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Abstract

An analysis of the population structure and genetic diversity for any organism often depends

on one or more molecular marker techniques. Nonetheless, these techniques are not abso-

lutely reliable because of various sources of errors arising during the genotyping process.

Thus, a complex analysis of genotyping error was carried out with the AFLP method in 169

samples of the oil seed plant Plukenetia volubilis L. from small isolated subpopulations in

the Peruvian Amazon. Samples were collected in nine localities from the region of San Mar-

tin. Analysis was done in eight datasets with a genotyping error from 0 to 5%. Using eleven

primer combinations, 102 to 275 markers were obtained according to the dataset. It was

found that it is only possible to obtain the most reliable and robust results through a multiple-

level filtering process. Genotyping error and software set up influence both the estimation of

population structure and genetic diversity, where in our case population number (K) varied

between 2–9 depending on the dataset and statistical method used. Surprisingly, discrepan-

cies in K number were caused more by statistical approaches than by genotyping errors

themselves. However, for estimation of genetic diversity, the degree of genotyping error

was critical because descriptive parameters (He, FST, PLP 5%) varied substantially (by at

least 25%). Due to low gene flow, P. volubilis mostly consists of small isolated subpopula-

tions (ΦPT = 0.252–0.323) with some degree of admixture given by socio-economic connec-

tivity among the sites; a direct link between the genetic and geographic distances was not

confirmed. The study illustrates the successful application of AFLP to infer genetic structure

in non-model plants.

Introduction

Plukenetia volubilis L. (sacha inchi) is a climbing, perennial, oleaginous plant of the Euphorbia-

ceae family which grows in the tropical jungles of the Americas at altitudes between 200 and
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1500 m [1]. This species was found in the Lesser Antilles, Surinam, and along the northern

and western edge of the Amazon basin in Peru in disturbed areas or forest edge of moist or

wet lowland forest [2]. The seeds were used by the native Mochica-Chimú tribe from Pre-

Incas times, as suggested through ceramics found in graves and this plant has a long tradi-

tion as a food source for the local tribal groups of the region [3]. According to Guttieréz

et al. [4] sacha inchi seeds are rich in oil (41.4%) and protein (24.7%), and some minerals

are present. Moreover, sacha inchi oil contains many bioactive chemical compounds, which

could be beneficial for human health, such as ω-3 fatty acid, phytosterols, tocopherols, and

carotenoids [5–7]. P. volubilis is allogamous and pollination occurs mainly by wind (up to

90%) (pers. com.). In the wild the seeds may be distributed by rodents and other wild ani-

mals. Until recently, P. volubilis was not intentionally bred and the breeding is mainly based

on selection for seed size. Present breeding programs are aimed at improving agriculturally

important traits, such as yield, because of the potential to utilize the seed oil in different sec-

tors of industry. However, the breeding program for P. volubilis is still in the initial stages

and characterizing its genetic variability is a necessary step towards improving and acceler-

ating the breeding process.

Here, we attempted to obtain high quality data for the estimation of the genetic diversity

and population structure of P. volubilis. The reliability and consistency of results in genetic

studies and the quality of datasets used for statistical evaluation have been discussed, particu-

larly regarding the amplified fragment length polymorphism (AFLP) method and the genera-

tion of a high number of dominant markers [8–10]. AFLP is a very useful tool for population

analyses of species without prior knowledge of their genome [11–14], although a wide range of

other applications is possible [15]. Moreover, AFLP is considered to be the most reliable

method among the dominant marker producing techniques compared to the RAPD and ISSR

methods. Nonetheless, it still suffers from several weaknesses, such as relatively high genotyp-

ing error [10] or size homoplasy [16] (more detailed info can be found in reviews by [17] or

[18]).

Due to the many steps during laboratory work and subsequent data analysis, there are mul-

tiple sources of genotyping error that can have a great impact on the results of population stud-

ies [19]. Over the last decade, several strategies have been suggested to mitigate this problem,

mostly aimed at the automatization of raw signal processing, data filtering, and allele calling

[19–22]. Only a few authors have studied the effect of genotyping error on the estimation of

population structure [10] or genetic diversity [23]. For example, Zhang and Hare [10] showed

that, although the typical reported error is less than or around 5%, one cannot be sure about

the true population structure. These authors obtained different estimations of the number of

populations from the same data with error rates of< 2% and> 4% against an error rate within

the interval of� 2% and< 4%. Moreover, the estimation of various population parameters is

not affected only by the genotyping error, but also by the software used and its setup. This was

clearly demonstrated by Arrigo et al. [21], who showed significant discrepancies between the

estimation of heterozygosity, the percentage of polymorphic loci and other descriptive statis-

tics of the same data as a result of using different software packages.

In the present study, the general steps leading to improving the precision of AFLP analysis

are discussed. Firstly, (i) the minimization of genotyping error at multiple levels. Secondly, (ii)

different error rate datasets were created, with the aim of analyzing their impact on the estima-

tion of population structure and genetic diversity. Then, (iii) the population structure of P.

volubilis was assessed, and finally (iv) the relationship between the spatial and genetic structure

and the landscape setting was explored.
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Materials and methods

Ethics statement

This study was not carried out in national parks or other protected areas of land or sea or on

private land. Sampling was conducted under the auspice of Danter Cachique Huansi (co-

author) from the Peruvian Amazon Research Institute (PARI), Tarapoto, Peru as a responsible

person for Plukenetia volubilis cultivation and breeding in PARI.

Specific permission was not required for this location and activity. We confirm that the

field study did not involve endangered or protected species.

Sample collection

Sampling of fresh leaves suitable for DNA isolation was performed on a panel of 169 P. volubilis
plants collected from nine different localities in the San Martin Region in the Peruvian Amazon

(Fig 1, S1 Table). Due to the long-term cultivation of sacha inchi from the times of Pre-Incas, the

localities of natural occurrence have not been observed. Our locations correspond to rural fields on

which sacha inchi is cultivated by local farmers. The plants are neither bred nor commercially culti-

vated, except for plants from the localities of Pucallpa (PUC) and Pacchilla (PAC). Depending on

accessibility, approximately 20 individuals per population were collected except the Ramón Castillo

population (RAC). Within each population, individuals were collected along linear transects at

Fig 1. Maps showing sampling locations of P. volubilis in the Peruvian Amazon. Inset: Map A shows the

San Martin region with the positions of P. volubilis sampling in detail. Map B shows the localization of San Martin

within the whole of Peru.

https://doi.org/10.1371/journal.pone.0184259.g001
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least 15 m apart if possible. In the case of Ramón Castillo (RAC), seven plants were scattered in an

abandoned field. All plant samples were collected in replicates (Fig 2). The obtained material was

stored immediately in polypropylene tubes with silica gel used as a desiccant. In this way, it was

possible to store the plant material for a longer period of time (several weeks) between collection

and DNA isolation.

