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Abstract

Domestication research has largely focused on identification of morphological and genetic

differences between extant populations of crops and their wild relatives. Little attention has

been paid to the potential effects of environment despite substantial known changes in cli-

mate from the time of domestication to modern day. In recent research, the exposure of teo-

sinte (i.e., wild maize) to environments similar to the time of domestication, resulted in a

plastic induction of domesticated phenotypes in teosinte. These results suggest that early

agriculturalists may have selected for genetic mechanisms that cemented domestication

phenotypes initially induced by a plastic response of teosinte to environment, a process

known as genetic assimilation. To better understand this phenomenon and the potential role

of environment in maize domestication, we examined differential gene expression in maize

(Zea mays ssp. mays) and teosinte (Zea mays ssp. parviglumis) between past and present

conditions. We identified a gene set of over 2000 loci showing a change in expression

across environmental conditions in teosinte and invariance in maize. In fact, overall we

observed both greater plasticity in gene expression and more substantial changes in co-

expressionnal networks in teosinte across environments when compared to maize. While

these results suggest genetic assimilation played at least some role in domestication, genes

showing expression patterns consistent with assimilation are not significantly enriched for

previously identified domestication candidates, indicating assimilation did not have a

genome-wide effect.

Introduction

The development of agricultural societies 12,000–9,000 years ago (ka) was one of the most

transformative events in human and ecological history and was made possible by plant and

animal domestication [1, 2]. During domestication, crops evolved a suite of phenotypic traits,

collectively known as the domestication syndrome, that distinguish them from their wild rela-

tives [3]. Modifications due to domestication frequently include, for example, gigantism in the
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harvested plant part, reduced branching, and loss of shattering [3]. Scientists have sought for

centuries to understand the evolution of crops during domestication, making inferences based

on imperfect genetic and archaeological data. Population genetic analysis of changes associated

with domestication are limited by the still sparse availability of ancient DNA, and the archaeo-

botanical record is often chronologically coarse and geographically uneven (e.g, [1, 2]). As a

result of these limitations, our current understanding of the morphological and molecular dif-

ferences between domesticates and their wild ancestors is based almost exclusively on living

representatives of those taxa. Most of what is known about maize domestication, for example,

has been drawn from comparisons between extant cultivated and wild plants. Today, profound

morphological differences in vegetative architecture and inflorescence sexuality distinguish

domesticated maize (Zea mays ssp. mays) and its wild ancestor teosinte (Zea mays ssp. parvi-
glumis Iltis and Doebley; hereafter parviglumis). Modern teosinte has long lateral branches

tipped by tassels (male inflorescences) and secondary branches bearing ears (female inflores-

cences) with a few small seeds covered by hard fruit cases that mature sequentially over a

period of a few months. Maize, in contrast, has a single main stem terminating in a tassel and

few dramatically shortened lateral branches terminated by ears instead of tassels. Maize seeds

are not covered by fruit cases and its cobs mature at about the same time. These differences,

the most dramatic documented for any major crop/ancestor pair, led to a century-long debate

about maize ancestry [4–6].

Because of its importance economically and as a genetic model organism, the genetics

underlying the process of maize domestication has received considerable attention. Early

crossing work by Beadle [4] suggested as few as five genes could be responsible for the major

vegetative architecture and inflorescence sexuality differences between maize and teosinte.

More recently, work mapping quantitative trait loci (QTL) found generally consistent results,

identifying six major QTL [7]. The vegetative architecture and inflorescence sexuality differ-

ences noted above, for example, are to a large degree controlled by the major QTL teosinte

branched1 (tb1) through a change in gene expression occurring early in plant development

[8–10]. Evidence of positive selection during domestication has been found at many more loci

than those identified as QTL, however [11–15], as genome-wide scans find that as much as 5%

of the genome may have played a functional role in domestication [16, 17]. While there are

examples such as tga1 in which selection acted on an amino acid substitution changing the

protein sequence of a gene [12], considerable evidence suggests that much of the evolution

during domestication was regulatory in nature. Not only do genes showing evidence of selec-

tion show directional changes in expression [17], but many of the transcription and co-expres-

sion networks of maize have been substantially modified during domestication [18] due in

part to change in cis regulatory elements [19].

In spite of this large body of work, domestication research has primarily focused on com-

parisons of extant crops and wild relatives and has largely ignored the effects of changing envi-

ronmental conditions during the timeframe of crop evolution. Agricultural beginnings

occurred during a period of profound global environmental change as the Pleistocene was

ending and transitioning to the Holocene interglacial period [1, 20]. It is well documented that

atmospheric CO2 and temperature were considerably lower than at present during both the

Late Pleistocene (c. 14–11ka) and earliest Holocene (c. 11–9ka) [21–25]. Recent experimental

work by Piperno and coauthors [26] demonstrated remarkable phenotypic changes in teosinte

exposed to temperatures and atmospheric CO2 similar to those experienced during the Late

Pleistocene and early Holocene. These changes included maize-like vegetative architecture,

inflorescence sexuality, and seed maturation, together with decreased plant height, biomass,

and seed yield [26]. This work points to the possibility that early cultivators may have worked

with phenotypes considerably different from those of modern teosinte. Furthermore, because
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some of the observed changes under experimental environments appear to have been a result

of phenotypic (developmental) plasticity, the results suggest a possible role for plasticity in

maize domestication [26].

