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Abstract

The fast and accurate segmentation of lung nodule image sequences is the basis of subse-

quent processing and diagnostic analyses. However, previous research investigating nod-

ule segmentation algorithms cannot entirely segment cavitary nodules, and the

segmentation of juxta-vascular nodules is inaccurate and inefficient. To solve these prob-

lems, we propose a new method for the segmentation of lung nodule image sequences

based on superpixels and density-based spatial clustering of applications with noise

(DBSCAN). First, our method uses three-dimensional computed tomography image fea-

tures of the average intensity projection combined with multi-scale dot enhancement for pre-

processing. Hexagonal clustering and morphological optimized sequential linear iterative

clustering (HMSLIC) for sequence image oversegmentation is then proposed to obtain

superpixel blocks. The adaptive weight coefficient is then constructed to calculate the dis-

tance required between superpixels to achieve precise lung nodules positioning and to

obtain the subsequent clustering starting block. Moreover, by fitting the distance and detect-

ing the change in slope, an accurate clustering threshold is obtained. Thereafter, a fast

DBSCAN superpixel sequence clustering algorithm, which is optimized by the strategy of

only clustering the lung nodules and adaptive threshold, is then used to obtain lung nodule

mask sequences. Finally, the lung nodule image sequences are obtained. The experimental

results show that our method rapidly, completely and accurately segments various types of

lung nodule image sequences.

Introduction

Lung cancer is one of the most malignant tumors with the highest morbidity and mortality [1,

2]; therefore, it is very important to detect lung nodules as early as possible and make an early
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diagnosis. X-ray computed tomography (CT) [3, 4] plays an important role in early lung can-

cer detection and tumor diagnosis because of the precise structural features of these tumors.

To improve the detection rate of lung nodules, a thin-section CT image is often used, but this

method also increases the amount of data and the noise in the images, leading to a poor seg-

mentation efficiency and the introduction of noise. In addition, the probability of malignancy

for cavitary nodules and juxta-vascular nodules is very large; thus, the accurate segmentation

of these two types of nodules has great significance for improving patient survival. Therefore,

in the field of modern medicine, there is an urgent need for a method that can accurately seg-

ment lung nodule image sequences while satisfying the clinical requirement for speed.

In the computer-aided diagnosis system [5, 6], the segmentation effect of lung nodules has

a direct impact on the accuracy of the subsequent feature extraction and diagnosis. Therefore,

in recent years, research examining segmentation methods for lung nodule images has

attracted increasing attention.

Sun S et al. [7] proposed the k-means (KM) algorithm using flow entropy and geodesic dis-

tance to segment nodules, which has a better segmentation effect. However, with an increase

in the nodule radius, the longer the algorithm execution time, the more the efficiency declines.

Chen K et al. [8] used the fuzzy speed function to optimize the active contour model to seg-

ment lung nodules, which can effectively solve the problem of segmentation boundary leakage

of the traditional active contour model, but the algorithm performance depends largely on the

choice of the initial position. Zinoveva O et al. [9] proposed a pixel classification method based

on texture features. Achievement of the classifier provides an effective distinction between the

blood vessels and nodules, which can provide better segmentation results for lung nodules.

However, algorithms based on pixels are inefficient. Xu N et al. [10] proposed a method for

automatic lung nodules segmentation based on dynamic programming and expectation maxi-

mization (EM) classification. First, the method used the shape constraint model to segment

the object boundary and calculate the optimal object boundary by dynamic programming.

Then, the use of an EM classification algorithm to remove calcification provided a general

treatment effect for cavitary nodules and juxta-vascular nodules. Wei Y et al. [11] proposed a

mean-shift clustering method combined with multi-scale Hessian dot filtering, which uses a

multi-scale Hessian matrix to enhance nodules and to restrain the linear structure of the tra-

chea and blood vessels. Subsequently, a mean-shift clustering kernel function was designed by

calculating the shape filtering value of the Hessian matrix, gray value and spatial position of

three feature information types. Finally, segmentation of the suspected regions of interest

(ROIs) of lung nodules was achieved. Sivakumar S et al. [12] proposed an unsupervised

method for lung nodule segmentation. Based on the study of several unsupervised segmenta-

tion models, a probabilistic fuzzy clustering algorithm is proposed. Compared with fuzzy c-

means (FCM), possibilistic c-means and fuzzy possibilistic c-means, this algorithm can

improve the speed and accuracy of segmentation. Kong Y et al. [13] proposed new unsuper-

vised and supervised information theoretic discriminative algorithms to segment brain MRI

images. First, the simple linear iterative clustering algorithm is employed to generative three-

dimensional (3D) supervoxel samples. The intensity, texture and shape features are then

extracted to describe each supervoxel. A discriminative learning method based on theoretical

information is then utilized to manage tissue heterogeneity and feature redundancy. Com-

pared with KM, MI, MRF and WPNN, the proposed algorithm indeed improves the segmenta-

tion performance for brain MRI datasets. Deng Y et al. [14] proposed a fused fuzzy deep

neural network for data classification. First, the fuzzy membership function is used to calculate

the fuzzy degree of all input nodes. Then, neural learning is exploited to transform the input as

a high-level representation. Moreover, the multi-model neural network structure is employed

to fuse neural and fuzzy representations. Finally, the soft-max function is applied to classify
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the data. Compared with NLFS, MRF, ITS, DNN, SCFDNN and SFDNN, the joint learning

network framework produces the best segmentation results for IBSR and BrainWeb brain

datasets.

Although these algorithms for the segmentation of solid nodules are very effective, the fol-

lowing issues are raised. (1) The segmentation of lung nodule image sequences is ineffective

without reducing accuracy. (2) In cavitary nodules, there are large differences in the gray val-

ues between the cavity and the remaining area; as such, the cavity is easily regarded as part of

the lung parenchyma, which leads to incomplete nodule segmentation [15]. (3) The gray value

of juxta-vascular nodules is very close to that of blood vessels, facilitating the merging of the

blood vessels and nodules and thus ineffectively separating them. (4) There is increased noise,

leading to the introduction of noise and various tissue structures into the lung nodule

segmentation.

Therefore, to address these problems in this paper, we investigated many algorithms. We

propose a segmentation method for lung nodule image sequences based on superpixels and

density-based spatial clustering of applications with noise (DBSCAN). This method not only

significantly reduces the effects of noise but also completely incorporates the features of color,

spatial location, blood vessels and nodule type in the CT images. Compared with other existing

methods mentioned in the literature, our method is more efficient and accurate for segmented

cavitary nodules and juxta-vascular nodules.

