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Abstract

A mucus layer covers and protects the intestinal epithelial cells from direct contact with

microbes. This mucus layer not only prevents inflammation but also plays an essential role

in microbiota colonization, indicating the complex interplay between mucus composition-

microbiota and intestinal health. However, it is unknown whether the mucus layer is influ-

enced by age or sex and whether this contributes to reported differences in intestinal dis-

eases in males and females or with ageing. Therefore, in this study we investigated the

effect of age on mucus thickness, intestinal microbiota composition and immune composi-

tion in relation to sex. The ageing induced shrinkage of the colonic mucus layer was associ-

ated with bacterial penetration and direct contact of bacteria with the epithelium in both

sexes. Additionally, several genes involved in the biosynthesis of mucus were downregu-

lated in old mice, especially in males, and this was accompanied by a decrease in abun-

dances of various Lactobacillus species and unclassified Clostridiales type IV and XIV and

increase in abundance of the potential pathobiont Bacteroides vulgatus. The changes in

mucus and microbiota in old mice were associated with enhanced activation of the immune

system as illustrated by a higher percentage of effector T cells in old mice. Our data contrib-

ute to a better understanding of the interplay between mucus-microbiota-and immune

responses and ultimately may lead to more tailored design of strategies to modulate mucus

production in targeted groups.

1. Introduction

The human gut harbours trillions of microbes, which are called the microbiota. These

microbes are fermenters of non-digestible food components and modulators of the immune
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system. They are of crucial importance for the regulation and maintenance of health [1,2]. The

microbiota are separated from the host inner milieu by the so-called intestinal barrier. This

barrier is responsible for the protection of the host against invaders such as pathogens and is

under the control of several immunological and non-immunological components. Any distur-

bance in this barrier function can lead to increased gut permeability, or the so-called “leaky

gut” [3]. This dysfunction of the gut barrier has been suggested to contribute to a broad range

of disorders including food allergy, intestinal bowel disease (IBD), cancer, and even auto-

immune diseases such as Diabetes type 1 [4]. Both age and sex are known to influence the

pathophysiology of intestinal diseases [5,6], but the mechanisms underlying these differences

are not known yet.

During the last decade the intestinal barrier has been extensively studied [7–10], especially

with respect to the permeability of the intestinal epithelial layer. Recently, it has been shown that

the mucus layer contributes to maintenance of barrier function [11,12]. The intestinal mucus

layer is a viscoelastic gel located on top of the epithelial cells. The mucus is synthesized by the

goblet cells, located in between the intestinal enterocytes [13]. In the large intestine two separate

mucus layers can be distinguished by histological methods [14–16]. The so-called firm inner

layer that is largely free of microbiota and the loose layer that serves not only as barrier but also

as substrate for mucus consuming organisms. MUC2 is the main colonic secreted mucin and is

the major component of both the inner and outer mucus layers [14]. This mucus prevents con-

tact between luminal bacteria and the epithelium and thereby prevents inflammation [14].

Our recent studies have demonstrated that mice lacking Muc2 (Muc2-/-) or producing less

mucus (Muc2+/-) have an altered composition, diversity and richness of the microbiota in both

the ileum and colon [12,17]. Muc2-/- mice develop colitis around four weeks of age and the

abundance of Bacteroides pathobionts increased before histological signs of pathology [10]. The

production of a thinner mucus layer in heterozygous Muc2 +/- mice results in more frequent

contact of the epithelium with luminal bacteria, differential expression of genes participating in

mucosal stress responses and exacerbation of a transient inflammatory state around the time of

weaning [12,17,18]. These studies demonstrate an essential interplay between mucus composi-

tion, microbiota and intestinal health. Many questions, however, are still unanswered with

respect to mucus and intestinal health. It is not known whether mucus thickness is influenced by

age, and whether the process of ageing is sex specific. Also it is not known whether the mucus

integrity is involved in the reported gradual deterioration of barrier function in elderly [19].

To gain a better understanding of the influence of age on the dynamic interplay between

mucus-microbiota-immune responses and intestinal barrier function, we investigated mucus

thickness, intestinal microbiota composition and immune composition in young (3 months)

and old (19 months) C57B1/6OlaHsd (B6) mice. To study whether potential differences

between young and old mice are sex dependent, we used both male and female mice. Addi-

tionally, we investigated these parameters in a group of females in which ovariectomy was per-

formed at 15 months to mimic the effects of menopause in human females [20]. The results

may ultimately lead to more tailored design of strategies to modulate mucus production in tar-

geted groups.

2. Methods

2.1. Mice

Male and female C57B1/6OlaHsd (B6) mice were purchased from Harlan (Harlan, Horst, The

Netherlands) at an age of eight weeks. Mice were co-housed (5 mice per cage, according to

sex) in isolated ventilated cages to limit environmental influences. The mice had ad libitum
access to food (D12450B diet; Research Diets Services, Wijk bij Duurstede, the Netherlands)
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and water. The mice were sacrificed at an age of 3 (n = 10) and 19 months (n = 10) by cervical

dislocation under anesthesia (isoflurane and oxygen). Subsequently their Peyer’s patches (PP)

and spleens were removed for immune cell analysis. Colonic tissues were fixed in Carnoy’s fix-

ative and embedded in paraffin for study of the mucus. For microarray analysis approximately

1 cm of distal ileum and proximal colon was frozen in liquid nitrogen and stored at -80˚C

prior to RNA isolation and transcriptomics. For microbiota analysis feces from the last part of

the colon were collected for MITChip analysis [21]. Additionally, feces of the old mice (19

months) were collected at 8, 13, and 15 months. All young female mice were sacrificed during

the diestrus phase of their ovarian cycle to ensure low stable levels of progesterone and estro-

gens. In addition, we included a group of female mice (n = 10) that were ovariectomized (ovx)

at 15 months of age to determine the effect of a loss of female sex hormones (human meno-

pause) [20]. These mice were also sacrificed at the age of 19 months. During the ovariectomy

procedure, the mice were anesthetized with isoflurane and oxygen and two small incisions

were made on both ventral sides. Both ovaries were localized, ligated and removed. After sur-

gery the mice received analgesic (Temgesic; 10 μl/g body weight). All mice experiments were

performed after receiving approval of the Animal Care Committee of the Groningen Univer-

sity. S1 Table shows the weight of the mice.