Genomic DNA was isolated by the standard CTAB protocol [24]. Concentration and purity

were measured using an S-111107AW nanophotometer (Implen, Germany) and DNA was

then diluted to a concentration of 50 ng/μl. The high molecular weight of the DNA was veri-

fied by electrophoretic separation on a 1% (w/v) agarose gel.

AFLP protocol, optimization and raw data generation

Individual steps, temperature profiles and the reaction mixture composition were made

according to the original AFLP protocol [25] with recommendations suggested by Meudt and

Clarke [15] and Hasbún et al. [26] (See S1 AFLP Protocol). Briefly, DNA restriction by EcoRI

and MseI enzymes together with adapter ligation was performed in a single step. The reaction

mixture was diluted 1:1 in low TE after 3-hour incubation at 37˚C and first (preselective) PCR

with annealing temperature at 56˚C followed. Amplicons of preselective PCR were diluted 1:9

in low TE and 2.5 μl of PCR products were added with other components to the reaction mix-

ture of the second (selective) PCR. Two variants of the selective PCR (called T58 and T64

according to final annealing temperature) differing in temperature profiles were tested as part

of the optimization process (Fig 2). Full protocol with reaction mixtures compound and PCR

temperature profiles is available in the Supporting Information, together with details about

the number of obtained bins for each primer set under given conditions (S2A–S2C Table).

In total, 64 primer sets (PS) were tested on 12 samples originating from all studied loca-

tions. Finally, 12 primer sets were chosen for the analysis of all samples, but due to poor signal

quality one PS was excluded before data filtering, thus 11 PS remained (Fig 2). The final num-

ber of bins of the 32 primer sets was used as the main criterion for comparison of T58 and T64

variant of the selective PCR. Differences in the final number of bins were compared by two-

way ANOVA in STATISTICA v12 software (StatSoft Inc.). Categorical factors were tempera-

ture profile (T58 vs. T64) and rfu threshold (100 vs. 150 rfu; referred to as rfu100 and rfu150)

(Fig 3). Exploratory data analysis (EDA) was performed before the ANOVA in order to verify

the assumptions for the use of this method. The verification of the normal distribution was

conducted on the basis of graphical analysis (histograms, box plots) and the Shapiro-Wilk W

Fig 2. Workflow.

https://doi.org/10.1371/journal.pone.0184259.g002
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test. Simultaneously, the homoscedasticity of variance was verified by Levene’s omnibus test.

T64 was chosen as a suitable temperature for selective amplification.

Prior to capillary electrophoresis separation, four differently labelled products of selective

PCR were poolplexed in the ratio 0.8 (6FAM): 0.9 (VIC): 1.4 (NED): 1.9 (PET) and then

diluted with water 1:1. One microliter of pooled amplicons was mixed with 12 μl of Hi-Di

formamide (Life Technologies) and 0.2 μl of size standard GeneScan LIZ6001 (Life Technolo-

gies). PCR products were loaded on an ABI PRISM 310 genetic analyzer (Life Technologies)

and separated in a 36-cm long capillary with POP-4TM polymer. Separation conditions were

an injection time of 5 s at 10 kV and a running voltage of 13 kV.

For greater clarity and easier data manipulation in downstream analyses, the names of �.fsa

files were shortened in the program Ant Renamer v2.10.0 created by A. Potten (http://www.

antp.be/software/renamer). The freeware program Peak ScannerTM v1.0 (Life Technologies) was

used for signal detection and sizing with set parameters: light peak smoothing, range 50–600 bp,

and minimum peak heights 50 rfu. The other parameters remained as the default settings. The

limit of 50 rfu was based on testing of instrumental noise in 24 samples containing only pure

water both for a new capillary (<100 runs) and a used capillary (>600 runs). The number of

noisy peaks was counted for three minimum peak thresholds, i.e. 50, 100 and 150 rfu.

Error rate analysis

Sixteen randomly selected samples were used as replicates (~10% of analyzed “original” sam-

ples) for the reproducibility test. The only condition was that at least one sample per locality

Fig 3. Technical box.

https://doi.org/10.1371/journal.pone.0184259.g003
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must be included. All replicates were treated in the same way as the original samples, i.e. inde-

pendent DNA isolation, PCR amplification and capillary electrophoresis separation were done

(Fig 2).

Detection of size homoplasy was done by a linear regression model according to Vekemans

et al. [27] together with size homoplasy decomposition where different criteria for minimum

fragment size were tested.

Genotyping quality is also affected by the software and selection criteria settings used [28].

For this reason, eight datasets were created in order to evaluate the influence of at least some

of these parameters. RawGeno v2.0 [21] with different settings was used to generate the first

four datasets (“RawGeno” datasets) and the remaining datasets (“Error” datasets) were created

by combining procedures in RawGeno v2.0 and AFLPScore v1.4b software [20].

a) RawGeno datasets. The raw data of each chosen primer set with peaks of 50 rfu (Fig 3)

and higher were imported into RawGeno v2.0, analyzed and then concatenated into a single

binary matrix. In order to compare the influence of some parameters, four datasets were cre-

ated (all-100, all-150, rep-100, rep-150) with different minimum peak threshold values (100 or

150 rfu) and keeping (all) or discarding (rep) untested bins according to reproducibility. Prior

to binning (Fig 3), a filtering function for low quality samples was used, resulting in the

removal of 16 samples, i.e. 153 remained for further analyses. Binning parameters were as fol-

lows: maxbin width 1.5 bp, minbin width 1 bp, scoring range 100 bp to the largest fragment

size, minimum peak threshold 100 or 150 rfu, low frequency bins 3, reproducibility 90% and

keeping (all) or discarding (rep) untested bins. The mismatch error rate (Fig 3) of each combi-

nation together with the number of retained loci and summary statistics are shown in Table 1.

b) Error datasets. RawGeno v2.0 was used for binning with same the parameters as for

the previous four datasets, with the exception that there was no reproducibility testing. The

next step was exporting the raw data with rfu values in an AFLPScore compatible format. This

was accomplished using an R script published by Lambert et al. [29]. The resulting file was

Table 1. Detailed information on the “RawGeno” datasets showing primer combinations, initial number of bins, number of retained markers, and

error rate for each of four datasets.