Materials and methods

Materials

Ethics statement. This study was approved by the institutional review board of the Shanxi

Provincial People’s Hospital. The study was conducted in accordance with the hospital’s ethi-

cal requirements. Informed consent was obtained from all patients prior to study inclusion.

Datasets. The datasets were obtained from two different databases: Shanxi Provincial Peo-

ple’s Hospital, which uses PHILPS 256 CT (Philips iCT) layer speed equipment (240 mA, 120

kV, slice thickness of 1.5 mm), and the Lung Image Database Consortium (LIDC) [16]

(40~422 mAs, 120~140 kVp, slice thickness ranging from 1 mm to 3 mm). All data can be

obtained at https://figshare.com/s/7564b0623360d92577a2. In the experiment, the datasets

contained 1458 lung CT sequence images collected from 120 clinical cases, and the size of each

CT image was 512×512. The experimental datasets were also classified by experienced imaging

physicians. Nodules were categorized as solitary pulmonary nodules, cavitary nodules or

juxta-vascular nodules, and approximately 40 cases were included for each nodule type.

Proposed method

This paper focuses on the lung sequence images of solitary pulmonary nodules, cavitary nod-

ules and juxta-vascular nodules. We present an efficient and accurate segmentation method. A

diagram of the lung nodule image sequence segmentation method is shown in Fig 1.

Pretreatment. To better eliminate the influence of many bright regions on the segmenta-

tion of lung nodules, the following features were included in the pretreatment work.

1. Lung parenchyma image sequence segmentation: In this section, we use the lung

parenchyma segmentation method [17] proposed by the project group to segment the lung

parenchyma image sequences. The method is divided into four stages. First, we use the loca-

tion features of the lung parenchyma images to obtain lung CT ROI image sequences. Second,

a gradient and sequential linear iterative clustering algorithm is utilized to segment the ROI

image sequences. Third, the self-generating neural forest (SGNF), which is optimized by a

genetic algorithm, is proposed for the superpixel clustering. Fourth, the gray and geometric
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features of the superpixels are used to identify the lung parenchyma. Finally, lung parenchyma

sequence images are obtained.

2. Average intensity projection (AIP) image sequence extraction: Considering that this

method can be used to weaken the gray of blood vessels and recover the shape of blood vessels

in lung CT images, the method can also effectively eliminate the influence of the long strip and

blob-like blood vessels on lung nodules segmentation. Therefore, in this paper, the AIP [18] is

used for the sparse sampling of original CT sequence images by calculating the mean gray of

the points on each ray of the continuous CT images. The AIP is defined as follows in this

paper:

AIPðx; yÞ ¼
1

Sr

XSr

i¼1

Giðx; yÞ; 1 � x � 512; 1 � y � 512 ð1Þ

where AIP(x, y) is the gray value at point (x, y) on the AIP image, Sr is the number of slices for

the AIP reconstruction areas, and Gi(x, y) is the gray value at point (x, y) on the i-th CT image.

The Sr is defined as

Sr ¼ Tr=t ð2Þ

where Tr is the section thickness of the AIP reconstruction and t is the slice thickness of the

original CT image.

The mapping relationship between the lung CT sequence images and AIP sequence images

is shown in Fig 2, and Nr is the total number of AIP reconstruction image sequences.

3. Multi-scale dot enhancement: For two-dimensional (2D) images, the Hessian matrix is

defined as

H ¼
Ixx Ixy
Iyx Iyy

" #

ð3Þ

The set parameters λ1 and λ2 are two eigenvalues of the Hessian matrix. The linear structure

satisfies the condition | λ1 |�0, | λ2 |>> 0, and the circular structure satisfies | λ1 |�|λ2|>> 0.

Thus, Frangi [19] proposed the vessel similarity function to enhance the blood vessels. How-

ever, we propose the dot similarity function based on the circular features of lung nodules to

Fig 1. Diagram of the lung nodule image sequence segmentation method.

https://doi.org/10.1371/journal.pone.0184290.g001

Fig 2. Mapping relationship between CT sequence images and AIP sequence images.

https://doi.org/10.1371/journal.pone.0184290.g002
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achieve dot enhancement. The function is defined as

doðlÞ ¼
0 l2 > 0

ð1 � expð�
R2
A

2a2
ÞÞð1 � expð�

R2
B

2b
2
ÞÞ Other

ð4Þ

8
><

>:

In Eq (4),RA ¼
jl1 j

jl2 j
; RB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2

1
þ l

2

2

q

where α, β is used to set the weights of RA and RB, and the value of β is generally affected by

the scale range of the gray image, with a smaller value resulting in a greater response to the

change in gray. When it becomes a linear structure, RA = 0, and do(λ) = 0. Therefore, RA can be

used to distinguish the circular structure and the linear structure. When it becomes a noise

point, the eigenvalues λ1 and λ2 are very small and RB = 0, and do(λ) = 0. Therefore, RB can be

utilized to distinguish the circular structure and the noise point.

The combination of the Hessian matrix and Gaussian function is utilized to achieve multi-

scale fusion. The Gaussian function is defined as

GðX; sÞ ¼ expð�
jjXjj
2s2

2

Þ ð5Þ

where σ is the standard deviation of the Gaussian function, which is the spatial scaling factor.

Based on mathematical knowledge, because 95% of the weights of the Gaussian function are

included between [-2σ, 2σ], the diameter of the circular structure is approximately 4σ. When σ
is best matched with the actual scale of the circular structure, the response of the dot enhance-

ment is greatest. Thus, the experimental σ is defined as follows:

si ¼ smin þ i�
smax � smin

N � 1
; i ¼ 0; 1; � � �;N � 1 ð6Þ

In Eq (6), σmin = dmin/4, σmax = dmax/4

where N is the number of scales, dmin is the minimum diameter of the lung nodule images,

and dmax is the maximum diameter of the lung nodule images.

Finally, the method selects the point of maximum response of each scale as the output by

continuous iterative σ to obtain CT images after dot enhancement.

