all suffered from the least

accurate predictions. However, the observed means, observed standard deviations, and accu-

racy of predictions proved to be highly similar between the two seasons (as well as the 2015/

2016 season), and it is reasonable to conclude that model 1’s parameter estimates generalize

across longer time-periods.

It is important to stress, however, that the method of prediction used in the above analyses

is conceptually different from “regression-like” prediction; instead of using the known values

of independent variables to predict scores on some unknown dependent variable, we are using

the known parameter estimates of the fitted model to predict values for all of the measured

Table 15. Comparing predicted and observed values for measured variables (2015/2016 season).

Latent Variable Measured Variable Observed M (SD) MAE RMSE r

Possession

Cp 49.41 (4.06) 2.01 2.38 0.81

τCp -0.59 (3.98) 0.72 1.01 0.97

δCp -0.27 (3.54) 0.33 0.46 0.99

Offense

P60
i 1.09 (0.59) 0.37 0.45 0.65

G60
f 2.05 (0.61) 0.15 0.18 0.96

tG60
f -0.12 (0.74) 0.12 0.17 0.97

dG60
f -0.06 (0.63) 0.09 0.11 0.97

Defense

G60
a 2.15 (0.50) 0.16 0.20 0.92

tG60
a -0.01 (0.58) 0.12 0.18 0.95

dG60
a -0.03 (0.53) 0.05 0.07 0.99

https://doi.org/10.1371/journal.pone.0184346.t015
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variables. That is, we are not predicting how a player will perform in the future, we are examin-

ing whether model 1’s parameter estimates can accurately predict measured variables in

another dataset; if the parameter estimates do not provide accurate predictions, then the

parameter estimates do not generalize beyond the data they were derived from. That said,

should the need arise, we can perform “regression-like” prediction by regressing latent variable

factor scores onto whatever measured variable(s) we want to predict. (Because a latent variable

is simply an abstract concept that exists as the combination of relevant measured variables,

unless there are good theoretical reasons to do otherwise, predictions about future perfor-

mance are (likely) best made with the measured variables themselves).

Ranking player performance

Just as a person’s intelligence is comprised of scores on various abstract concepts (e.g., working

memory, verbal reasoning, etc.), which are themselves comprised of scores on a variety of mea-

sured variables, so-to is a hockey player’s overall performance. That is, a player’s overall perfor-

mance is simply a composition of their scores on latent variables. To this end, latent variable

factor scores were obtained for players who played at least half of the 2016/2017 season (41

games), and were combined to generate overall performance scores.

With respect to possession (Table 17), four of the five top-ranking players are what would be

considered “elite” forwards, with the other player (Andrew Cogliano) being a “utility” forward.

Moreover, defensemen were underrepresented in the top 20, filling only 20% of the spots

despite comprising roughly 33% of each team’s skaters in any given game.

Table 16. Comparing predicted and observed values for measured variables (2010/2011 & 2016/2017 seasons).

Latent Variable Measured Variable Observed M (SD) MAE RMSE r

Possession

2010/2011 Cp 49.56 (4.19) 1.94 2.37 0.83

2016/2017 Cp 49.61 (3.67) 1.55 1.99 0.84

2010/2011 τCp -0.34 (4.11) 0.69 0.94 0.97

2016/2017 τCp -0.39 (3.92) 0.69 0.97 0.97

2010/2011 δCp -0.10 (3.63) 0.33 0.44 0.99

2016/2017 δCp -0.07 (3.45) 0.33 0.46 0.99

Offense

2010/2011 P60
i 1.21 (0.64) 0.44 0.52 0.61

2016/2017 P60
i 1.17 (0.58) 0.37 0.45 0.63

2010/2011G60
f 2.20 (0.63) 0.19 0.23 0.94

2016/2017G60
f 2.17 (0.60) 0.21 0.25 0.91

2010/2011 tG60
f -0.08 (0.74) 0.14 0.19 0.97

2016/2017 tG60
f -0.08 (0.67) 0.13 0.18 0.97

2010/2011 dG60
f -0.03 (0.64) 0.09 0.12 0.98

2016/2017 dG60
f -0.03 (0.57) 0.09 0.12 0.98

Defense

2010/2011G60
a 2.28 (0.53) 0.20 0.25 0.92

2016/2017G60
a 2.22 (0.51) 0.18 0.23 0.91

2010/2011 tG60
a -0.03 (0.59) 0.12 0.18 0.96

2016/2017 tG60
a -0.04 (0.58) 0.12 0.17 0.96

2010/2011 dG60
a -0.04 (0.55) 0.05 0.07 0.99

2016/2017 dG60
a -0.05 (0.53) 0.05 0.07 0.99

https://doi.org/10.1371/journal.pone.0184346.t016
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Offense scores (Table 18) identified Connor McDavid and Brent Burns as the highest