Primer set Init. no. of bins No. of markers Error rate per set [%] No. of markers Error rate per set [%]

all-100 rep-100 all-150 rep-150

E02 ACA M23 CTG 178 40 19 2.50 29 15 1.72

E07 AGG M19 CAG 148 22 8 0.00 17 7 0.00

E04 ACG M21 CTA 124 22 13 2.27 18 13 2.78

E01 ACT M21 CTA 127 27 23 7.41 14 11 0.00

E02 ACA M21 CTA 126 14 9 0.00 9 7 0.00

E03 AAC M20 CAT 106 21 15 0.00 17 14 0.00

E04 ACC M17 CAA 123 30 12 3.33 19 10 2.63

E05 AGC M19 CAG 193 41 18 2.44 29 15 0.00

E06 AAG M24 CTT 108 10 5 0.00 5 2 0.00

E07 AGG M17 CAA 102 19 13 0.00 18 13 0.00

E08 ACG M22 CTC 118 32 20 3.12 18 13 0.00

Total 1,453 278 155 - 193 120 -

Retained markers 275* 154* 192* 120

Mean 132 25 14 1.92 18 11 0.65

Median 124 22 13 2.27 18 13 0.00

* Discrepancy in sum of markers against number of retained markers is given by removal of 16 samples and thus several loci during concatenation of 11

datafiles.

https://doi.org/10.1371/journal.pone.0184259.t001
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consequently pasted into the Calcul module of Apache OpenOffice v4.0.1. (The Apache Soft-

ware Foundation). Then, a binary matrix representing the presence/absence of the signal

based on the matrix of rfu values was created. This binary matrix was used for the estimation

of error rate per locus according to the mismatch error rate [17] and Jaccard error rate [30, 31]

(Fig 3); similar ad hoc criteria according to Zhang and Hare [10] were applied where loci with

values>18.75% (mismatch) and>31.25% (Jaccard) were removed. The remaining loci of each

primer set were exported to AFLPScore v1.4b where choosing the best scoring method was

done by testing a broad range of parameters. For the locus selection threshold, the values 50,

100, 150, 200, 250, 300, 400 and 500 rfu were tested. In phenotype calling threshold, the option

with absolute values was tested (the same values as in the locus selection threshold) and also

those with relative values of 5, 10, 15, 20, 25, 30, 40 and 50%. To assess the effect of the error

rate, four datasets were created (error-2, error-3, error-4 and error-5) with different error rates

according to the median: 2.35 (the lowest achieved value), 3.13, 4.04 and 5% (Table 2). More

information on the selected parameters is presented in the Supporting Information (S3A–S3D

Table). The final step was concatenation of all primer combinations into one binary matrix

and manual removal of all loci with less than 3 or more than 149 presence peaks, i.e. with a fre-

quency less than 2% or higher than 98% (Fig 2).

Population structure and assignment test

An estimation of the number of populations, the assignment of individuals to a population

and their characterization was performed using several mathematically different methods.

Four techniques were used: multidimensional scaling (MDS), AMOVA-based K-means clus-

tering, and Bayesian clustering (STRUCTURE—“standard” and “hierarchical” variants). Indi-

vidual assignment to a population was verified via an assignment test.

Table 2. Detailed information on the “Error” dataset showing primer sets, initial number of bins, changes in bin numbers during filtering process,

number of retained markers, and error rate for each of the four datasets.

Primer set Init. no. bins Primary dataset Filtered dataset Final no. loci

error-2 error-3 error-4 error-5

E02 ACA M23 CTG 178 79 54 25 25 29 39

E07 AGG M19 CAG 148 40 23 17 19 18 23

E04 ACG M21 CTA 124 50 29 12 9 17 28

E01 ACT M21 CTA 127 63 22 6 6 9 10

E02 ACA M21 CTA 126 35 20 6 5 10 17

E03 AAC M20 CAT 106 35 28 3 3 6 16

E04 ACC M17 CAA 123 53 33 8 23 33 30

E05 AGC M19 CAG 193 93 47 30 21 13 30

E06 AAG M24 CTT 108 35 15 -# -# -# -#

E07 AGG M17 CAA 102 40 27 5 4 12 18

E08 ACG M22 CTC 118 49 32 12 12 19 31

Total 1,453 572 330 124 127 166 242

Retained markers 102* 108* 142* 194*

Mean 132 52 30 12 13 17 24

Median 124 49 28 10 11 15 26

* Discrepancy in sum of markers against number of retained markers is given by manual removal of loci with frequency of presence peak below 2% or over

98%.
# This primer set was excluded from the final datasets due to the high error rate and low number of markers.

https://doi.org/10.1371/journal.pone.0184259.t002
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a. MDS. Distance matrices based on Dice, Jaccard and Simple Matching coefficients were

created in DARwin v5.0.158 [32] and used as the input for MDS carried out in STATISTICA

v12 (StatSoft Inc.). Only two- and three-dimensional models were tested in the framework of

MDS. The quality of fitting the proper model was determined by stress parameter (S6 Table)

according to Kruskal [33].

b. AMOVA-based K-means clustering. The method was developed by Mermains [34]

and implemented in GenoDive v2.0b23 [35]. A distance matrix of individual samples was cre-

ated according to Smouse and Peakall [36] and the chosen simulated annealing algorithm was

set up on 106 Markov chain Monte Carlo (MCMC) iterations with 1000 repeats. The optimal

number of clusters (K) was determined by pseudo-F statistics and the Bayesian Information

Criterion (BIC).

c.Bayesian clustering. Both variants of Bayesian clustering were performed in STRUC-

TURE v2.3.3 [37] with admixture and correlated allele frequency models [38] and, because

AFLP markers are the dominant type of markers, a recessive alleles model [39] was chosen. In

the search for a connection between sampling localities and population structure, the LOC-

PRIOR model [40] was employed. Proper estimation of posterior probability lnP(D) was

ensured by 106 MCMC iterations after a burn-in period of 105 iterations and 10 replicate runs,

performed for each K value (1–9). The last step comprised 100 replicate runs for the chosen K

and only runs with the highest probability were used (see the number of retained runs for each

dataset in S1 Fig). This type of STRUCTURE usage is called “standard” analysis.

Evanno et al. [41] pointed out that the parameter lnP(D) used for the estimation of the real

number of clusters (K) might not be the best tool and proposed the ad-hoc criterion ΔK,

which will detect the uppermost level of the population structure [41, 42] if there is one. For

this reason, we also used the repeated procedure of “hierarchical” analysis according to ΔK fol-

lowing Coulon et al. [42] and Lambert et al. [29]. Successive identification of clusters pro-

ceeded until the highest probability for K = 1 was reached, the number of individuals within

the cluster was too small, or the cluster could not be divided any more (S2 Fig). The criterion

for assigning an individual to a subpopulation was based on the highest value of inferred

ancestry (at least 0.5). Individuals with a lower value were not assigned to any subpopulation.