Hexagonal clustering and morphological optimized sequential linear iterative cluster-

ing (HMSLIC). In 2003, RenXiao-feng et al. proposed the theory of superpixels [20]. A

superpixel is a collection of adjacent pixels with similar brightness, color and texture. Com-

pared with previous pixel-based image processing methods, the combination of superpixels

with similar pixels can greatly reduce the complexity of subsequent image processing tasks and

improve the operation speed of segmentation algorithms.

In 2009, Achanta et al. proposed a simple linear iterative clustering (SLIC) [21, 22] algo-

rithm based on the original superpixel segmentation method; this algorithm uses a five-dimen-

sional feature vector [L, a, b, x, y]T to calculate [x,y], representing the pixel position, and [L, a,

b], representing the three-color information L, a, b of the Lab color space. Considering the

similarity of the color and location features, superpixels with a compact structure and strong

homogeneity are generated.

In this paper, we propose an improved superpixel segmentation algorithm, named hexago-

nal clustering and morphological optimize sequential linear iterative clustering algorithm

(HMSLIC), specially for the lung CT images, according to the circular and size features of the

lung nodules.

Segmentation of lung nodule image sequences by using Superpixels and DBSCAN
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Moreover, HMSLIC segmentation is only focused on the lung parenchyma. For areas with

a gray level of zero, only a simple hexagonal grid is needed, rather than a cluster center update

operation. This procedure significantly reduces the time complexity of the image sequence seg-

mentation. The HMSLIC algorithm is shown in Table 1.

In the HMSLIC algorithm, the size of the input image is assumed as rows � cols, which is

divided into K superpixels. Thus, the hexagonal grid spacing S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � rows � cols=K �
ffiffiffi
3
pq

,

and the number of superpixels in each column is blockCols = [cols/S − 0.5]. The cluster centers

are used as starting points to search for similar pixels.

The algorithm measures the similarity between pixels by calculating the distance matrix D
from each pixel in each sub image to the cluster center. The distance between pixels includes

the color distance dc and space distance ds, and thereby the distance matrix is defined as

ds ¼ ðdx � xkÞ
2
þ ðdy � ykÞ

2
ð7Þ

dc ¼ ðdl � LkÞ
2
þ ðda � akÞ

2
þ ðdb � bkÞ

2
ð8Þ

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dc þ
ds �m2

Scluster2

s

ð9Þ

where Scluster = [cols/(blockCols+0.5)], and Scluster represents the spacing between cluster cen-

ters. dx represents the space distance matrix from the x coordinates of all pixels in the sub

image corresponding to the k-th clustering center to the x coordinates of the clustering center.

Similarly, dl represents the color distance matrix from the L component of all pixels in the sub

image corresponding to the k-th clustering center to the L component of the clustering center.

m represents the weight coefficient between the space distance and the color distance, which is

generally between 1 and 40. The greater the value, the more compact but the less sensitive the

segmented superpixels become to changes in color. The smaller the value, the more sensitive

the segmented superpixels become to changes in color, although the shape of the superpixels

becomes more irregular.

Table 1. HMSLIC algorithm.

Algorithm 1 HMSLIC

1: Initialize cluster center Ck = [Lk, ak, bk, xk, yk]T in the hexagonal grid, pixels label matrix l, distance matrix

D from pixels to cluster centers, hexagonal grid spacing S and radius r of circular structure element

2: Move initial cluster center to the smallest gradient position in the hexagonal region.

3: Repeat

4: while residual error > = threshold E do

5: for each cluster center Ck do

6: Obtain sub images (use [xk, yk] as the center, 2*S as the side) containing cluster centers. Calculate the

distance between each pixel in the sub image and cluster center. If the distance is less than the previous

value, then update its l and D.

7: end for

8: Calculate the mean of L, a, b, x and y of each superpixel to update the cluster center. Recalculate the

residual error, go to the third step, and continue the execution.

9: end while

10: Obtain all non-connected regions of the CT image and then perform the open operation of the circular

structure element radius r. The final result is subtracted from the original CT image denoted as mask.

11: Perform distance transform on ~mask, and assign each small region to the nearest superpixel.

12: Compute the superpixel adjacency matrix for subsequent operation.

13: Until all CT image sequences are segmented.

14: Execute connection operations and sequential output.

https://doi.org/10.1371/journal.pone.0184290.t001
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The open operation of structural element B on A, denoted as A�B, is defined as

A � B ¼ ðAYBÞ � B ð10Þ

That is, the structural elements are used to perform the erosion operation [23] on A; then,

the same structural element is used to perform the dilation operation [23].

The improved algorithm is mainly reflected in two aspects. First, the HMSLIC algorithm

uses a hexagonal method that is approximately consistent with the circular shape features of

lung nodules to achieve clustering. Thus, the process of pixel clustering will make up for the

disadvantage that the clustering effect of the quadrilateral differs in different directions. By

performing the HMSLIC algorithm, the segmented superpixels are more regular and the edge

information is well preserved. Second, the HMSLIC algorithm uses morphology to combine

bright superpixels, which are less than the fixed area to the nearest superpixels. It further elimi-

nates the influence of bright blob-like blood vessels. Additionally, after the merger, the number

of superpixels is greatly reduced, which greatly reduces the complexity of the subsequent calcu-

lation of distance.

Superpixel sequence clustering based on the improved DBSCAN

algorithm

This paper uses a fast DBSCAN superpixel sequence clustering algorithm, which is optimized

by the strategy of only clustering the lung nodules and adaptive threshold to achieve superpixel

sequence clustering.

1. DBSCAN: DBSCAN [24, 25] is a spatial clustering algorithm based on density. The algo-

rithm divides the areas with sufficient density into clusters and identifies clusters with an arbi-

trary shape in spatial databases with noise. It defines clusters as the largest collection of

density-connected objects. In addition, it displays characteristics of insensitivity to noise data

and the order of samples in the database.

Some concepts of the DBSCAN algorithm include the following:

E-neighborhood: The neighborhood within the radius (E) of the given object.

Core object: The E-neighborhood of an object contains at least a minimum number of objects

(MinPts).

Directly density-reachable: For the object set D, if q is in the E-neighborhood of p and p is the

core object, then object q is directly density-reachable from p.

Density-reachable: For the object set D, given a string of objects (p1, p2. . .pn, p = p1, q = pn), if

object pi is directly density-reachable from pi−1, then object q is density-reachable from p.

Density-connected: If objects p and q are density-reachable from object o in the object collec-

tion D, then p and q are density-connected.