2.2. Bacterial DNA extraction and microbiota profiling

Total DNA was extracted from the feces samples (n = 5 per group) using the repeated bead-

beating-plus column method [22]. The microbiota composition was determined using the

Mouse Intestinal Tract Chip (MITChip), a diagnostic 16S rRNA array, which consists of 3,580

unique probes designed to profile murine intestinal microbiota [21]. Briefly, for MITChip, 16S

rRNA gene amplification of the bacterial DNA, in vitro transcription, labeling, and hybridiza-

tion were carried out as described previously [23]. Data were normalized and analyzed using a

set of R-based scripts in combination with a custom-designed relational database, which oper-

ates under the MySQL database management system. For microbial profiling, the Robust

Probabilistic Averaging (RPA) signal intensities of 2667 specific probes for the 94 genus-level

bacterial groups detected on the MITChip, were used [24]. Diversity calculations were per-

formed using a microbiome R-script package (https://github.com/microbiome). The Redun-

dancy analysis (RDA) was performed in Canoco 5.0, where variables were tested for their

significance by the Monte Carlo permutation, and visualized in triplots [25].

2.3. Histology

Paraffin sections (5 μm) of the colon were cut using a microtome Microm HM350, (Thermo

scientific, Germany) and attached to poly-L-lysine-coated glass slides (Thermo scientific, Ger-

many). After overnight incubation at 37˚C, slides were deparaffinised and hydrated step-wise

using 100% xylene followed by several solutions of distilled water containing decreasing

amounts of ethanol. Sections were stained with hematoxylin and eosin (H&E) and PAS/Alcian

blue.[26] Mucus layer thickness was measured (10 measurements per section / 2 sections per

mouse / 5 mice per condition) using Image J software (NIH, Maryland, USA).

2.4. Fluorescent in situ hybridization (FISH) and MUC2-staining

Paraffin sections (5 μm) were deparaffinised with xylene and a series of ethanol solutions to

100% ethanol. The tissue sections were incubated with the universal bacterial probe EUB338

(5’-GCTGCCTCCCGTAGGAGT-3’) (Isogen Bioscience BV, De Meern, the Netherlands) con-

jugated to Alexa Fluor488. A ‘non-sense’ probe (5’-CGACGGAGGGCATCCTCA-3’) conju-

gated to Cy3, was used as a negative control. Tissue sections were incubated overnight with
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0.5 μg of probe in 50 μL of hybridization solution (20 mmol/L Tris-HCl (pH 7.4), 0.9 mol/L

NaCl, 0.1% (w/v) SDS) at 50˚C in a humid environment using a coverslip to prevent drying of

the sample. The sections were washed with (20 mmol/L Tris-HCl (pH 7.4), 0.9 mol/L NaCl) at

50˚C for 20 min and then washed 3 times in PBS for 10 min in the dark and incubated with

DRAQ5 (Invitrogen) (1:1000) for 1 h at 4˚C to stain nuclei. Sections were washed 3 times in

PBS for 10 min, mounted in fluoromount G (SouthernBiotec, Alabama, USA) and stored at

4˚C. For the MUC2 staining, paraffin sections (5 μm) were deparaffinised and rehydrated and

antigen retrieval was performed by heating the sections for 20 min in 0.01 M sodium citrate

(pH 6.0) at 100˚C. Sections were washed for 3 h with 3 changes of Tris-Buffered Saline (TBS).

Non-specific binding was reduced using 10% (v/v) goat serum (Invitrogen, Life technologies

Ltd, Paisley, UK) in TBS for 30 min at room temperature. MUC2 was detected by staining the

sections with anti-MUC2 antibody (kindly gifted by Dr. Gunnar Hansson, Gothenburg Uni-

versity, Sweden) diluted 1:500 in TBS, and goat-anti-rabbit Alexa 488 conjugated antibody

(1:1000) (Molecular Probes, Life Technologies Ltd, Paisley, UK) in TBS.

2.5. Intestinal microarray analysis

For microarray analysis, RNA was purified from the distal ileum and proximal colon of mice

(n = 5 per group) using TRIzol (Life Technologies, Calsbad, CA, USA) followed by an additional

round of purification with RNeasy Minikit columns (Qiagen, Venlo, the Netherlands). The qual-

ity of RNA was determined using RNA 6000 nanochips on the Agilent 2100 bioanalyzer (Agilent

Technologies, Amsterdam, the Netherlands). Purified RNA (100 ng) was labeled with the Affy-

metrix WT PLUS reagent kit (Affymetrix, Santa Clara, CA, USA) and hybridized to an Affyme-

trix Mouse Gene 1.1 ST array plate (Affymetrix, Santa Clara, CA, USA). Hybridization, washing

and scanning were carried out on an Affymetrix GeneTitan platform according to the manu-

facturer’s instructions. Arrays were normalized using the robust multi-array average method

[27,28]. Probe sets were defined according to Dai et al. (2005) [29]. In this method probes are

assigned to Entrez IDs as a unique gene identifier. The p-values were calculated using an inten-

sity-based moderated t-statistic (IBMT) [30]. Only probe sets with a fold-change of at least 1.2

(up/down) and a q-value (corrected p-value)< 0.05 were considered to be significantly different.

To gain insight into the biological role of the genes which were differently expressed

between young and old mice and males and females, we analyzed the differentially expressed

genes in the ileum and colon of young (3 months) and old (19 months) male and female mice

using Ingenuity Pathway Analysis (IPA) (Ingenuity System). IPA uses a comprehensive ex-

pert-curated repository of biological interactions and functional annotations, mainly acquired

from peer-reviewed scientific publications that provide the building blocks for network con-

struction. IPA annotations follow the gene ontology (GO) annotation principle, but are based

on a patented knowledge base of> 1,000,000 protein-protein interactions. GO annotations

are used by ingenuity in order to investigate, among others, overrepresented biological func-

tions. The IPA output includes biological functions and signaling pathways with statistical

assessment of the significance of their representation based on Fisher’s Exact Test. Here, this

test calculates the probability that genes participate in a given biological function relative to

their occurrence in all other biological function annotations. The input was all the differen-

tially regulated genes (p-value < 0.05, fold-change > 1.2) in the ileum and colon.