In every round of the hierarchical analysis, the K value was estimated ranging from 1 to the

number of assumed subpopulations with 10 runs per K value. In the case of different numbers

of estimated subpopulations in comparison with the result of the standard analysis, 100 repli-

cate runs followed for a chosen K value and only runs with the highest probability were used

(S1 Fig). Repeated hierarchical analysis used the same parameter settings as standard analysis.

The calculation of ΔK and averaging lnP(D) values over 10 runs (100 for chosen K) was per-

formed using STRUCTURE HARVESTER v0.6.94 [43] in the case of both “standard” and

“hierarchical” analyses. Thus, it was necessary to create a consensus Q matrix using CLUMPP

v1.1.2. [44]. Depending on the number of clusters (K), one of three algorithms was used for

the calculation of optimal alignment over R replicates. When K� 3, the full-search algorithm

was applied, but for K> 3, the greedy algorithm with random input orders and 105 repeats

was used. Because of the high number of replicates (mostly ~90 runs per dataset), the large

greedy algorithm with 106 random input orders was used for the final runs. The final results

were plotted using DISTRUCT v1.1 [45].

d. Assignment test. This test was carried out by AFLPOP v1.1 [46]. Prior to our analysis,

a series of simulations were conducted for the estimation of the optimal minimum log-likeli-

hood difference (MLD). In order to assure the consistency of the results, each simulation was

done in 10 iterations. Based on these simulations, MLD = 1 was chosen. A re-allocation proce-

dure was used for testing and ε = 0.01 was chosen as the zero-replacement value because it is

close to the assumed average Bayesian error rate of ε0.1 (~0.0084) in the studied datasets (S3A–
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S3D Table). The probability that a certain individual does not belong to the given candidate

subpopulation was set to p< 0.01.

Genetic diversity

The estimation of allele frequencies using the Bayesian method with a non-uniform prior dis-

tribution according to Zhivotovsky et al. [47] with Hardy–Weinberg equilibrium (HWE)

assumed was performed in AFLP-SURV v1.0 [27]. These estimations were further used for the

calculation of the expected heterozygosity (He) within each subpopulation (S9 Table) follow-

ing the method of Lynch and Milligan [48] and the detection of size homoplasy [27]. Intrapop-

ulation diversity was measured by other descriptive statistics as the number (#loc_P) and

percentage of polymorphic loci (PLP) at the 5% level. FIS value was estimated using I4A pro-

gram [49] with five different sets of α and β parameters of the prior beta-distribution (α = β =

0.1, 0.5, 1, 2.5 and 5) and posterior distribution for α and β parameters was approximated by

200,000 iterations after burn-in period with 20000 iterations. Final FIS value was counted as a

mean of FIS values obtained for each model tested.

The level of interpopulation differentiation was analyzed by analysis of molecular variance

(AMOVA) in GenAlEx v6.501 [50] based on the FPT parameter because it is more suitable for

binary data than FST. Nonetheless, FST as a routinely used estimator was calculated as well in

AFLP-SURV v1.0. The statistical significance of pairwise values FPT (FST) for every population

was tested by 9999 random permutations.

Spatial analysis

Testing of the association between genetic and geographical distance was carried out by the

Mantel test implemented in GenAlEx v6.501. Input data files were matrices of FPT pairwise

values (S8A–S8H Table) and the geographical distance matrix based on universal map grid

system (UTM) coordinates. The same program was used for spatial autocorrelation analysis

according to Smouse and Peakall [36] where seven equidistant classes, each 10 km long, were

plotted against r values as a so-called correlogram (S3 Fig). Spatial analysis was furthermore

extended by the sPCA method [51] implemented in the Adegenet v2.0.0 package [51] in the R

v3.2.1 programming language and environment [52]. The Adegenet package included two per-

mutation based tests used for the detection of global (Gtest) and/or local (Ltest) spatial struc-

tures as positive, eventually negative, autocorrelation. The statistical significance of all

correlation coefficients of the abovementioned tests was assessed on the basis of 9999 random

permutations.

Results

AFLP optimization and error rate analysis

a) AFLP optimization. Exploratory data analysis (EDA) verified the assumption about

normal distribution by Shapiro-Wilk W test (p = 0.08623–0.78834) and homoscedasticity of

variance by Levene’s omnibus test (F-value = 2.19; p = 0.14 for the temperature profile and F-

value = 0.43; p = 0.51 for the rfu). An appropriate temperature profile was chosen according to

the two-way ANOVA results, revealing statistically significant differences both in the tempera-

ture profile (F-value = 45.65; p< 0.000001) and the rfu value (F-value = 6.71; p = 0.0107),

where the average number of bins was 26.36 for T58 vs. 45.88 for T64 and 39.86 for rfu100 vs.

32.37 for rfu150.

b) Size homoplasy. The analysis was performed for both the concatenated matrices of

eight datasets and for individual combinations within every dataset. The results in the form of
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correlation coefficients r and p-values are listed in S4A and S4B Table. No combination

showed a statistically significant negative value r, with the exception of dataset all-100, where a

weak negative correlation was detected (r = - 0.1324; p = 0.0282).

c) RawGeno and Error datasets. In RawGeno datasets, 25 AFLP markers were obtained

per combination for the all-100 dataset, 18 markers for the all-150 dataset, 14 markers for the

rep-100 dataset and 11 markers for the rep-150 dataset. The total number of markers, on aver-

age, was 19.15, 13.29, 10.67 and 8.26% from the number of bins of raw data.

The “Error” datasets (error-2-5) had 12, 13, 17 and 24 as the average number of markers

per combination, which gives a yield of 9.39, 9.61, 12.57 and 18.32% from the initial number of

bins. In terms of the error rate, it was found that the error rate per locus ranged from 0 to 75%

according to the mismatch error rate (average 17.9%, median 12.5%) and between 0 and 100%

according to the Jaccard error rate (average 45.81%, median 40%) for the primary dataset.

After filtering, the average error rate was 5.98% (median 6.25%) for the mismatch error rate

and 33.08% (median 6.9%) for the Jaccard error rate. It was also found that 191 out of 572 bins

(33%) from the primary dataset did not appear in replicated samples and thus were not tested

for the error rate.