The algorithm requires two parameters: the scan radius (E) and a minimum number

(MinPts) of E-neighborhoods for the core object. The DBSCAN algorithm is shown in

Table 2.

2. Adaptive clustering initiating the block and clustering threshold setting: By calculat-

ing the dot similarity function and analyzing the features of the CT images after pretreatment,

we present a method for quickly locating the position of lung nodules. Similarly, the method

uses five-dimensional feature vectors [Lm, am, bm, xm, ym]T to calculate the distance between

Segmentation of lung nodule image sequences by using Superpixels and DBSCAN
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superpixels. The distance is defined as

dLabðbi; bjÞ ¼ ðLmi � LmjÞ
2
þ ðami � amjÞ

2
þ ðbmi � bmjÞ

2
ð11Þ

dxyðbi; bjÞ ¼ ðxmi � xmjÞ
2
þ ðymi � ymjÞ

2
ð12Þ

dðbi; bjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dLabðbi; bjÞ þ w2 � dxyðbi; bjÞ

q
ð13Þ

w ¼ meanðdoðlÞiÞ ð14Þ

where Lm, am, bm is the mean of the three color feature components. xm, ym is the center loca-

tion of the superpixel. dLab(bi, bj) is the color feature similarity distance of superpixels i and j.
dxy(bi, bj) is the space location feature similarity distance of superpixels i and j. d(bi, bj) is the

distance between superpixels after the superposition of weight. w is the adaptive weight coeffi-

cient of the space feature distance. do(λ)i is the mean of the dot similarity of all pixels in the i-

th superpixel.

In this paper, the value of the adaptive weight coefficient (w) is in the range of [0,1]. When

a superpixel block is in the area of a blood vessel, the value of w is very small. In contrast, when

a superpixel block is in the area of a nodule, the value of w is relatively large. Therefore, using

this method to calculate the sum of the distance of each superpixel, which has the function of

widening the difference in the sum of the distance between blood vessels and nodules, can bet-

ter distinguish blood vessels and nodules.

Moreover, with the increased number of superpixels, the time complexity of the computa-

tion of distance is also greatly increased. Fig 3 shows that it is meaningless to calculate the dis-

tance in the area, excluding the lung parenchyma (as shown in Fig 3(a)). Therefore, in this

paper, the matrix of the sum of the distance uses a sparse matrix and any distance between the

superpixels with L = 0 set directly to zero and no longer calculated (as shown in Fig 3(b)).

As shown in Fig 3(a), the superpixel label for the maximum sum of the distance is 1249,

which corresponds to the location of a lung nodule, resulting in its precise positioning and use

as a subsequent clustering starting block.

Due to differences in the gray level between CT images, if only manual debugging is used to

obtain the best threshold, then the process will become very time consuming when the debug

spacing is too small, and threshold errors will arise when the debug spacing is too large.

Therefore, we present a fast and accurate method for determining the clustering threshold

of DBSCAN. The method considers the gray differences between CT images and the features

Table 2. DBSCAN algorithm.

Algorithm 2 DBSCAN

1: Initialize scan radius E, the minimum number (MinPts) of E-neighborhoods of the core object.

2: Repeat

3: Extract an object p that has not been marked as visited from the database.

4: if p is the core object

5: then p and objects in the E-neighborhood form a cluster, marking p as visited. The same method is then

used to address all the objects that are not marked as visited in the neighborhood, achieving expansion of

the cluster

6: else p is noise (non-core object) and ends this loop, followed by a search for the next object in the

database.

7: end if

8: Until all objects in the database are processed (all objects are classified into a cluster or labeled noise).

https://doi.org/10.1371/journal.pone.0184290.t002
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of various types of lung nodule images. The clustering threshold can then be adjusted automat-

ically according to specific CT images and the nodular type.

In Fig 4, the first line shows the results for a solitary pulmonary nodule image, the second

line shows the results for a cavitary nodule image, and the third line shows the results for a

juxta-vascular nodule image. In the experiment, after recording the superpixel label of the

maximum sum of the distance as index_max, extracting data for the index_max column from

the distance matrix, and removing 0 items, the results are as shown in Fig 4(a). For the same

CT image, we find that the maximum value of Fig 3(b) corresponds to the minimum value of

Fig 4(a), and the results roughly coincide. Fig 4(b) shows the results of Fig 4(a) in ascending

order. Fig 4(c) shows the first eight data points shown in Fig 4(b), which are more likely to

reflect the trend in the slope change. The Determine the Threshold algorithm is shown in

Table 3.

Fig 3. The sum of the distance between superpixel blocks.

https://doi.org/10.1371/journal.pone.0184290.g003

Fig 4. The relationship of the distance between index_max and other superpixels.

https://doi.org/10.1371/journal.pone.0184290.g004
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After executing the Determine the Threshold algorithm, the clustering thresholds for the

three types of lung nodules were 5.48, 6.73, and 12.65. In general, the clustering threshold for

cavitary nodules will be slightly larger. In contrast, the clustering threshold for juxta-vascular

nodules will be smaller and exhibit a great relationship with the difference in the CT image

gray level and the nodule location.

In addition, the accuracy of the clustering threshold further ensures that our method can

accurately segment cavitary nodules and juxta-vascular nodules, as mainly reflected by two

aspects. First, the cavities are effectively segmented as a part of the nodule, which ensures the

integrity of cavitary nodule segmentation. Second, the effective separation of blood vessels and

nodules ensures the accuracy of juxta-vascular nodule segmentation.

3. Improved DBSCAN algorithm for superpixel sequence image clustering: Compared

with the traditional DBSCAN clustering algorithm, the advantages of the Improved DBSCAN

algorithm are mainly reflected by three aspects. First, the clustering algorithm is based on

superpixels rather than pixels. Second, by constructing the adaptive weight coefficient in the

calculation of the distance between superpixels, initiation of the clustering block can be

obtained. Thus, the purpose of clustering can be achieved only for lung nodules. Third, by fit-

ting the distance between superpixels and detecting the change in slope, the clustering thresh-

old can be obtained, achieving the effect of the adaptive threshold and improving the accuracy

of segmentation.

The Improved DBSCAN algorithm is shown in Table 4.

Method for segmenting lung nodule image sequences. The overall description of the

method for lung nodule image sequence segmentation is shown in Table 5.