ranked forward and defensemen, respectively. However, there are some notable names outside

the top 20; Sidney Crosby ranked 63rd (0.42), Patrick Kane 73rd (0.38), and Alexander Ovech-

kin 78th (0.36). All three of these players are excellent talents whom are consistently some of

the leagues top scorers, but because offense, as an abstract concept, is much more than raw

point production, the rankings produced by model 1 and the rankings based on year-end

point totals will, and should, be different. For example, David Krejci and Vincent Trocheck are

both centermen who played in all 82 games and scored 54 points (23 goals and 31 assists), yet

Trocheck had an offense score of 0.23, whereas Krejci had a score of 0.11. This is largely

because Trocheck managed to generate the same output while playing on a substantially worse

team.

Because defense scores reflect goals against, smaller values indicate better performance

(Table 19). Here, defense rankings were notably absent of what would be considered “elite”

offensive talents, be they forwards (e.g., Connor McDavid) or defensemen (e.g., Brent Burns).

Instead, the rankings primarily consist of “utility” forwards and defensemen, which is to be

expected given the inverse relationship between offense and defense.

As stated earlier, a player’s overall score exists as some combination of possession, offense,

and defense; how these three scores are combined, however, depends on how much emphasis a

person places in each of the above factors; if a person believes offense is more important than

defense, then they will assign more weight to those scores. Regardless of how this emphasis is

distributed, we must scale possession scores down by a factor of 10. This is because possession
factor scores take into consideration Cp scores, which are an order of magnitude larger than all

other measured variables, thus leading to possession scores being an order of magnitude larger

Table 17. Top 20 players based on possession scores (2016/2017).

Player Position GP TOI Possession

Patrice Bergeron F 79 1035 7.96

Artemi Panarin F 82 1258 7.92

Andrew Cogliano F 82 1063 7.22

Brad Marchand F 80 1097 7.15

John Tavares F 77 1175 7.10

Michal Kempny D 50 699 6.69

Blake Wheeler F 82 1188 6.68

Nino Niederreiter F 82 1041 6.66

Chris Kreider F 75 1036 6.59

Colin Miller D 61 805 6.47

Dougie Hamilton D 81 1267 6.46

Ryan Johansen F 82 1146 6.17

Michael Frolik F 82 1071 6.16

Matthew Tkachuk F 76 930 6.15

Beau Bennett F 65 764 6.11

Jaromir Jagr F 82 1129 6.10

Taylor Hall F 72 1094 6.05

Mark Stone F 71 1015 6.01

Derick Brassard F 81 1113 5.92

Brayden McNabb D 49 701 5.51

Note: M = 0.11, Range: 7.96 to −9.29.

https://doi.org/10.1371/journal.pone.0184346.t017
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than offense and defense scores. If we do not perform this re-scaling, then overall scores will be

almost entirely determined by possession scores. Moreover, because smaller defense scores indi-

cate superior performance, defense scores should be subtracted, not added, to possession and

offense scores. Otherwise stated, to generate overall scores, we decided if, and by how much, we

want to weigh each of the latent variables, then compute overall scores by scaling possession
scores down by a factor of 10, adding that value to offense scores, then subtracting defense
scores from that new value.

To evaluate overall rankings, two formulations were constructed (Tables 20 & 21):

Overall ¼ Possession=10þOffense � Defense

Overall ¼ Possession=10þ 2ðOffenseÞ � 0:5ðDefenseÞ

and the top 20 players identified.

When all three latent variables were unweighted, the most interesting name on the list was

Stephan Noesen, a rookie who spent the three seasons prior in the American Hockey League,

and who owes his spot in the top 20 to an excellent defense score and an above average posses-
sion score. Fellow rookie Matthew Tkachuk topped the list, with league’s leading scorer, Con-

nor McDavid, coming in 20th due to a below average defense score. Of course, whether one

believes Matthew Tkachuk outperforms Connor McDavid depends on whether one gives

equal weighting to possession, offense, and defense. When offense is given greater importance

and defense less importance, a different picture emerges.

Given how much harder it is to score goals than prevent them, this offense focused weight-

ing (arguably) gives a more accurate depiction of player performance. Here, Connor McDavid,

Table 18. Top 20 players based on offense scores (2016/2017).