Population structure

Testing three distance matrices with MDS showed that both the Dice and Jaccard coeffi-

cients (0.2146–0.2339) seemed to perform better than the simple match coefficient (0.2264–

0.2405) according to the stress parameter. A two-dimensional model was selected because,

even though the three-dimensional model exhibited better values of the stress parameter, it

did not exhibit any improvement in biological interpretation against the two-dimensional

model (S6 Table). MDS indicated the existence of only two clearly distinct clusters (Figs 4

and 5). The first cluster consisted of samples from the Dos de Mayo (2DM) locality and the

second cluster consisted of all the remaining samples. A similar result was reached using the

Fig 4. Result of MDS analysis in the form of a 2D projection onto the plane for the “RawGeno”

datasets. This graphic projection represents individual samples from Dos de Mayo (2DM) as one cluster

and the second cluster consists of all remaining samples from Aguas de Oro (ADO), Aucaloma (AUC),

Chumbaquihui (CHU), Mishquiyacu (MIS), Pacchilla (PAC), Pucallpa (PUC), Ramón Castillo (RAC) and

Santa Cruz (SCR).

https://doi.org/10.1371/journal.pone.0184259.g004
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AMOVA-based K-means clustering method when the assessed parameter was pseudo-F.

In cases where the BIC value was used as the criterion for the same method, the preferred

number of clusters was nine (S7A and S7B Table). STRUCTURE showed for the “standard”

variant K = 9 for all the datasets except datasets error-2 and all-150, where K = 8 and 7, respec-

tively (Fig 6). The situation was more complicated in the case of “hierarchical” analysis

because the assessment of the number of clusters varied greatly. Almost all “Error” datasets

(error-3, 4, 5) were in agreement with the standard STRUCTURE analysis and showed K = 9,

while dataset error-2 showed K = 10, which would mean there were more populations than

locations where the samples were collected. In general, the “RawGeno” datasets showed a

lower number of populations where K = 5 (rep-100, all-150), 6 (all-100) or 8 (rep-150), respec-

tively. The results of assessment of population structure are summarized in Table 3.

Assigning the individuals to populations according to the sample collection site based on a

re-allocating procedure showed that 37 individuals were not assigned to any population and

19 were re-allocated incorrectly in dataset error-2, i.e. 56 individuals (36.6%) in total. In data-

set error-3, this number decreased to 26 unassigned individuals and again 19 assigned incor-

rectly, i.e. 45 individuals (29.41%) in total. The remaining datasets showed that a stable plateau

of unassigned individuals ranging among 19–21 and 15–18 samples were misassigned, i.e.

23.42% on average. The lowest rate of correct assignment was typical for the SCR (20–40%

individuals according to dataset), PAC (23–47%) and PUC (23–41%) subpopulations in which

the highest level of admixture was also detected.

Genetic diversity

The comparison of differences between the minimal and maximal values across datasets for

individual subpopulations showed that the He values always differed by at least ~30% and in

some cases even by 45%. A more detailed overview is available in Table 4 showing the values of

the basic parameters (He, FPT, FST, PLP5%). Inbreeding coefficient (FIS) varied from 0.0065 to

Fig 5. Result of MDS analysis in the form of a 2D projection onto the plane for the “Error” datasets.

This graphic projection represents individual samples from Dos de Mayo (2DM) as one cluster and the second

cluster consists of all remaining samples from Aguas de Oro (ADO), Aucaloma (AUC), Chumbaquihui (CHU),

Mishquiyacu (MIS), Pacchilla (PAC), Pucallpa (PUC), Ramón Castillo (RAC) and Santa Cruz (SCR).

https://doi.org/10.1371/journal.pone.0184259.g005
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0.0718 (95% Credible Interval—CI95 from 0.0002 to 0.2059) according to median depending

on population and dataset (Table 5).

Fig 6. Mean ± S.D. (red vertical line) Ln(P)D value over 10 replicated runs for each estimated K = 1–9 on the left part of the figure (a) in the case of

“standard” analysis. The chosen K is indicated by * for better clarity. The order of estimation Ln(P)D value for each dataset is equal to the dataset order on

the side of graph bars. Please note the different scales of the Ln(P)D axes. The right part of the figure (b) shows a graph of each individual within the

appropriate subpopulation indicated by the shortened name. The segmentation of vertical bars by different colors represents the estimated membership of an

individual in K inferred clusters. There are two results for each dataset whenever K was estimated differently for the “standard” and “hierarchical” types of

STRUCTURE analysis.

https://doi.org/10.1371/journal.pone.0184259.g006

Table 3. Summary information about K number estimation by different statistical methods.

Dataset MDS AMOVA based K-means clustering STRUCTURE

pseudo-F BIC standard hierarchical

rep-100 2 2 9 9 5

rep-150 2 2 9 9 8

all-100 2 2 9 9 6

all-150 2 2 9 7 5

error-2 2 2 9 8 10

error-3 2 2 9 9 9

error-4 2 2 9 9 9

error-5 2 2 9 9 9

https://doi.org/10.1371/journal.pone.0184259.t003
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Spatial analysis

The assessment of the connection between genetic and geographical distance was performed at

the subpopulational level. The Mantel test did not confirm the hypothesis about the occurrence

of a spatial genetic pattern (S10 Table) because a statistically significant correlation was not

found between genetic and geographical distance for any dataset (r = 0.427–0.501, p = 0.061–

0.106). Also, the sPCA method did not show either a global (Gtest: t(max) = 0.1604–0.2107,

p = 0.1003–0.3511 according to dataset) or local (Ltest: t(max) = 0.1621–0.2192, p = 0.5528–

0.7868 according to dataset) spatial structure (S11 Table). However, analysis by correlogram

showed a weak positive autocorrelation for the datasets error-4 (r = 0.118, p = 0.037), rep-150

(r = 0.112, p = 0.044) and all-150 (r = 0.118, p = 0.041) in the distance class 20 km and a weak

negative autocorrelation in the distance class 50 km for datasets error-5 (r = -0.095, p = 0.047),

rep-100 (r = -0.103, p = 0.034) and all-100 (r = -0.099, p = 0.047). No statistically significant

autocorrelations were detected in the other datasets (S12 Table, S3 Fig).

Discussion

Error rate analysis

An objective report about the data quality requires a more detailed description of the whole fil-

tering procedure instead of just mentioning numerical value of the genotyping error. Thus,

one of our aims was to transparently show each particular step and the procedures of error

rate analysis so that anyone could repeat it with an available data file (DOI: 10.5061/dryad.

j702j). We can demonstrate this need by comparison our “RawGeno” datasets all-100 and all-

Table 4. Descriptive statistics of each dataset including total number of loci, number of polymorphic loci at the 5% level (#loc_P), proportion of

polymorphic loci at the 5% level (PLP) expressed as a percentage, average expected heterozygosity (He), standard error of He (S.E.), fixation

index (FST), and FST analogue for binary markers (ΦPT).