2.6. Isolation of spleen and Peyer’s patches cells

Single cell suspensions of spleens and PP were made by mechanical disruption of the tissues

between two object glasses in 2 ml ice cold RPMI containing 10% heat inactivated fetal calf serum

(FCS). Splenic red blood cells were eliminated by incubation with 4 ml ice-cold ammonium
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chloride. Falcon tubes with cell strainer caps (Corning, Amsterdam, the Netherlands) (35 μm)

were used to remove cell clumps before the cells were counted and used for staining.

2.7. Cell staining

Spleen and PP cells were stained for T and B cell populations and dendritic cells (DCs). T cells

were determined using CD3, and further subdivided into T cytotoxic (CD8+) and T helper

(CD4+) cells. Within the CD8+ and CD4+ cell subsets, expression of CD69, CD62L and CD44

were measured. In another panel we determined the expression of T helper cell subsets using

the markers CD3, CD8, Tbet (Th1), Gata3 (Th2), RORγt (Th17) and FoxP3+CD25+ (Treg). B

cells were determined using CD19 and B220. Within the B cells the expression of IgA was deter-

mined. Within the DCs (MHC2+CD64-CD19-CD11c+) expression of CD103 was assessed.

Antibody specifications are described in S2 Table. All antibodies were diluted in a volume of

25 μl, supplemented to a volume of 25 μl with FACS buffer (PBS + 10% FCS (v/v)). Approxi-

mately 0.1x106 spleen or PP cells for the T and B cell panels and 0.4x106 spleen or PP cells for

the Th cell and DC panel were incubated for 20 minutes in FACS buffer (10% FCS (v/v)) con-

taining 20% (v/v) normal rat serum (Jackson, Newmarket, UK), and for the DC panel also 2%

(v/v) Fc block (CD16/32) (Biolegend, Uithoorn, the Netherlands), to prevent non-specific anti-

body binding. This was followed by incubation in an extracellular antibody mix for 30 minutes.

Next, the cells were fixed in FACS lysing solution (BD Biosciences, Breda, the Netherlands) for

30 minutes. The B and Th subset samples underwent intracellular staining and were washed

twice with a permeabilization buffer (eBioscience, Vienna, Austria) after which they were incu-

bated with an intracellular blocking medium (20% (v/v) rat serum in permeabilization buffer)

for 20 minutes. Next, these cells were incubated with an intracellular antibody mix for 30 min-

utes. Washing was performed in between all incubation steps. The whole procedure was per-

formed on ice and in the dark. Isotype control antibodies were used at the same concentration

and purchased from the same company as the extracellular and intracellular antibodies.

2.8. Flow cytometry

Cell samples were analyzed using the FACSverse Flow Cytometer system (BD Biosciences,

Breda, the Netherlands), using FACSsuite software. Analysis was performed using FlowJo ver-

sion 10 software (FlowJo, LLC, Oregon, USA). Two panels were made to select T cells (see also

gating strategy in S1 and S2 Figs). In the first panel, lymphocytes were gated based on size in

the forward side scatter plot and T cells were determined by selecting CD3+ cells. Within the

CD3+ cells, CD4+ and CD8+ cells were selected. Within both the CD4+ and CD8+ population,

the percentage of cells expressing CD69, CD62L and CD44 was measured. CD62L+CD44-

are indicated as naïve cells, CD62L+CD44+ are indicated as central memory (CM) cells and

CD62L-CD44+ are indicated as effector memory (EM) cells. In the second T cell panel, within

the CD4+ cells, the percentage of cells expressing Tbet, Gata3, RORγt, FoxP3 and CD25 was

assessed. B cells were determined as CD19+ and B220+ cells. Within the B cells the expression

of IgA was determined. To gate DCs, first living cells were selected based on size in the forward

side scatter plot. Next MHC2+ and CD64- cells were selected to exclude macrophages. Within

the MHC2+CD64- population, first B cells were excluded with CD19 and subsequently DCs

were selected as CD11c+. Within the DCs the expression of CD103 was measured (S3 Fig). Iso-

type controls were set at 1% and are shown in S1–S3 Figs.

2.9. Statistics

Data for mucus thickness are expressed as the mean with standard error of the mean (SEM).

For analyzing significant effects of age and sex on the thickness of the mucus layer a Mann-
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Whitney U test was used. Microbiota Shannon diversity and richness data and flow cytometry

data are expressed as dot plots + means. The overall effect of age and sex was determined with

a Two-way ANOVA (TWA), followed by a Bonferroni post-test when an interaction between

age and sex was found. P-values of 0.05 or smaller were considered statistically significant and

p-values between 0.05 and 0.1 were defined as a trend.

3. Results

3.1 Aging induced decline in mucus thickness in the colon is not

influenced by sex

To study the effect of ageing and sex on mucus thickness a PAS/Alcian Blue staining (Fig 1)

and MUC2 immunofluorescent staining (S4 Fig) was performed on colon tissue samples fixed

in Carnoy. We analyzed the data with a TWA, to evaluate if there was an interaction between

age and sex on the mucus thickness in the colon. When and interaction was present we tested

with a Bonferroni post-test whether the effect of age was the same in both sexes. Overall, in old

mice the firm mucus layer was thinner (<10 μm) than in young mice (20–25 μm) and females

had a thicker mucus layer than males (TWA, p<0.05) (Fig 1A and 1C). However, the effect of

age on the mucus thickness was not different between males and females, neither did ovariec-

tomy changed the mucus thickness (Fig 1C). FISH staining was performed to study interaction

of bacteria and epithelial cells. As shown in Fig 1B, the colonic mucus layer of old males and

females (both non-ovx and ovx) mice demonstrated many locations where the mucus failed to

prevent intestinal microbiota from contact with the epithelium.