Player Position GP TOI Offense

Connor McDavid F 82 1309 0.92

Conor Sheary F 61 836 0.87

Mike Hoffman F 74 1001 0.84

Jason Zucker F 79 1104 0.80

Viktor Arvidsson F 80 1064 0.80

Jeff Skinner F 78 1139 0.78

Mark Scheifele F 79 1217 0.77

Patrik Laine F 73 1031 0.76

Brad Marchand F 80 1097 0.76

Jannik Hansen F 42 583 0.74

Brent Burns D 82 1519 0.73

Evgeni Malkin F 62 871 0.71

Nikita Kucherov F 74 1097 0.70

Pavel Buchnevich F 41 451 0.69

Thomas Vanek F 68 759 0.68

Tyler Bozak F 78 1037 0.68

Sean Couturier F 66 921 0.66

Matthew Tkachuk F 76 930 0.64

Henrik Zetterberg F 82 1274 0.62

Colin Wilson F 70 872 0.61

Note: M = 0.03, Range: 0.92 to −0.93.

https://doi.org/10.1371/journal.pone.0184346.t018
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Table 19. Top 20 players based on defense scores (2016/2017).

Player Position GP TOI Defense

Anton Slepyshev F 41 447 -1.10

John Mitchell F 65 745 -0.98

Stefan Noesen F 44 458 -0.95

Colton Sissons F 58 578 -0.87

Matt Read F 63 745 -0.87

Brett Richie F 78 871 -0.84

Shea Weber D 78 1388 -0.83

Andrew Copp F 64 667 -0.81

Shane Doan F 74 965 -0.80

Auston Watson F 77 786 -0.79

Pierre-Edouard Bellemare F 82 797 -0.77

Kyle Clifford F 73 768 -0.76

Tyler Graovac F 52 504 -0.75

Jayson Megna F 58 662 -0.73

Mark Giordano D 81 1333 -0.73

Jaccob Slavin D 81 1482 -0.70

Matt Martin F 82 699 -0.69

Kyle Palmieri F 80 1036 -0.68

Brendan Perlini F 57 723 -0.68

Chris Wideman D 76 906 -0.68

Note: M = 0.01, Range: 1.42 to −1.10.

https://doi.org/10.1371/journal.pone.0184346.t019

Table 20. Top 20 players based on overall scores: Unweighted (2016/2017).

Player Position GP TOI Possession Offense Defense Overall

Matthew Tkachuk F 76 930 6.15 0.64 -0.34 1.60

Henrik Zetterberg F 82 1274 3.03 0.62 -0.63 1.56

Mark Giordano D 81 1333 3.88 0.41 -0.73 1.53

Anthony Mantha F 60 797 5.32 0.50 -0.49 1.52

Nikita Kucherov F 74 1097 5.17 0.70 -0.25 1.47

Aleksander Barkov F 61 849 4.34 0.57 -0.42 1.43

Jaromir Jagr F 82 1129 6.10 0.49 -0.32 1.42

Jason Zucker F 79 1104 1.31 0.80 -0.46 1.39

Jaccob Slavin D 81 1482 2.16 0.46 -0.70 1.38

Artemi Panarin F 82 1258 7.92 0.55 0.01 1.34

Stefan Noesen F 44 458 1.96 0.19 -0.95 1.33

Mike Hoffman F 74 1001 1.97 0.84 -0.29 1.33

Brandon Saad F 82 1137 5.40 0.30 -0.49 1.33

Dougie Hamilton D 81 1267 6.46 0.45 -0.19 1.29

Patrice Bergeron F 79 1035 7.96 0.10 -0.39 1.28

Mark Stone F 71 1015 6.01 0.56 -0.10 1.27

Nino Niederrieter F 82 1041 6.66 0.47 -0.12 1.26

Conor Sheary F 61 836 2.25 0.87 -0.15 1.25

Brent Burns D 82 1519 4.05 0.73 -0.11 1.25

Connor McDavid F 82 1309 3.49 0.92 0.04 1.22

Note: Overall = Possession/10 + Offense − Defense, M = 0.04, Range: 1.60 to −1.77. Scores rounded to two decimal places.

https://doi.org/10.1371/journal.pone.0184346.t020
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the leagues leading scorer and Hart Trophy winner (awarded to the league’s most valuable

player), tops the list, with Mathew Tkachuk falling back two spots to number three. Moreover,

the list is comprised largely of forwards, with the top defenseman being Brent Burns, the James

Norris Memorial Trophy winner (awarded to the league’s best defenseman).