Results and discussion

To evaluate the overall performance of our segmentation method for the three types of nod-

ules, we conducted many contrast experiments using our method, region growing(RG) [26],

pcnn-pulse coupled neural network (PCNN) [27], KM [28], FCM [29], particle swarm optimi-

zation (PSO)-self-generating neural network (SGNN) [15] and flowing entropy and geodesic

distance (FEGD) [7]. All the experimental results were compared with the manual segmenta-

tion results. All the algorithms in the experiment are presented by Visual Studio 2013,

MATLAB R2014b, ITK 4.7.2, or VTK6.3.0 and were performed on a PC machine with a 3.4

GHz Intel (R) Core (M) i7-4770 processor with 8 GB of RAM.

Qualitative evaluation

In the present analysis, for the lung CT image sequences of solitary pulmonary nodules, cavi-

tary nodules and juxta-vascular nodules, we compared the segmentation results of our method,

RG, PCNN, KM, FCM, PSO-SGNN and FEGD. The parameter settings of our method are

shown in Table 6.

Table 3. Determine the threshold algorithm.

Algorithm 3 Determine the Threshold

1: Obtain Fig 4(c) by calculating the distance and fitting

2: while distance> = 0 && distance< = 20 do

3: if the point at which the slope is changed cannot be detected

4: then set the clustering threshold E = 20

5: else detect the maximum point of the change in slope max

6: then obtain the value of the distance (dist) corresponding to the point (max) and set E = dist

7: end if

8: end while

https://doi.org/10.1371/journal.pone.0184290.t003
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By analyzing all the experimental data, we discovered that the average number of CT image

sequences containing nodules is twelve. Moreover, considering that the changes in the relative

position of nodules between the four CT images were very small, we set parameter Sr = 4,

which has a better effect on sequence segmentation.

Table 4. Improved DBSCAN algorithm.

Algorithm 4 Improved DBSCAN

1: Obtain starting clustering block sequences (indexes) by calculating the sum of the distance between the

respective superpixel blocks.

2: Obtain clustering threshold sequences (Ts) by performing the Determine the Threshold algorithm.

3: Repeat

4: Extract the index from the indexes and obtain the corresponding threshold T from Ts.

5: Initialize the visit array (visited) for all 0.

6: if index is not visited

7: then visited(index) = 1 is set to be visited. In the adjacency matrix of the index, the label array

(neighbors) of the adjacent blocks of the similarity distance d(bindex, bj) (j is the label number of the

adjacent superpixels with index) is searched, which is less than the threshold T.

8: Repeat

9: Remove a label number in the array neighbors denoted as i.

10: if i is not visited

11: then visited(i) = 1 is set to be visited. As in step six, in the adjacency matrix of i, searching the label

array (n) of the adjacent blocks of the similarity distance d(bi, bj) (j is the label number of the adjacent

superpixels with i) is less than the threshold T and then merges n into neighbors.

12: end if

13: Until all data for the neighbors are executed

14: Merge superpixels marked as already visited and obtain the lung nodule masks.

15: end if

16: Until all values for the indexes are performed

17: Obtain the lung nodule mask sequences.

https://doi.org/10.1371/journal.pone.0184290.t004

Table 5. Lung nodule image sequence segmentation algorithm.

Algorithm 5 Lung nodule image sequences segmentation algorithm

1: Input the original CT image sequences, and initialize the number of slices of AIP reconstruction area Sr

and the total number of AIP reconstruction sequence images Nr.

2: Lung parenchyma image sequence segmentation.

3: Obtain the AIP sequence images AIPi, i 2 [1,Nr]. The lung parenchyma image sequences are labeled

fCTijg
Sr
j¼1

, with i 2 [1,Nr], and j 2 [1,Sr]; j represents the corresponding relationships of the reconstructed

sequence number.

4: For lung parenchyma images labeled {CTi1}, with i 2 [1,Nr], execute the following:

1) Compared with the AIPi image sequence after multi-scale dot enhancement, retain the dot-like object.

2) Superpixel sequence image segmentation (HMSLIC).

3) Calculate the distance between superpixels and perform the Determine the Threshold algorithm to

obtain the starting clustering point, the starting clustering block and the clustering threshold, denoted as [xi,

yi], {Si1} and {Ei1}.

5: For lung parenchyma images labeled fCTijg
Sr
j¼2

, with i 2 [1,Nr], and j 2 [2,Sr], take [xi, yi] as the center and

30 mm as the side to extract ROIs as follows:

1) Convert coordinates [xi, yi] of the clustering starting point to the ROI as [Xi, Yi].

2) Superpixel sequence image segmentation (HMSLIC).

3) Mark the label of the pixel point [Xi, Yi], which belongs to the superpixel as the starting clustering block

fSijg
Sr
j¼2

.

4) Obtain the clustering threshold by performing the Determine the Threshold algorithm labeled as

fEijg
Sr
j¼2
rr .

6: According to the clustering starting blocks fSijg
Sr
j¼1

and clustering thresholds fEijg
Sr
j¼1

, perform the

Improved DBSCAN algorithm to obtain the lung nodule mask sequence fMijg
Sr
j¼1

.

7: According to fMijg
Sr
j¼1

, sequential segmentation of all lung nodule images.

https://doi.org/10.1371/journal.pone.0184290.t005
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Additionally, since the number of lung CT sequence images was large, this paper only

selected three AIP reconstruction sections of three types of nodule images to demonstrate and

illustrate the sequence segmentation process, as shown in Figs 5–7. The other AIP reconstruc-

tion sections were similar.

As shown in Figs 5–7, a full account of the correlation between the front and back CT

images of each AIP reconstruction section is provided. The coordinates of the clustering start-

ing points of the front and back images are transmitted well. Therefore, in the single AIP

reconstruction section, we extract only ROI sequences for localization and direct operation,

except for the first image. This process can significantly accelerate the speed of the algorithm

and eliminate the interference of most of the background noise.

Furthermore, Fig 8 shows the segmentation results of our method for solitary pulmonary

nodules and cavitary nodules. Fig 9 shows the segmentation results of our method for juxta-

vascular nodules.

Table 6. The parameter settings of our method.