3.2. Ageing induced changes in intestinal microbiota composition,

diversity, and richness is influenced by sex

As mucus is a substrate for mucolytic bacteria and abnormalities in mucus function are associ-

ated with enhanced colonization by pathobionts [12], we determined the microbial composition

in the feces of young and old, male and female mice. Additionally, we determined the richness

(number of unique species) and Shannon diversity (calculation between richness and evenness

(abundance over species)) of the microbiota composition. Overall, there was a tendency for age

and sex to interact with each other concerning microbiota diversity (TWA, p = 0.06). However,

no significant effect of ageing in both males and females was found (Fig 2A). Age and sex had

no effect on the microbiota richness (TWA). Ovariectomy also had no effect on the microbiota

diversity or richness (Fig 2A and 2C). From the old mice (19 months) feces were collected at

three previous time points (8, 13 and 15 months). Data are shown in Fig 2B and 2D. Overall,

age had no effect on the diversity of the microbiota composition, while sex did (TWA, p<0.05),

while both sex and age influenced the microbiota richness (TWA, p<0.05).

When looking at bacterial groups, we found that overall, aged mice had a higher abundance

of Bacteroides vulgatus et rel., Clostridium lactifermentans et rel., and uncultured Clostridiales,
while they had a lower abundance of for instance several Lactobacilli species and Unclassified
Clostridium IV and XIVa as compared to young mice (Mann-Whitney U test, p<0.05) (S5

Fig). When looking at the effect of age in males and females separately, we found that aged

male mice had a higher abundance of Lachnospira pectinoschiza et rel. as compared to young

male mice, while old females had a higher abundance of Olsenella et rel. and Prevotella rumini-
cola et rel. as compared to young females (Mann-Whitney U test, p<0.05) (Fig 3). Ovariectomy

affected the microbiota composition with several microbiota being less abundant in old ovx

females than in old non-ovx females, including Roseburia intestinalis et rel., Faecalibacterium
prausnitzii et rel, and Lactobacillus gasseri et rel. (Mann-Whitney U test, p<0.05) (Fig 3).
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3.3. Ageing induced changes in the expression of genes involved in

mucus biosynthesis and immune signaling in the ileum and colon is

influenced by sex

To determine whether the variation in microbiota composition and mucus thickness between

young and old mice and males and females had any effect on gene expression in the intestine,

we performed a microarray analysis on tissue from the distal ileum and proximal colon. To

better understand the age dependent decrease in mucus thickness, we focused on a number of

Fig 1. The effect of age and sex on the mucus thickness in the colon. Representative pictures of PAS/Alcian Blue staining of the colon of young (Y) (3

months), old male (MO) (19 months), old female (FO) (19 months) and old ovariectomized female (FOvx) (19 months) B6 mice. Since young male and female

mice showed a similar mucus layer morphology, only one representative image is shown for young mice. The mucus is indicated in blue and black arrows.

Scale bars: 100 μm (A). Representative pictures of FISH staining of the colon of young, old male, old female and old ovx female mice, using the general

bacterial probe EUB338-Alexa Fluor 488 (green), and nuclear staining DRAQ5 (blue). The apical membranes of the epithelial cells are indicated by a dashed

white line. Arrow represents the gap between bacteria and epithelium in young healthy colon. This gap is not observed in colon from old mice, and the bacteria

are close to the epithelium. Scale bars: 50 μm (B). Mucus thickness measured in PAS/Alcian Blue stained sections (10 measurements per section and 2

sections per mouse) in 5 colonic tissues of young and old mice. Significant effects are indicated with an asterisk (*) (Mann-Whitney U test, p<0.05). An

additional group of ovariectomized (ovx) old females was added and compared with the old females to determine the effect of a loss of female sex hormones

(human menopause) (C).

https://doi.org/10.1371/journal.pone.0184274.g001
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genes involved in the gut barrier, such as mucus biosynthesis, tight junctions and anti-micro-

bial peptides (S3 and S4 Tables).

In the ileum, none of the Muc genes had a different expression between young and old

mice, in both sexes. When looking at genes involved in mucus biosynthesis, none of the genes

different between young and old males, while old females had a lower expression of Chst8 and

Tff3 than young females. The effect of age on the expression of genes related to tight junctions

was also more pronounced in females than in males. The expression of Cldn2 and Cldn3was

lower, while the expression of Ctnna2, Ctnna3 (p = 0.06) Jam2, Jam3 and Mpdz was higher in

old females as compared to young females. None of the genes involved in the synthesis of anti-

microbial peptides were affected by age. Ovariectomy had no effect on the expression of genes

related to gut barrier in the ileum (S3 Table).

Fig 2. Effect of age and sex on fecal microbiota composition. Graphs showing the Shannon diversity (A) and the richness (C) in the fecal microbiota of

male and female and young (3 months) and old (19 months) B6 mice. In addition, we collected feces from the old mice at three previous ages (8, 13 and 15

months). The Shannon diversity (B) and richness (D) of these time points, including the data of the young mice (3 months) are shown. Results are expressed

as dot plots + means and were tested using a Two-way ANOVA for overall age and sex effects, followed by a Bonferroni post-test for comparison between

groups. An additional group of ovariectomized (ovx) old females was added and compared with the old females to determine the effect of a loss of female sex

hormones (human menopause). Significant effects are indicated with an asterisk (*) (p<0.05), while a trend (0.1<p>0.05) is indicated with a hash (#).

https://doi.org/10.1371/journal.pone.0184274.g002
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In the colon, Muc1 expression was significantly lower in the colon of old males than young

males. In old females expression of Muc6 tended (p = 0.07) to be higher than in young females.

When looking at genes involved in mucus biosynthesis, the effect of ageing was more pro-

nounced in males. When comparing old males with young males, several genes in the mucus

biosynthesis had a lower expression, such as Chst2 (p = 0.09),Chst4 and St3gal4, while St3gal5
tended (p = 0.08) to have a higher expression. From genes related to tight junctions, Cldn10
tended (p = 0.05) to have a higher expression in old males than young males. In old females,

Cldn11 and Cldn4 had a higher expression than in young females. Genes involved in the syn-

thesis of anti-microbial peptides, such as Reg4 and several defensins, were generally expressed

at higher levels in old mice as compared to young mice. Ovariectomy also had no effect on the

expression of genes related to gut barrier in the colon (S4 Table).

An impaired mucus layer and altered microbiota composition will lead to changes in intes-

tinal immune responses. Therefore, ingenuity pathway analysis (IPA) was applied to identify

the biological functions, with focus on immunology, of the genes that differed significantly

between young and old mice and between males and females. We took for IPA the z-scores of

functions as this is a quantitative measure for up- or downregulation, in which a negative z-

score implies an inhibition of the pathway and a positive z-score an enhanced activity.