Conclusion

Paralleling Thomas and colleagues’ [10] work demonstrating that the interactive effects

between players impacts individual performance, my findings suggest that offense mediates the

relationship between possession and defense, and that this mediation occurs under multiple

measurement models. One possible explanation for this relationship is that players who score

lots of points are more likely to “cheat” for offense than their low scoring counterparts, which

leads them to neglect defensive responsibilities that would otherwise have prevented goal(s)

against. This theory is tangentially supported by zone entry research suggesting that controlled

entries into the offensive zone produce more goals than attacking after the puck has been shot

into the offensive zone, and that controlled zone entries are thought to be a higher risk play as

a turn-over at the offensive blueline can often lead to a dangerous scoring chance against [38].

Thus, it may be the case that those who attempt to maintain possession as they enter the offen-

sive zone—as opposed to choosing the safer option of simply shooting the puck in—not only

produce more shots and goal for, but also more high-risk turnovers, which, subsequently,

leads to more goals against.

Another possible explanation rests in the idea that scoring points at the NHL level is incred-

ibly difficult, and players who manage to do so have focused on developing their offensive

skills to the detriment of their defensive skills. This, in turn, makes them less capable

Table 21. Top 20 players based on overall scores: Offense focused (2016/2017).

Player Position GP TOI Possession Offense Defense Overall

Connor McDavid F 82 1309 3.49 0.92 0.04 2.16

Brad Marchand F 80 1097 7.15 0.76 0.28 2.09

Matthew Tkachuk F 76 930 6.15 0.64 -0.34 2.07

Conor Sheary F 61 836 2.25 0.87 -0.15 2.05

Nikita Kucherov F 74 1097 5.17 0.70 -0.25 2.04

Mike Hoffman F 74 1001 1.97 0.84 -0.29 2.03

Jason Zucker F 79 1104 1.31 0.80 -0.46 1.97

Brent Burns D 82 1519 4.05 0.73 -0.11 1.92

Artemi Panarin F 82 1258 7.92 0.55 0.01 1.89

Henrik Zetterberg F 82 1274 3.03 0.62 -0.63 1.86

Viktor Arvidsson F 80 1064 4.58 0.80 0.44 1.84

Aleksander Barkov F 61 849 4.34 0.57 -0.42 1.79

Mark Stone F 71 1015 6.01 0.56 -0.10 1.78

Anthony Mantha F 60 797 5.32 0.50 -0.49 1.78

Jaromer Jagr F 82 1129 6.10 0.49 -0.32 1.76

Evgeni Malkin F 62 871 2.40 0.71 -0.08 1.70

Sean Couturier F 66 921 4.16 0.66 0.10 1.69

Nino Niederreiter F 82 1041 6.66 0.47 -0.12 1.68

Dougie Hamilton D 81 1267 6.46 0.45 -0.19 1.65

Mark Giordano D 81 1333 3.88 0.41 -0.73 1.57

Note: Overall = Possession/10 + 2(Offense) − 0.5(Defense), M = 0.08, Range: 2.16 to −2.61. Scores rounded to two decimal places.

https://doi.org/10.1371/journal.pone.0184346.t021
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defensively, which leads to more goals against. From this data it is impossible to say for certain

what drives the mediating effect of offense, but it is an interesting and important avenue for

future research.

With respect to the measurement model, both models sufficiently captured all the latent

variables, as well as the structural model. However, only model 1 managed to fit the observed

data as a whole. Going back to the CFA, we see that the largest standardized weight for the

additional terms in model 2 is 0.64 for A60
i , which is notably below the lowest standardized

weight of 0.77 for Cp in model 1 (see Tables 5 & 7). Taken as a whole, these findings suggest

that although a larger number of measured variables pertain to each latent variable, only a

small number of variables that span raw, τ, and δmetrics are needed to sufficiently capture

core concepts such as offense, defense, and possession, and that the majority of measured vari-

ables, fall under the purview of the disturbance terms.

In having identified a model that conveys the multivariate nature of hockey, and that is

applicable across multiple seasons, we are able to not only generate factor scores for latent vari-

ables, but also combine these scores into an overall score. These scores, be they for possession,

offense, defense, or overall, can then be used to rank players in a more nuanced way that if we

were to rely on measured variables alone. Moreover, the ability to generate different overall
scores by applying different weightings to latent variables allows us to prioritize components

of player performance. Thus, if we wanted to identify the best overall player who also exhibits

a high level of defensive responsibility, we could simply adjust latent variable weights to reflect

this (e.g., Overall = Possession/10 + Offense + 2(Defense)).

Supporting information

S1 File. NHL data. Should interested parties want the corresponding R code, the author is

happy to provided in upon request.
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