Index Parameters Values

1 Sr, t in AIP 4, 0.6 or 1 or 1.3 or 1.5

2 σ, β, N, dmin, dmax in Hessian 0.5, 15, 8, 3, 30

3 K, m, r, E in HMSLIC 1800 or 30~60 (ROIs), 25, 1, 0.0001

4 w in Distance Calculation adaptive

5 MinPts, index, T in Improved DBSCAN 1, adaptive, adaptive

https://doi.org/10.1371/journal.pone.0184290.t006

Fig 5. The sequence segmentation results of our method for solitary pulmonary nodules. Column (a) shows

the original lung CT sequence images, (b) shows the results of the local enlargement of (a), (c) shows the

segmentation results of HMSLIC (first image) and the extraction of ROI images (other images), (d) shows the local

enlargement of (c) (first image) and the segmentation results of the ROI images using HMSLIC (other images), (e)

shows lung nodule image mask sequences obtained by the Improved DBSCAN algorithm, (f) and (g) present the

final results using our method and manual segmentation by experts.

https://doi.org/10.1371/journal.pone.0184290.g005
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When using RG, we must select the seed points. In the experiment, the coordinates of the

seed points corresponding to the lung CT images in (Figs 8 and 9, Column (a)) are (394, 193),

(188, 193), (166, 212), (211, 335), (131, 237), (359, 197), (120, 321), (126, 248), (391, 252), (368,

241), (314, 286), (304, 267) and (340, 287) from the top to the bottom. In addition, then those

points were used as the starting points of RG to segment the lung nodule images. Moreover,

we discovered that different gray thresholds have different segmentation effects. (Figs 10 and

11, Column (c)-(f)) correspond to the segmentation results of the gray threshold of 0.05, 0.1,

0.15 and 0.2 (/255), respectively. We noticed that the gray threshold of the best segmentation

effect for solitary pulmonary nodules and cavitary nodules was 0.2, and that for juxta-vascular

nodules was 0.15.

Fig 7. The sequence segmentation results of our method for juxta-vascular nodules. The detailed

descriptions are the same as in Fig 5.

https://doi.org/10.1371/journal.pone.0184290.g007

Fig 6. The sequence segmentation results of our method for cavitary nodules. The detailed

descriptions are the same as in Fig 5.

https://doi.org/10.1371/journal.pone.0184290.g006
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For the lung CT images of solitary pulmonary nodules, cavitary nodules and juxta-vascular

nodules, we compared the segmentation results of seven algorithms with the manual segmen-

tation results (Figs 12 and 13).

When using PCNN, the parameter settings are as follows: linking strength coefficient =

0.32, threshold amplitude coefficient = 200, decay term for threshold = 0.35, and weight matrix
= [0.5 1 0.5; 1 0 1; 0.5 1 0.5]. At this point, better segmentation results were obtained, as shown

in (Figs 12 and 13, Column (c)).

When using KM to segment lung CT images, we set the convergence threshold to 0.00001;

that is, if the difference in the mean of the gray of the two times is less than the value, then the

Fig 8. The segmentation results of our method for solitary pulmonary nodules and cavitary nodules.

Column (a) shows the original lung CT images, (b) shows the results of the local enlargement of (a), (c) shows the

segmentation results of HMSLIC, (d) shows the results of the local enlargement of (c), (e) shows the lung nodule

image masks obtained by the Improved DBSCAN algorithm, and (f) and (g) present the final results using our

method and manual segmentation by experts.

https://doi.org/10.1371/journal.pone.0184290.g008
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algorithm ends. The best segmentation effects obtained at this point are presented in (Figs 12

and 13, Column (d)).

When using FCM to segment the images, we set the change rate threshold of the clustering

center to 0.1%; that is, if the change in the rate of the value of the clustering center is less than

the value, then the algorithm stops. The best segmentation effects at this point are shown (Figs

12 and 13, Column (e)). Moreover, Fig 14 shows the 3D reconstruction of cavitary nodules.

Fig 15 shows the 3D reconstruction of juxta-vascular nodules and surrounding non-target

tissues.

When using PSO-SGNN to segment CT images, we assume that the number of SGNN sam-

ples is n. Thus, the PSO parameter settings are as follows: particle position = [1, n], particle
speed = [1, n/5], maximum iterations = 2n, inertia weight = 0.9~0.4, and particle weight coeffi-
cient = 2. Additionally, the SGNF is generated using the gray scale and the coordinates as the

two properties of the sample. At this point, better segmentation effects are obtained, as shown

in (Figs 12 and 13, Column (f)).

When using FEGD to segment the images, the parameter settings are as follows: number of
KM clustering = 2, neighborhood scale of flowing entropy = 2 or 3. The best segmentation

results at this point are shown in (Figs 12 and 13, Column (g)).

Fig 9. The segmentation results of our method for juxta-vascular nodules. The detailed descriptions are the

same as shown in Fig 8.

https://doi.org/10.1371/journal.pone.0184290.g009
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From the segmentation results, we can observe that the advantages of our method are espe-

cially obvious for the lung images with cavitary nodules and juxta-vascular nodules.

For the lung CT image sequences with solitary pulmonary nodules, the segmentation results

of our method and the other six segmentation algorithms are basically consistent with the

manual segmentation results, indicating that all the segmentation results are accurate.

For the lung CT image sequences with cavitary nodules, the segmentation results of RG,

PCNN, KM, FCM and FEGD will miss the nodule cavities. We can see that the segmentation

performance of those algorithms is poor. Although PSO-SGNN achieved better segmentation

results, the boundary information for the segmentation results is partially missing (as shown

in (Fig 12, Rows (4–5))). Simultaneously, SGNN does not entirely the nodule cavities when the

lung CT image is more affected by noise (as shown in (Fig 12, Row (6))) or the cavities are at

the edge of the nodule (as shown in (Fig 12, Row (7))). However, the HMSLIC algorithm can

better preserve the boundary information, and the Improved DBSCAN clustering algorithm is

insensitive to noise in our method. Thereby, the segmentation results of our method will con-

tain the entire cavities and will be more consistent with the manual segmentation results by

experts, ensuring the integrity of the segmentation of cavitary nodules.