In the ileum, in both males and females, IPA listed 500 functions that were enriched from

the genes which differed in expression between young and old mice, including several immune

Fig 3. The effect of age on the abundance of several bacteria groups is sex specific. Heat-maps showing the abundance of several bacteria that

differed significantly between young (3 months) and old (19 months) males and females. A box indicates bacteria which have a significantly different

abundance between the two groups within that box. Colors indicate relative abundances normalized per bacterial group (per row), dark blue is the lowest

abundance and dark red the highest abundance detected over all the samples of a bacterial group.

https://doi.org/10.1371/journal.pone.0184274.g003
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related functions. However, during ageing many of these functions were influenced in a sex

dependent way (S5 Table). Most functions were downregulated in old males as compared to

young males. Key immunological functions that were strongly downregulated in old males as

compared to young males were the quantity and migration of lymphocytes. In females, less

immunological functions related to the genes with a different expression during aging were

affected. Key immunological functions that were affected by age in females were adhesion of

immune cells and inflammatory response.

In the colon, key immunological functions that were strongly upregulated in old males as

compared to young males were differentiation of leukocytes and quantity of neutrophils. On

the other hand, activation of B lymphocytes, functions of leukocytes and phagocytes and the

quantity of lymphocytes were downregulated in old males as compared to young males. In old

females, key immunological functions that were upregulated as compared to young females

were activation of antigen presenting cells and phagocytes and inflammatory responses, while

the quantity of lymphocytes and the recruitment of granulocytes was downregulated in old

females as compared to young females (S6 Table).

3.4. Ageing induced changes in T cell development in the Peyer’s

patches and spleen is influenced by sex

As we found age and sex differences in mucus, microbiota, and intestinal immune functions

using a microarray, we subsequently studied immune cell subsets in the Peyer’s patches (PP)

and the spleens. We used the PP since it is an important immune sampling site of antigens from

the gut lumen [31]. The spleen was used as a reference for systemic immunity. We focused on T

cell subsets, as many genes which were influenced by ageing were related to T cell functions.

Again we analyzed the data with a TWA, to understand if there was an interaction between age

and sex on the percentage of the immune populations. When and interaction was present we

tested with a Bonferroni post-test whether the effect of age was the same in both sexes.

In the PP, old mice had a lower percentage of T cells (CD3+) than young mice, while males

had a higher percentage of T cells than females (TWA, p<0.05), illustrating baseline age and

sex differences in T cell percentages (Fig 4A). The percentage of T helper cells (CD4+ cells) was

overall higher in old mice than in young mice, but was also influenced by sex, as it was overall

higher in males than in females (TWA, p<0.05) (Fig 4B). Overall, age and sex also influenced

the percentage of T cytotoxic cells (CD8+ cells), which was lower in old mice than young mice

and lower in males than in females (TWA, p<0.05) (Fig 4C). Age had an overall effect on the

percentage of CD4+ cells expressing the early activation marker CD69, but not on the percent-

age of CD8+ cells expressing CD69. Old mice had a higher percentage of CD69+ CD4+ cells

than young mice (TWA, p<0.05). Sex had no effect on the percentage of CD4+ or CD8+

expressing CD69 (Fig 4D and 4E). Ovariectomy, to mimic menopause, had no effect on the

percentage of T cells, T cells subsets (CD4+ and CD8+ cells) and the activation of these cells

(CD69+ cells) (Fig 4A–4E).

Similar observations were seen in the spleen. Old mice had a lower percentage of T cells

(CD3+) than young mice, while sex had no effect on the percentage of T cells (TWA, p<0.05)

(Fig 5A). However, in both the percentage of CD4+ and CD8+ cells, the effect of age was differ-

ent in the two sexes (TWA, p<0.05). Old mice had a higher percentage of CD4+, while a lower

percentage of CD8+ cells, but this ageing effect was more pronounced in females (Bonferroni,

p<0.05) (Fig 5A and 5C). Additionally, old mice had a higher percentage of both CD4+ and

CD8+ cells expressing CD69, while sex had no effect on these populations (TWA, p<0.05) (Fig

5D and 5E). Ovariectomized females had lower percentage of CD8+ cells and both CD4+ and

CD8+ cells expressing CD69 (t-test, p<0.05) (Fig 5A–5E).
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When looking at the maturation status of the T cells in the PP, we found that, old mice had

a lower percentage of naïve CD4+ cells than young mice, while males had a higher percentage

of naïve CD4+ cells than females (TWA, p<0.05). However, in the naïve CD8+ population, the

effect of age was different in males and females (TWA, p<0.05). No effect of age was found in

male mice, while old females had a significantly lower percentage of naïve CD8+ cells than

young females (Bonferroni, p<0.05) (Fig 6A and 6D). The effect of age was also different in

both the percentage of central memory (CM) CD4+ and CD8+ cells (TWA, p<0.05). Both old

male and female mice had a lower percentage of CM CD4+ cells than young male and female

mice respectively, but this effect of age was more pronounced in females (Bonferroni, p<0.05).

Age only had a significant effect on the percentage of CM CD8+ cells in male mice; old males

had a higher percentage than young males (Bonferroni, p<0.05) (Fig 6B and 6E). Furthermore,

old mice had a higher percentage of both effector memory (EM) CD4+ and CD8+ cells than

young mice (TWA, p<0.05). Sex only influenced the percentage of EM CD8+ cells; males had

a lower percentage than females (TWA, p<0.05) (Fig 6C and 6F). Ovariectomy had no effect

on the maturation of T cells (Fig 6A–6F).