Dataset No. loci #loc_P PLP5% He S.E. FST ΦPT

rep-100 154 108 70.1 0.188 0.013 0.235 0.304

rep-150 120 49 40.8 0.179 0.015 0.241 0.301

all-100 275 127 46.2 0.128 0.009 0.203 0.252

all-150 192 100 52.1 0.139 0.012 0.212 0.253

error-2 102 56 54.9 0.153 0.017 0.271 0.323

error-3 108 60 55.6 0.166 0.015 0.266 0.315

error-4 142 82 57.7 0.171 0.014 0.254 0.309

error-5 194 112 57.7 0.173 0.012 0.220 0.258

https://doi.org/10.1371/journal.pone.0184259.t004

Table 5. Median FIS values of all populations and datasets.

Population rep-100 rep-150 all-100 all-150 error-2 error-3 error-4 error-5

2DM 0.0348 0.0157 0.0379 0.0158 0.0097 0.0089 0.0079 0.0141

ADO 0.0119 0.0106 0.0172 0.0093 0.0118 0.0111 0.0086 0.0098

AUC 0.0409 0.0420 0.0228 0.0276 0.0455 0.0226 0.0140 0.0561

CHU 0.0082 0.0079 0.0089 0.0082 0.0206 0.0151 0.0123 0.0097

MIS 0.0350 0.0461 0.0352 0.0451 0.0142 0.0125 0.0234 0.0343

PAC 0.0065 0.0067 0.0070 0.0070 0.0113 0.0121 0.0112 0.0621

PUC 0.0294 0.0226 0.0218 0.0179 0.0151 0.0142 0.0115 0.0097

RAC 0.0163 0.0170 0.0163 0.0166 0.0230 0.0214 0.0188 0.0169

SCR 0.0718 0.0629 0.0603 0.0613 0.0163 0.0167 0.0179 0.0498

https://doi.org/10.1371/journal.pone.0184259.t005
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150 against the rep-100 and rep-150 dataset. These datasets differ by retained/removed

untested bins thus total number of markers (here 121/72). Nonetheless, the software gives the

same value of error rate for both datasets, although there is higher uncertainty about data qual-

ity in all-100 and all-150 datasets.

Moreover, in a number of published studies, the error rate is just reported without an expla-

nation of how it was calculated [8]. Thus, it is also necessary to be more specific about the gen-

otyping error formula like mismatch error rate [17], Jaccard error rate [17], or Bayesian error

rate [53]. For our comparison purposes mismatch error rate formula was chosen because it is

the most common approach to date, although it is necessary to take account of some pitfalls

connected to this parameter as pointed out by Ley and Hardy [54]. Mismatch error rate tends

to keep low quality markers with too high and low frequencies. It also treats equally present

peaks and absence peaks matches which means it is prone to error caused by size homoplasy

unlike Jaccard error rate.

There is another source of error prevailing in AFLP analysis called homoplasy [55], which

could be classified as technical or size homoplasy [21]. Technical homoplasy is caused by the

incorrect definition of bins. This may lead to opposite extremes, i.e. either oversplitting (very

narrow bins) or artificial similarity of non-homologous fragments (overly wide bins). There-

fore, bin width is an important criterion during the processing of fluorescent signals [31, 28].

It was one of the reasons why RawGeno was chosen, because it offers better binning flexibility

than GeneMapper by simply setting several parameters. Herrmann et al. [28] stated that the

most important parameter is MAXBIN, which determines the maximum width of bin, because

it has the greatest influence on FST. The recommended values of this parameter were over 1 bp

and ideally 2 bp or more. We chose a compromise value of 1.5 bp, leading to the elimination of

bin oversplitting and a reduction in technical homoplasy in the ideal case.

The second type of homoplasy, size homoplasy [56] is caused by similar/same migration

rate of fragments from different loci, thus probably loci with different sequences and evolu-

tionary history. This is why AFLP is mostly used for interrogation of intraspecies genetic vari-

ability. The risk of size homoplasy increases with taxonomic distance. We minimized the error

caused by size homoplasy, only counting fragments bigger than 100 bp because more than one

third of the fragments below this threshold value can be non-homologous [56]. Further, Veke-

mans et al. [27] found a negative correlation between the size of fragments and their frequency

in the population as an indicator of the presence of size homoplasy. A statistically significant

but weak correlation (r = - 0.13, p = 0.028) was found in only one dataset (all-100), which con-

tained the highest absolute number of markers and the highest number of markers without

error rate testing. From the comparison of all eight datasets, it was obvious that the “Error”

datasets were better than the “RawGeno” datasets, which oscillated around the edge of a statis-

tically significant correlation (S4A and S4B Table). Simultaneously, testing of other size thresh-

olds (150, 200, 250, and above 300 bp) was performed (S5 Table). The presence of size

homoplasy was even detected in three cases for fragments over 250 and 300 bp (p< 0.05).

Apparently, this is a phenomenon that cannot be easily eliminated according to size criteria.

The multiple datasets approach covering various levels of the error rate, the influence of

software choice, and the parameter settings were included as well as other aspects connected

with the error rate, such as homoplasy. The purpose was not a comparison of programs or

their algorithms but rather to show the limitations of our study. It is difficult to choose objec-

tively the best dataset because we did not detect some kind of "break point" as in the case of

Zhang and Hare study [10], but there a pattern was seen across the datasets.

Firstly, the "Error" datasets gave more consistent results for various kinds of tests than

"RawGeno" datasets and, secondly, a lower number of markers as a result of too stringent

selection criteria limit the power of some statistical approaches to obtain the best estimation of
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true population structure. For a conservative approach with mismatch error rate, we suggest

using RawGeno only for binning purpose, thus without a reproducibility test, then (optionally)

do some kind of marker preliminary screening using not too stringent criteria for error rate

estimator, and finish the analysis for marker choice in some software such as AFLPScore [20]

or scanAFLP [57] dealing with rfu profiles. It is also possible to use newer alternative approach

published by Ley and Hardy [54] enabling the elimination of weaknesses of mismatch error

rate where a marker is treated as a phenotypic trait influenced by both genetic and non-genetic

factors. However, this approach requires a larger number of replicates and initial number of

bins.

Comparison of clustering methods

In order to understand the population structure of P. volubilis, several statistical methods were

employed. The first technique (MDS) possesses some advantages in comparison with more

popular Bayesian clustering methods [58]. For the final MDS, a matrix based on the Jaccard

coefficient was selected because it is less influenced by potential homoplasy [30]. However,

from a statistical point of view, the quality of all two-dimensional models was very low, regard-

less of the coefficient used. In all cases, stress values were above 0.2, indicating poor fitting of

the data by the relevant model [33]. Three-dimensional models led to a decrease in stress

value, but they did not offer any improvement in biological interpretation. As is shown, MDS

was able to capture only the highest hierarchical structure, namely by distinguishing samples

from the locality of Dos de Mayo (2DM) from the others (Figs 4 and 5).