For the lung CT image sequences with juxta-vascular nodules, the segmentation results of

RG, PCNN, KM and FCM are inaccurate and will include blood vessels on the nodules. Addi-

tionally, the segmentation results of RG (gray threshold of 0.15) and PSO-SGNN are better

Fig 10. The segmentation results of RG for solitary pulmonary nodules and cavitary nodules. Column

(a) shows the original lung CT images, (b) shows the results of the local enlargement of (a), (c)-(f) show the

segmentation results of lung nodule image masks when the gray threshold is 0.05, 0.1, 0.15 and 0.2 (/255),

and (g) shows the results of manual segmentation by experts.

https://doi.org/10.1371/journal.pone.0184290.g010
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Fig 11. The segmentation results of RG for juxta-vascular nodules. The detailed descriptions are the

same as presented in Fig 10.

https://doi.org/10.1371/journal.pone.0184290.g011

Fig 12. Comparison of the segmentation results of seven methods for solitary pulmonary nodules

and cavitary nodules. Column (a) shows the original lung CT images, (b)-(h) show the results of the lung

nodule image masks using RG (gray threshold is 0.2), PCNN, KM, FCM, PSO-SGNN, FEGD and our method,

and (i) shows the results of manual segmentation by experts.

https://doi.org/10.1371/journal.pone.0184290.g012
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than those of PCNN, KM and FCM but still include some blood vessels on the nodules. Addi-

tionally, the segmentation effect of FEGD is better with the retention of a small amount of

edge leakage (as shown in (Fig 13, Row (1–4 and 6))), and the segmentation results of FEGD

will partially include blood vessels in certain lung CT images (as shown in (Fig 13, Row (5)))

because FEGD cannot account for the circular area of the vascular cross-section. However, our

method can effectively separate blood vessels and nodules while preserving more boundary

information, indicating that our method has the best segmentation effect for this type of

nodule.

The experimental results show that by using our method, despite the appearance of non-

target tissues, such as cavities and blood vessels, the nodules will be correctly segmented from

the lung CT image sequences. Additionally, compared with manual segmentation, our method

is accurate and the resulting edge is smooth. This result further indicates that our method can

more stably, completely and accurately segment those three types of lung nodule image

sequences than the other tested methods and has the best segmentation effects.

Fig 13. Comparison of the segmentation results of seven methods for juxta-vascular nodules. Column

(b) shows the results of the lung nodule image masks using RG (gray threshold of 0.15). The other detailed

descriptions are the same as in Fig 12.

https://doi.org/10.1371/journal.pone.0184290.g013

Fig 14. 3D reconstruction of a cavitary nodule.

https://doi.org/10.1371/journal.pone.0184290.g014
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Quantitative comparisons

Quantitative comparisons were conducted to further verify the validity and generality of our

method. In the experiment, we evaluated seven segmentation algorithms using the probabilis-

tic rand index (PRI), global consistency error (GCE), Variation of Information (VoI) and time

complexity. Moreover, we hypothesized that the original CT image S encompasses K pixels

and that the reference Sa and the actual segmentation results Sb encompass M segmentation

blocks fSa
1
; Sa

2
; . . . ; SaMg and N segmentation blocks fSb

1
; Sb

2
; . . . ; SbNg, respectively.

The PRI is a parameter for evaluating the consistency of attributes of symbiosis between the

actual segmentation results and the reference [30]. The PRI is defined as

PRIðSb; fS
a
MgÞ ¼ 1 � ½ð

X

i
K2

i: þ
X

j
K2

:jÞ=2 �
X

i;j
K2

ij �=KðK � 1Þ=2� ð15Þ

where Kij represents the number of pixels marked as i in Sa and marked as j in Sb. Ki. represents

the number of pixels marked as i in Sa. K.j represents the number of pixels marked as j in Sb.

The PRI values lie in the range of [0, 1], and the larger the value, the closer the segmentation

results will be to the manual segmentation results derived by experts. For (Figs 8 and 9, Col-

umn (a)), the PRI curves are shown in Fig 16.

Fig 15. 3D reconstruction of juxta-vascular nodules and surrounding non-target tissues.

https://doi.org/10.1371/journal.pone.0184290.g015

Fig 16. The PRI curves of the segmentation results of three types of nodule images.

https://doi.org/10.1371/journal.pone.0184290.g016
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The GCE is defined based on the local refinement error [31], which is used to measure the

degree that a segmentation result can be considered a subset of the other.

For pixel Pi in the original CT image, the reference and the actual segmentation results sat-

isfy Pi 2 Sam and Pi 2 Sbn, respectively. If Sbn 2 S
a
m, then the local refinement error is defined as

EðSam; S
b
n; PiÞ ¼< GðSam; PiÞ � GðS

b
n; PiÞ > = < GðSam; PiÞ > ð16Þ

where< G> represents the number of elements (corresponding pixels in this paper) in the set

G, and “-” represents the subtraction operation. Moreover, the local refinement error also sat-

isfies Eqs (17) and (18):

EðSam; S
b
n; PiÞ 6¼ EðS

b
n; S

a
m; PiÞ ð17Þ

EðSam; S
b
n; PiÞ ¼

0 Sam 2 S
b
n

6¼ 0 other
ð18Þ

(

According to the local refinement error of every pixel in each direction in the original CT

image, the GCE is defined as

GCEðSa; SbÞ ¼
1

K
min

�
X

i

EðSa; Sb; PiÞ;
X

i

EðSb; Sa; PiÞ
�

ð19Þ

The GCE values lie in the range of [0, 1], and the smaller the value, the better will be the seg-

mentation results. For (Figs 8 and 9, Column (a)), the GCE curves are shown in Fig 17.

VoI is a criterion for measuring the amount of information lost and gained during the

change from clustering to clustering [32].

All the segmentation blocks in the reference Sa satisfy Eq (20):

Sai \ S
a
j ¼ F; i ¼ 1; 2; . . . ;M; j 6¼ i ð20Þ

If we assume that the total number of pixels of the m-th segmentation block Sam in Sa is Km,

then the probability P(m) of any pixels divided into the m-th block Sam will be denoted as:

PðmÞ ¼ Km=K ð21Þ

Moreover, the entropy [33] of Sa can be obtained:

HðSaÞ ¼ �
XM

m¼1

PðmÞlog PðmÞ ð22Þ

Similarly

PðnÞ ¼ Kn=K ð23Þ

HðSbÞ ¼ �
XN

n¼1

PðnÞlog PðnÞ ð24Þ

The joint entropy of Sa and Sb is

IðSa; SbÞ ¼
XM

m¼1

XN

n¼1

Pðm; nÞlog
Pðm; nÞ

PðmÞ � PðnÞ
ð25Þ
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By using the entropy of Sa and Sb, and the joint entropy of Sa and Sb, the VoI is defined as

VoI ðSa; SbÞ ¼ HðSaÞ þHðSbÞ � 2IðSa; SbÞ ð26Þ

The VoI values lie in the range of [0,1), and the smaller the value, the more the actual seg-

mentation results will be closer to the reference and the better will be the segmentation results.