Age also influenced the percentage of T helper subsets in the PP, while sex did not influence

the effect of ageing. Old mice had a lower percentage of Th1 cells than young mice (Fig 6G),

while old mice had a higher percentage of Th17 cells, FoxP3+CD25- and FoxP3+CD25+ Tregs

than young mice (TWA, p<0.05) (Fig 6I, 6L, and 6F). The effect of ovariectomy was only

Fig 4. Effect of age and sex on T lymphocytes in the Peyer’s patches. Percentage of CD3+ T lymphocytes (A), the percentage of T helper cells (CD4+)

(B), T cytotoxic cells (CD8+) (C), and the percentage of expression of CD69+CD4+ (D) and CD69+CD8+ (E) in the Peyer’s patches (PP) of young (3 months)

and old (19 months) male and female B6 mice. T helper and T cytotoxic cells are expressed as the frequency of CD4+ and CD8+ cells within the CD3+

population respectively. Results are expressed as dot plots + means and were tested using a Two-way ANOVA for overall age and sex effects, followed by a

Bonferroni post-test for comparison between groups. Significant age effects are indicated with dashed lines and significant sex effects are indicated with solid

lines (p<0.05). An additional group of ovariectomized (ovx) old females was added and compared with the old females with a t-test to determine the effect of a

loss of female sex hormones (human menopause).

https://doi.org/10.1371/journal.pone.0184274.g004
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present in the Th2 subset; old ovx females had a reduced percentage of Th2 cells as compared

to old non-ovx females (t-test, p<0.05) (Fig 6H).

In the spleen, old mice had a lower percentage of naïve CD4+ and CD8+ cells than young

mice, while males had a higher percentage of naïve CD4+ and CD8+ cells than females (TWA,

p<0.05) (Fig 7A and 7D). However, similar as in the PP, in the CM CD4+ population the effect

of age was not the same in males and females (TWA, p<0.05). Ageing decreased the percent-

age of CM CD4+ cells in both males and females, however this effect was more pronounced in

females (Bonferroni, p<0.05). Ageing increased the percentage of CM CD8+ cells, while sex

had no effect on this population (TWA, p<0.05) (Fig 7B and 7E). Ageing also increased the

percentage of EM CD4+ cells, while females had a higher percentage of EM CD4+ cells than

males (TWA, p<0.05). The effect of age on the EM CD8+ population was different in males

and females (TWA, p<0.05). Ageing increased the percentage of EM CD8+ cells in both males

and females, but this effect was more pronounced in females (Bonferroni, p<0.05) (Fig 7C and

7F). Ovariectomy reduced the percentage of naïve CD4+ and CD8+ cells, CM CD8+ cells, while

increased the percentage of EM CD8+ cells in the spleen (Fig 7A–7F).

Similar as within the PP, age had an effect on the percentage of T helper subsets in the

spleen, while sex did not. Old mice had a lower percentage of Th1, Th2 and Th17 cells than

young mice (Fig 7G–7I), while old mice had a higher percentage of FoxP3+CD25- and

FoxP3+CD25+ Tregs than young mice (TWA, p<0.05) (Fig 7J and 7K). Ovariectomy had no

effect on the T helper subsets in the spleen.

Fig 5. Effect of age and sex on T lymphocytes in the spleen. Percentage of CD3+ T lymphocytes (A), the percentage of T helper cells (CD4+) (B), T

cytotoxic cells (CD8+) (C), and the percentage of expression of CD69+CD4+ (D) and CD69+CD8+ (E) in the spleen of young (3 months) and old (19 months)

male and female B6 mice. T helper and T cytotoxic cells are expressed as the frequency of CD4+ and CD8+ cells within the CD3+ population respectively.

Results are expressed as dot plots + means and were tested using Two-way ANOVA, followed by a Bonferroni post-test for comparison between groups.

Significant age effects are indicated with dashed lines and significant sex effects are indicated with solid lines (p<0.05). An additional group of ovariectomized

(ovx) old females was added and compared with the old females with a t-test to determine the effect of a loss of female sex hormones (human menopause).

https://doi.org/10.1371/journal.pone.0184274.g005
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We also looked at the percentage of B cells (CD19+B220+) in the PP and spleen, and the per-

centage of B cells expressing IgA (S6 Fig). Age and sex had no effect on the percentage of B

cells in the PP. However, in the spleen males had a higher percentage of B cells than females.

Fig 6. Effect of age and sex on T cell differentiation in the Peyer’s patches. Percentage of CD62L+CD44- naive CD4+ (A) and CD8+ (D),

CD62L+CD44+ central memory CD4+ (B) and CD8+ (E), CD62L-CD44+ effector memory CD4+ (C) and CD8+ (F), T helper 1 (G), T helper 2 (H), T

helper 17 (I), FoxP3+CD25- T regulatory cells (J), and FoxP3+CD25+ T regulatory cells (K) in the Peyer’s patches (PP) of young (3 months) and old

(19 months) male and female B6 mice. T helper and T cytotoxic cells are expressed as the frequency of CD4+ and CD8+ cells within the CD3+

population respectively. Results are expressed as dot plots + means and were tested using Two-way ANOVA, followed by a Bonferroni post-test

for comparison between groups. Significant age effects are indicated with dashed lines and significant sex effects are indicated with solid lines

(p<0.05). An additional group of ovariectomized (ovx) old females was added and compared with the old females with a t-test to determine the

effect of a loss of female sex hormones (human menopause).

https://doi.org/10.1371/journal.pone.0184274.g006

Effect of ageing on intestinal mucus thickness, microbiota composition and immunity in relation to sex

PLOS ONE | https://doi.org/10.1371/journal.pone.0184274 September 12, 2017 13 / 22

https://doi.org/10.1371/journal.pone.0184274.g006
https://doi.org/10.1371/journal.pone.0184274


In both sexes, ageing increased the percentage of cells expressing IgA in the PP, while in the

spleen this effect of age was only present in females.

Fig 7. Effect of age and sex on T cell differentiation in the spleens. Percentage of CD62L+CD44- naive CD4+ (A) and CD8+ (D),

CD62L+CD44+ central memory CD4+ (B) and CD8+ (E), CD62L-CD44+ effector memory CD4+ (C) and CD8+ (F), T helper 1 (G), T helper 2 (H), T

helper 17 (I), FoxP3+CD25- T regulatory cells (J), and FoxP3+CD25+ T regulatory cells (K) in the spleen of young (3 months) and old (19 months)

male and female B6 mice. T helper and T cytotoxic cells are expressed as the frequency of CD4+ and CD8+ cells within the CD3+ population

respectively. Results are expressed as dot plots + means and were tested using Two-way ANOVA, followed by a Bonferroni post-test for

comparison between groups. Significant age effects are indicated with dashed lines and significant sex effects are indicated with solid lines

(p<0.05). An additional group of ovariectomized (ovx) old females was added and compared with the old females with a t-test to determine the

effect of a loss of female sex hormones (human menopause).

https://doi.org/10.1371/journal.pone.0184274.g007
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3.5. Ageing and sex did not influence dendritic cell development in the

Peyer’s patches

Dendritic cells (DCs), present just below the surface of the epithelial cells in the small intestine

constantly sample the gut lumen. Upon encountering an antigen, DCs are activated and

migrate to the PP or mesenteric lymph nodes to communicate with lymphocytes [32,33].