The other method combining AMOVA with the K-means hierarchical clustering method

revealed very different estimations for the number of clusters, depending on the summary sta-

tistics used (pseudo-F or BIC). The result of pseudo-F was the same as in MDS, i.e. two clus-

ters, but the BIC criterion showed nine clusters (S7A and S7B Table). Cluster estimations were

the same for all datasets and thus, surprisingly, neither the software settings nor the error rate

had a significant influence on the result. Meirmans [34] mentioned that the predictive value of

pseudo-F and BIC parameters is strongly influenced by the reproductive mode of the organ-

ism. The pseudo-F parameter is supposed to be a better estimator in cases of random mating

and BIC should be preferred in cases of non-random mating or in the presence of significant

population structure [34]. As discussed in the “Population structure” section, in the case of P.

volubilis, the final effect of selection for seed size is similar to non-random mating and the pre-

ferred parameter should be BIC.

The last comparative method was a model approach based on the Bayesian clustering algo-

rithm. The “standard” type of analysis, corresponding to the original methodology proposed

by authors of program STRUCTURE [37], showed fairly robust results across datasets; only in

two cases was a value found other than K = 9 found (Table 3). It is obvious that the error rate

or various parameter settings did not play an important role. In the case of the dataset error-2

(K = 8), an impact of the lower number of markers retained for analysis could be assumed.

One can argue that the difference in the number of markers between the error-2 and error-3

datasets is not significant (102 vs. 108), but the result is also dependent on which specific loci

were retained/discarded and their informational value in terms of the structural signal. More-

over, there was a minimal difference in the average LnP(D) estimation for K = 8 and 9

(-4460.04 vs. -4460.33) in the error-2 dataset, but there was higher variation for K = 9

(SD = 26.06 vs. 43.61) and therefore eight clusters were selected. The dataset all-150 showed

K = 7, while the dataset all-100 gave the best estimation for K = 9. The only difference was in

the total number of markers (275 vs. 192) and thus we suppose that the structural signal was

higher than the background noise in the all-100 dataset but not in the all-150 dataset.
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The “hierarchical” variant of analysis in STRUCTURE proposed by Coulon et al. [42],

showed the highest variability in the estimation of K according to the dataset. The “Error”

datasets were consistent and for all the “Error” datasets an estimation of K = 9, was achieved

except for error-2 with K = 10 (Table 3). A higher number of clusters than the number of col-

lection sites were considered too unlikely due to the method of P. volubilis cultivation and the

size of the plots. Therefore, the imbalance in the K estimation can be attributed to an unsuit-

able number of markers.

A different situation occurred in the “RawGeno” datasets where the estimation of K ran-

ged from K = 5 (rep-100, all-150) to K = 6 (all-100) and K = 8 (rep-150). There were perhaps

the most apparent differences between “RawGeno” datasets. Hierarchical analysis at each

step typically showed an estimation according to ΔK = 2 or 3 (S2 Fig), when the gradually

decreasing number of individuals, and thus also markers, may be more affected by noise in

the data, which exceeded the structural signal in less differentiated groups such as PUC,

PAC and SCR.

Population structure and genetic diversity

A comparison of clustering methods indicates with high probability the existence of nine

genetically differentiated clusters, which largely coincide with the locations of sample collec-

tion. Only MDS or parameter pseudo-F in the AMOVA-based K means a clustering method

preferred two clusters. It raised the question what was the cause of high genetic differentiation

into subpopulations occurring in the relatively small area about 70 km2. On the basis of the

available information we suppose strong anthropogenic influence determining the magnitude

of several evolutionary forces like selection, genetic drift and gene flow on population structure

of P. volubilis.
To fully realize how selection and other forces diversified one subpopulation from another,

it is necessary take into consideration how and how long P. volubilis has been cultivated. Farm-

ers cultivating this crop do not purposely carry out cross-breeding and open pollination

occurs. However, from the obtained seeds, the biggest ones are selected as a basis for the next

generation of plants. From the breeding perspective, this is not such an efficient method (so-

called selection after flowering) and it is slower than other methods (e.g. pedigree or recurrent

selection). Nevertheless, selection for a certain phenotype is happening as well as on genes or

control regions influencing this phenotype. Simultaneously, genetic hitchhiking of associated

regions is occurring and leads to the fixation of alleles positively influencing required trait(s)

and alleles of neutral loci close to these genes which supports structuring into local subpopula-

tions, as indicated by the FPT or FST values (Table 4). This is a typical consequence of domesti-

cation and has been noted in many crops [59].

The selection process probably started more than 800–900 years ago because cultivation of

this crop is known from time of pre-Inca tribes and Inca Empire [1, 60]. Despite the relatively

long generation cycle of about 6–8 years, there was a sufficient number of generations for sub-

stantial differentiation between the localities thanks to genetic drift accelerated by selection for

certain phenotype. Moreover, sacha inchi has limited ability for seed or pollen dispersion. The

pollen is only dispersed over a short distance (approx. 100 m) and seeds can be occasionally

distributed by rodents (pers. obs.). Further, it is necessary to take into account a specific

requirement for growth conditions, with the most important ones being sunny places [61]. In

the forested areas of the Peruvian Amazon, these places are represented by village fields and in

the present time the wild form of sacha inchi practically does not occur. Thus, there is a lot of

evidence of the limited dispersion capability of P. volubilis, even for short distance in the range

of several kilometers, and thus support for the hypothesis of low gene flow.
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The idea of low gene flow is in contrast with the graphical result of STRUCTURE analysis

which revealed unexpectedly high levels of admixture between several subpopulations (PUC,

PAC and SCR; see Fig 6). Also, the assignment test confirmed that 11–12% of individuals were

assigned to a different subpopulation than according to locality and a similar percentage of

individuals were not assigned to any of the studied subpopulations. Apparently, there is some

mechanism which allows gene flow between the localities. Natural gene flow is obviously lim-

ited, although anthropogenic transfer of this economically important plant might play a role

here. Besides the effect caused by migration of people from one village to another, taking sacha

inchi seeds with them, another possibility is exchange of seeds on the market. Seeds that are

sold are mixtures originating from different areas (pers. com.), and it is therefore unknown as

to which plants will grow in the field according to the place of origin.