For (Figs 8 and 9, Column (a)), the VoI curves are shown in Fig 18.

To demonstrate the universality of our method, we further calculate the mean PRI, GCE

and VoI for the segmentation results of all experimental datasets, as shown in Table 7.

For the lung image sequences of solitary pulmonary nodules, as shown in Table 7, the PRI,

GCE and VoI show little differences among the seven segmentation methods. This result indi-

cates that all the algorithms have good segmentation effects for this type of nodule. The GCE

and VoI of the KM are greater than those of other algorithms, and the PRI of PCNN is lower

than that of other algorithms. Relatively speaking, the segmentation effect of KM and PCNN is

poor compared with that of the other methods.

For the lung image sequences of cavitary nodules, Table 7 illustrates that the PRI, GCE and

VoI of our method reach 0.9190, 0.0736 and 2.2933, respectively. The results demonstrate that

Fig 17. The GCE curves of the segmentation results for three type of nodule images.

https://doi.org/10.1371/journal.pone.0184290.g017

Fig 18. The VoI curves of the segmentation results of three types of nodule images.

https://doi.org/10.1371/journal.pone.0184290.g018
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our method is significantly better than other algorithms for the segmentation of cavitary nod-

ule sequences. Moreover, the segmentation results of PSO-SGNN are better than those of RG,

PCNN, KM, FCM and FEGD.

For the lung image sequences of juxta-vascular nodules, Table 7 shows that our method

also achieves the highest PRI and the lowest GCE and VoI. These findings indicate that the seg-

mentation results of our method are optimal. Furthermore, for the three criteria presented in

Table 7, the overall segmentation effect of FEGD is better than that of RG, PCNN, KM, FCM

and PSO-SGNN.

From the intuitive visualization results (Figs 16–18) and objective quantification results

(Table 7), we can see that our method overcomes the inaccurate segmentation of both cavitary

and juxta-vascular nodules. Therefore, following the use of those operations, it is clear that the

overall segmentation effect of our method is much better than that of other typical segmenta-

tion algorithms. In addition, although little image preprocessing is performed and the

DBSCAN algorithm is insensitive to noise data in our method, better segmentation results can

be expected if the blood vessels can be further eliminated by effectively extracting vessels in the

CT images [34]. Additionally, the image quality can be improved by suppressing noise artifacts

in the low-dose CT images [35, 36].

For the lung CT image sequences of the three types of nodules, Table 8 further reveals the

time complexity of the seven segmentation algorithms. The column “CT images” represents

the average number of nodules contained in each CT sequence image. The average time con-

sumption for each CT sequence using our method is 16.32 s; that is, the average segmentation

time of a CT image is 1.36 s. In contrast, the segmentation speed of our method is faster than

that of PCNN, KM, FCM, PSO-SGNN and FEGD. The average segmentation time of a single

CT image is more than that of RG. However, considering the particularity of the lung image,

more attention is focused on the precision of the segmentation in medicine. Therefore, the seg-

mentation results of our method are more accurate and timely.

Table 7. The mean PRI, GCE and VoI for the five algorithms in all experimental datasets.

Types Criteria Our method RG PCNN KM FCM PSO-SGNN FEGD

Solitary- Pulmonary- Nodule PRI 0.9571 0.9477 0.9424 0.9439 0.9463 0.9509 0.9515

GCE 0.0392 0.0496 0.0543 0.0587 0.0506 0.0451 0.0438

VoI 1.5823 1.7943 1.9417 1.9427 1.8440 1.6847 1.6813

Cavitary- Nodule PRI 0.9190 0.7952 0.7831 0.7836 0.7934 0.8854 0.8221

GCE 0.0736 0.2062 0.2159 0.2203 0.2088 0.1078 0.1813

VoI 2.2933 5.2193 5.3483 5.4273 5.0968 2.7260 4.3887

Juxta-vascular- Nodule PRI 0.9126 0.8017 0.7659 0.7566 0.7653 0.8336 0.8941

GCE 0.0833 0.1879 0.2332 0.2441 0.2321 0.1712 0.1093

VoI 2.4658 4.7570 5.7705 5.9067 5.6372 3.7355 2.8226

https://doi.org/10.1371/journal.pone.0184290.t007

Table 8. Average execution time (s) of the five algorithms for all CT image sequences.

CT images Criteria Our method RG PCNN KM FCM PSO-SGNN FEGD

512*512*12 Total 16.32 8.28 83.88 17.88 19.92 27.96 188.64

Average 1.36 0.69 6.99 1.49 1.66 2.33 15.72

512*512*12 represents the average number of nodules contained in each CT sequence image is 12, and the size of each CT image is 512×512.

https://doi.org/10.1371/journal.pone.0184290.t008
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Conclusions

Accurate lung nodule segmentation is an important guarantee for late diagnosis. In this paper,

to solve the problem of incomplete cavitary nodule segmentation, inaccurate juxta-vascular

nodule segmentation and poor image sequence segmentation efficiency, a fast and accurate

segmentation algorithm for lung nodules is proposed. To demonstrate the validity of the

sequence segmentation algorithm, 1458 CT sequence images were selected for three types of

nodules to perform a qualitative evaluation and quantitative comparison of all the segmenta-

tion results. The experimental results showed that compared with RG, PCNN, KM, FCM,

PSO-SGNN and FEGD, the segmentation results of our method were much closer to the

expert segmentation results, especially in terms of achieving accurate cavitary and juxta-vascu-

lar nodule segmentation. Those two types of nodule images are difficult to segment. Addition-

ally, the mean PRI, GCE and VoI achieved using our method reached (0.9190, 0.0736, 2.2933)

and (0.9126, 0.0833, 2.4658) for cavitary and juxta-vascular nodules, respectively; these values

are clearly better than those achieved by other algorithms, reflecting the superiority of the seg-

mentation effect of our method. Therefore, our method can efficiently and accurately segment

lung nodule image sequences.

In the present study, we found that the target margins of ground-glass opacity lung nodules

is fuzzy and will increase the difficulty associated with accurately segmenting the target. There-

fore, the precise segmentation of such nodules will be our next goal.
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