Depending on the type of antigen, they either activate or suppress an immune response by dif-

ferentiating lymphocytes into effector cells.[33] Dendritic cells (DCs) in the PP expressing

CD103 are able to differentiate T helper (Th) cells into FoxP3+ T regulatory cells (Tregs) [34].

Overall, age and sex had no effect on the percentage of DCs or the percentage of DCs

expressing CD103 in the PP (TWA, p<0.05) (Fig 8). Ovariectomy also had no effect on the

DC populations in the PP.

In the spleen, overall old mice had a lower percentage of DCs than young mice (TWA,

p<0.05). The expression of CD103 on DCs in the spleen was lower than in the PP (approxi-

mately 10%), and the percentage of DCs expressing CD103 was overall higher in old mice than

young mice (TWA, p<0.05). Sex had no overall effect on the percentage of DC, but females

had an overall higher percentage of CD103+ DCs than males (TWA, p<0.05) (data not

shown).

4. Discussion

In this study we showed that age influenced mucus properties, the intestinal microbiota com-

position and intestinal immunity in a sex dependent way. Both old male and old female mice

had a decreased mucus thickness in the colon as compared to young mice and contact between

the colon epithelium and microbiota was observed at several locations in the old mice, illus-

trating inadequacies in the barrier function of mucus layer in both sexes in old age. This deteri-

oration of mucus may be due to a decreased mucus production such as decreased production

of MUC1 or by an age dependent decrease in genes involved in mucus biosynthesis, such as

Fig 8. Effect of age and sex on the percentage of dendritic cells in the Peyer’s patches. Percentage of MHC2+CD64-CD19-CD11c+ dendritic cells (DCs)

(A) and their expression of CD103 (B) in the Peyer’s patches (PP) of young (3 months) and old (19 months) male and female B6 mice. First leukocytes cells

were selected based on size in the forward side scatter plot. DCs are expressed as the percentage MHC2+CD64-CD19-CD11c+ cells within all leukocytes.

Results are expressed as dot plots + means and were tested using Two-way ANOVA followed by a Bonferroni post-test for comparison between groups.

Significant age effects are indicated with dashed lines and significant sex effects are indicated with solid lines (p<0.05). An additional group of ovariectomized

(ovx) old females was added and compared with the old females with a t-test to determine the effect of a loss of female sex hormones (human menopause).

https://doi.org/10.1371/journal.pone.0184274.g008
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Chst2, Chst4 and St3gal4. This may result in mucus with different composition such as differ-

ent sulfonation. Decreased mucus production has been associated with increased colonization

with pathobionts [12,17,18], which we also observed in the old mice. We found, compared to

young mice, a higher abundance of the potential pathobiont Bacteroides vulgatus et rel.in the

old mice [35]. These changes in mucus and microbiota were associated with enhanced activa-

tion of the immune system as illustrated by higher numbers of CD4+ effector cells in old mice

and lower numbers of naïve CD4+ and CD8+ T cells in the old mice.

Interactions between the microbiota and the intestinal barrier can have a significant impact

on health [36,37]. For example, mice with an impaired mucus layer, as found in mice lacking

the MUC2 mucin, develop colitis [17,38]. Here we showed that the colonic mucus layer

becomes thinner and less effective as a physical barrier during ageing in both males and

females. Old mice showed a significant shrinkage of the colonic mucus layer as compared to

young mice, which was associated with bacterial penetration and direct contact of bacteria

with the epithelium. The reduction in mucus thickness may therefore explain the gradual dete-

rioration of barrier function in the elderly [19], but also the age induced changes in immune

responses [39]. Indeed, our study also showed changes in intestinal immune responses with

ageing. Such age induced changes in mucus and intestinal immunology may also be related to

the finding of Ha et al., who found age-associated variables in the management of IBD in older

IBD patients. Additional, a decline in mucus thickness may also play a role in the higher sus-

ceptibility for rheumatoid arthritis (RA) in RA susceptible �0401 mice, as these mice also

showed an altered microbiota composition and had a significantly higher gut permeability as

compared to naive mice [40].

Apart from the thickness of the mucus layer, we also investigated the expression of essential

genes involved in goblet cell secretory processes and mucus biosynthesis in both ileum and

colonic tissue. Several genes involved in mucus pathways were influenced by age and generally

downregulated in old mice. We mainly found differences in genes involved in the later stage of

mucus production, at which sulfation groups are added to the carbohydrate chains in the

trans-Golgi apparatus by sulfotransferases (such as Chst4) [41–43], and where sialyl groups are

added by sialyltransferases (such as St3gal4-5) [43]. Although no difference in the colonic

mucus thickness between old male and females was found, most obvious changes induced by

ageing in the colon were found in male mice. Of the mucins, Muc1 was downregulated in old

males as compared to young males, while in old females Muc6 tended to be upregulated as

compared to young females. The old mice may compensate for the loss of mucus thickness

with the production of several anti-microbial peptides, such as Reg4, as this gene was upregu-

lated. Although, old ovx females tended to have a thicker mucus layer than non-ovx females,

ovariectomy seemed to have no effect on the mucus properties, as in old ovx females no genes

related to mucus properties were differently expressed as compared to old non-ovx females.

The differences in mucus layer between young and old mice may be related to the observed

differences in microbiota composition. Indeed, we found age related differences in the micro-

biota composition: aged mice had a higher abundance of the potential pathobiont Bacteroides
vulgatus et rel. [35] than young mice. We also found a significantly lower abundance of various

Lactobacillus species and unclassified Clostridiales type IV and XIV in old mice, of which the

latter two are known butyrate producers. These species have beneficial (gastrointestinal) health

effects [44,45], and a decrease in these species and an increase in potential pathobionts may be

associated with the general higher susceptibility for diseases at an older age. Additionally, the

change in microbiota composition may be related to the decreased mucus thickness in old

mice, as for instance Bacteriodetes vulgatus has been shown to be able to degrade mucus [46].