Anthropogenic influence, causing differentiation of subpopulations in one way and facili-

tating gene flow between the localities despite the natural barriers in another way, could

explain why the MDS (or AMOVA based K-means clustering) method was able to clearly dis-

tinguish only plants from Dos de Mayo. This locality is poorly accessible, the most distant

from the other localities, not currently inhabited, and plants growing there are therefore iso-

lated. We do not know how much time has passed since the last villager leaved this place, but it

was undoubtedly long enough for elimination of gene flow through anthropogenic transfer of

seeds mixture. This example could be used as another indirect evidence of strong influence on

population structure by human being. Another insight into observed population structure and

connectivity between the sites could provide analysis both spatial and genetic data.

The primary idea is usually based on the hypothesis that individuals as well as populations

that are geographically more distant will be even less genetically similar, and vice-versa [62–64].

In the case of P. volubilis, rather than a demonstration of isolation by distance (IBD), differentia-

tion can be expected through reduced gene flow between subpopulations due to barriers such as

the rainforest or mountains. However, no spatially oriented test showed a statistically significant

result (see S10–S12 Tables) with the exception of a correlogram of several datasets (all-150, rep-

150 and error-4). This leads to an interesting situation when AMOVA revealed an unusually

high proportion of variability between subpopulations (FPT = 25–32% according to dataset (see

Table 4), but with no statistically significant spatial structure.

We suppose this is another clue for prevailing anthropogenic factors among others. When

we accept this idea then the values of the pairwise FPT parameter can also serve as an indicator

of the socio-economical connectivity between the localities. It was found that the subpopula-

tions 2DM, ADO, AUC, MIS and RAC showed a high level of differentiation toward any of

subpopulations; conversely, between PUC, PAC and SCR the FPT values were low, although

statistically significant (S8A–S8H Table). Unfortunately, we cannot provide a satisfactory

explanation for the higher connectivity of these localities against the others because we lack

information about the underlying history of this area or human migration. As far as we know,

the plants from Pucallpa (PUC) and Pacchilla (PAC) are cultivated for commercial purposes

and maybe the traditional "seed size selection" model followed by local villagers is not applica-

ble here. We are expecting the faster generation cycle and demands for a higher amount of

seeds. At present, it is not possible to buy any bred cultivars and the only source are mixtures

of seeds from the markets. The reason behind the high admixture level in Santa Cruz (SCR)

remains unclear.

As we mentioned earlier, despite long-term phenotypic selection, P. volubilis is not consid-

ered to be a fully domesticated plant. Our former plan was analysis of “pure” wild Plukenetia
plants, but we have found that its occurrence is so intertwined with village fields that it is not

possible to set a clear border between the plants cultivated in village fields and “naturally”

occurring plants. According to our observation, the plants in the studied area have great
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potential as a promising genotype source for breeding because there is a high differentiation

level among the subpopulation and sufficient variability within (almost) each subpopulation

according to He etc. (Table 4). The lowest polymorphism and variability was only found in the

RAC subpopulation, followed by 2DM in many datasets. In the case of RAC, this is a conse-

quence of sampling because in this locality it was impossible to find a large number of plants

and this skewed the results. The lower diversity 2DM subpopulation is probably due to the iso-

lation of the locality and thus low or zero gene flow.

A further insight into the subpopulation structure is provided by an estimation of FIS,

where average values of FIS across the datasets were rather similar (1–2%), but between the

subpopulations varied more widely (0.5–7%). When we omit the technical issues connected

with AFLP like parameter estimation based on dominant type of markers, genotyping error,

homoplasy, coverage of different genome part, and frequent violation of assumption about

linkage equilibrium [49], then possible biological explanations of inbreeding include partial

self-pollination, biparental inbreeding, and selection, or a combination of these factors. Sacha

inchi is considered to be an allogamous plant with a dichogamic mechanism against selfing.

The efficiency of this mechanism could be reduced by environmental conditions such a tem-

perature as is known in other plants like avocado [65], and thus we can expect some degree of

selfing (pers. com.), but unfortunately there are no data available. Also, biparental inbreeding

could occur in some subpopulations due to small local population size and limited range of

pollen dispersion [66]. Moreover, as we already know, phenotypic selection is happening. We

can conclude that the observed level of inbreeding is probably caused by several factors and,

despite this, it is relatively low even for small subpopulations like RAC.

Conclusion

The comparison of eight datasets showed that it is better to perform variant multiple data fil-

tering by combining several different approaches. Despite the understandable differences, the

“Error” datasets (error-2, error-3, error-4, and error-5), showed more consistent results than

“RawGeno” datasets (rep-100, rep-150, all-100, and all-150). The estimation of clusters was

independent of reproducibility of the underlying dataset. The exception was hierarchical anal-

ysis in STRUCTURE where, thanks to the gradual reduction in the number of individuals and

markers, the background noise was predominant over the structural signal in datasets with

higher error rates. However, noticeable differences were found in the genetic diversity estima-

tion between datasets. Data quality considerably influenced estimates of genetic diversity,

which is a concern for conservation genetics.

P. volubilis represents a traditional Peruvian oil crop for human nutrition. Recently, a grow-

ing interest in this crop has been noted within the food and pharmaceutical industry. Breeding

of sacha inchi allows for improvements in the required characteristics, but for the successful

creation of varieties it is necessary to learn about its genetic diversity and variability. Our study

showed that, due to long-term phenotypic selection and low gene flow, P. volubilis exists as

very isolated subpopulations corresponding with the sampling localities. The degree of differ-

entiation between the subpopulations is probably due more to socio-economic connectivity

among the sites than to biological connection, because seeds are transported over different dis-

tances. Using the AFLP technique and appropriate filtering data and estimation of error rate

can be successfully applied for genetic structure estimation. For the first stage of the breeding

process, it would be interesting to create a collection of samples originating from neighboring

localities. However, questions remain regarding the degree of variability within loci affected by

selection for the desired phenotype. Answers could be provided by association studies aiming

to identify these loci.
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based on FPT values. Statistically significant results are highlighted.
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S1 Fig. Run order according to Ln(P)D for the chosen K value. The gray box highlights

removed low quality runs. The number of retained runs is written in brackets together with

the K value and the type of STRUCTURE analysis (“standard” and/or “hierarchical”). Please

note the different scales of the Ln(P)D axes.

(TIF)

S2 Fig. Result of the “hierarchical” type of STRUCTURE analysis for the “RawGeno” and

“Error” datasets. Estimation of the K number according to ΔK for each round of hierarchical

analysis and the number of individuals within the cluster is shown. Red colored clusters repre-

sent clusters which could not be divided any further.

(TIF)

S3 Fig. Graphical results of the spatial autocorrelation analysis in the form of correlograms

for the “RawGeno” and “Error” datasets. The calculated r value (blue line) is shown with

upper (U) and lower (L) bounds of the 95% confidence interval (red lines).

(TIF)
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