However, from the present study, it cannot be concluded whether differences in microbiota

induce differences in mucus thickness or the other way around. Further studies are needed to
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evaluate the underlying mechanisms. This could include studies measuring the mucus thick-

ness at several time-point during the process of ageing, to investigate the development of

mucus shrinkage. Additionally, studying mucus properties in the small intestine would be

interesting as this is an important immunological site [47].

Differences in mucus thickness and composition as well as differences in the microbiota

may induce differences in immune responses. Therefore we first performed a gene array on

ileum and colonic tissue and indeed found that many immunological functions were affected

by age, and sometimes dependent on sex. In both the ileum and colon, more functions related

to immunity were influenced by age in males as compared to females. Many of these functions

were related to lymphocyte numbers and function, such as activation of T lymphocytes, prolif-

eration of T lymphocytes and differentiation of lymphocytes. Therefore, we also studied T lym-

phocyte subpopulations in the PP and in the spleen. We used the PP since it is an important

immune sampling site of antigens from the gut lumen [31] and the spleen as a reference for

the peripheral immune system. Both sexes showed typical signs of immune senescence [39], as

a lower percentage of total T cells and naïve T cells and a higher percentage of effector memory

T cells were found in old than in young mice in both organs [39,48]. This has been suggested

to cause the lack of capacity of elderly to react to new pathogens. Furthermore, aged mice of

both sexes had an increased percentage of Th17 cells in their PP, indicating an increased

inflammation in old mice as compared with young mice. As Th17 cells are thought to play a

central role in the induction and persistence of the inflammation in IBD [49], these cells may

also be involved in the change in symptoms of IBD with ageing [6]. However, in the spleen, we

found decreased percentages of Th17 cells. This is in contrast to other studies, showing an

increased systemical Th17 response with ageing [50,51]. The reason for this is unknown, but it

may be due to study object (mouse vs. human), mouse strain, age, and organ choice and

marker selection (basal transcription factor expression in our study vs. cytokines induced after

stimulation in other studies). In several immune populations, interaction between age and sex

was present, especially in the maturation of T cells, suggesting that the ageing of immune cells

is different between males and females. Interestingly, the effect of age was often more pro-

nounced in females as compared to males, while the opposite was true for the immunological

functions related to the gene expression in the ileum and colon.

5. Conclusions

The firm mucus layer in the colon was thinner in old mice than in young mice and was influ-

enced by sex. The decline in mucus thickness during ageing was severe enough to allow con-

tact between the epithelium and microbiota in both sexes. The decline in mucus thickness

with ageing might be explained by downregulation of genes involved in mucus biosynthesis

pathways and was associated with a changed microbiota, such as a relative high abundance of

certain pathobionts and a relative low abundance of more beneficial bacteria strains. The age

differences in mucus thickness, mucus gene expression and microbiota composition may have

induced the age differences in immune responses in the PP, such as a decreased percentage of

naïve T cells, increased percentage of effector memory cells and increased Th17 cells.
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S1 Fig. Gating strategy for determination of T cell subsets in the Peyer’s patches. Lym-

phocytes were gated based on size in the forward side scatter plot (100.000 events are shown)

and T cells were determined by selecting CD3+ cells. Within the CD3+ cells, CD8+ and CD4+

cells were detected. Within both the CD8+ and CD4+ population, the percentage of CD69,

CD62L and CD44 positive cells was evaluated. CD62L+CD44- are indicated as naïve cells,
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CD62L+CD44+ are indicated as central memory (CM) cells and CD62L-CD44+ are indicated

as effector memory (EM) cells. Isotype controls are shown in panel B.

(TIF)

S2 Fig. Gating strategy for the determination of T helper cells in the Peyer’s patches. Lym-

phocytes were gated on bases of their size in the forward side scatter plot (400.000 events are

shown) and CD3+ T cells were selected. Next, T helper cells were selected by gating CD4+ cells.

Within this CD4+ population, the percentage of cells expressing Tbet, Gata3, RORγt, FoxP3

and CD25 was assessed. Isotype controls are shown in panel B.

(TIF)

S3 Fig. Gating strategy for the determination of dendritic cells in the Peyer’s patches. First

leukocytes were selected based on size in the forward side scatter plot (400.000 events are

shown). DCs are selected as MHC2+CD64-CD19-CD11c+ cells. Within the DC population the

expression of CD103 was determined. Isotype controls are shown in panel B.

(TIF)

S4 Fig. The effect of age and sex on the MUC2 in the colon. Representative pictures of

immunostaining of the MUC2 mucin (green) of young, old male, old female and old ovx

female mice. Epithelial cells are indicated in blue. Scale bars: 50μm (A).

(TIF)

S5 Fig. Effect of age on the abundance of several bacteria groups. Heat-maps showing the

abundance of several bacteria that differed significantly between young (3 months) and old

mice (19 months). A box with an asterisk (�) indicates bacteria which have a significantly dif-

ferent in that specific age group than in the other age group. Colors indicate relative abun-

dances normalized per bacterial group (per row), dark blue is the lowest abundance and dark

red the highest abundance detected over all the samples of a bacterial group.

(TIF)

S6 Fig. Effect of age and sex on the percentage of B cells in the Peyer’s patches and spleen.

Percentage of CD19+B220+ B cells in the Peyer’s patches (PP) (A) and in the spleen (B) and

their expression of IgA (B&D) in young (3 months) and old (19 months) male and female B6

mice. First lymphocytes cells were selected based on size in the forward side scatter plot. B cells

are expressed as the percentage CD19+B220+ cells within all lymphocytes. Results are ex-

pressed as dot plots + means and were tested using Two-way ANOVA followed by a Bonfer-

roni post-test for comparison between groups. Significant age effects are indicated with dashed

lines and significant sex effects are indicated with solid lines (p<0.05). An additional group of

ovariectomized (ovx) old females was added and compared with the old females with a t-test

to determine the effect of a loss of female sex hormones (human menopause).
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