Developmental or phenotypic plasticity refers to the inherent capacity of organisms to rap-

idly produce novel phenotypes through one of several developmental pathways in direct

response to changing environment (e.g., [27–31]). Plasticity is now established as a main-

stream concept in evolution and ecology and is increasingly considered to be fundamental for

understanding the genesis of phenotypes [32–35]. Both early and recent research has also

shown that genetic modifications can cement plastic phenotypes, making them stable and heri-

table [36, 37]. One such mechanism is genetic assimilation (GA), a process that was first inves-

tigated during the early period of the Modern Synthesis [37, 38]. Genetic assimilation involves

a loss of plasticity and fixed expression across environments through reconfiguration of pre-

existing genetic variation after a number of generations of growth in inducing conditions.

Recent studies have demonstrated GA likely occurring in a variety of organisms, from tetra-

pods to Solanum spp. to early Homo, though its frequency and importance are still debated

[39–41].

Here we extend results from Piperno et al. [26] on teosinte responses to environmental

changes, investigating the potential role of plasticity in a transcriptome-wide analysis of differ-

ential gene expression in both teosinte and maize in modern and early Holocene climate con-

ditions. We hypothesized that expression-level changes may have constituted an initial plastic

response to changing environment at the time of domestication that was later canalized

through the process of GA. We find a large number of loci that show environmentally-medi-

ated differential expression in teosinte but not maize, including some with functions consistent

with phenotypic differences observed between different experimental environments and

between maize and teosinte. While population genetic evidence and enrichment analyses sug-

gest these loci are not enriched for genes showing signals of selection during domestication, a

number of loci nonetheless coincide with previously identified selective sweeps, potentially

suggesting a role for GA during maize domestication. Finally, we also find a large number of

genes differentially expressed in teosinte that are not identified as domestication candidates

but that may nevertheless shed important light on plant responses during domestication.

Materials and methods

Growth chamber experiment

Seeds were provided by the USDA North Central Regional Plant Introduction Station located

in Ames, Iowa. We sampled three individuals of four natural populations of parviglumis repre-

sentative of the current geographic and elevational range of the subspecies [42] as well as two

individuals of four maize inbred lines (S1 Table).

We undertook two grow-outs in 2013 and 2014 with teosinte and maize, respectively, dur-

ing their typical growing periods from July to December in two naturally-lit glass environmen-

tal chambers housed at the Gamboa field station at the Smithsonian Tropical Research

Institute in Panama. One chamber was adjusted to Early Holocene (EH) temperature (ca.

23˚C) and CO2 (ca. 260–265 ppmv) levels determined for the low elevation Neotropics includ-

ing Mesoamerica for ca. 10,000–9000 ka from paleoecological research and ice core data [21–

25]. The other chamber served as a modern ambient (MA) control and was kept at ambient

CO2 levels and temperatures, characteristic of parviglumis environments today [42].

The EH chamber average CO2 and temperature levels were 259.7 ppmv and 23.3˚C and

260.8 ppmv and 23.2˚C in 2013 and 2014, respectively. The MA average chamber temperature
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was 25.1˚C in both years, with an average CO2 of 371 and 374 ppmv, respectively. Additional

details on chamber environments can be found in [26].

Plants were germinated from seed in five-gallon pots in natural topsoil from a local orchard

and watered without fertilizer three to four times per week. In 2013 three plants were grown

from each of the four parviglumis accessions in each chamber, followed by two replicates of

each of the four maize inbreds in each chamber in 2014. While this leads to a confounding

effect of year, we are unaware of any reason why the very small chamber differences between

the two years would contribute to the observed gene expression differences between parviglu-

mis and maize (see below). We recorded weekly measurements of plant height, branch length

and number, and inflorescence characteristics. After plants were harvested at maturity they

were air dried and we measured the total vegetative biomass (stems, leaf, sheaths, ear bracts),

node number and plant height (S2 and S3 Tables).

RNAseq experiment

Plants were sampled for gene expression 50 or 60 days after germination by removing the first

visible leaf on the plant and placing it immediately in liquid nitrogen. For the first year, teosin-

tes were collected after 60 days. During the second grow-out, maizes were starting to flower

after 50 days in both conditions and were therefore collected 10 days earlier. Samples were

stored at -80˚C until they were shipped overnight on dry ice to UC Davis and kept at -80˚C

until extraction. One teosinte plant of population 4 (pop4.B.1) didn’t grown in the 400ppm

chamber and was not collected for RNA extraction. Leaf tissue was ground in liquid nitrogen,

and total RNA was isolated with the RNeasy mini Kit (Qiagen) following the manufacturer’s

protocol. RNA quality and concentration were verified using a Bioanalyzer (Agilent RNA

Nano). Total mRNA was extracted twice with Dynabeads oligo(dt)25 (Ambion) from 2μg of

total RNA. We prepared libraries as previously described [43], with minor modifications and

without the strand specificity. Samples were multiplexed and sequenced in two lanes of an Illu-

mina Hiseq 2500 at the UCDavis Genome Center sequencing facility, resulting in 50 bp single-

end reads with an insert size of approximately 300 bases. After demultiplexing, 3.8–20 million

reads were generated for each sample (S4 Table). The raw sequence data has been deposited in

NCBI Sequence Read Archive with the BioProject ID PRJNA391707 (https://www.ncbi.nlm.

nih.gov/bioproject/PRJNA391707).

Low quality bases (base quality < 33) were trimmed using FASTX-Toolkit 0.0.13 (http://

hannonlab.cshl.edu/fastx_toolkit/) and adapters were subsequently removed using fastq-mcf

version 1.04 (https://code.google.com/archive/p/ea-utils/wikis/FastqMcf.wiki). Trimmed

reads were mapped to the AGPv3.22 version of the maize genome using Gmap/Gsnap version

2014-05-15 with command line parameters of -m 10 -i 2 -N 1 -w 10000 -A sam -t 8 -n 3 [44].

Read counting was performed with biocLite GenomicAlignments [45] (S1 File, Maize_read-

counts and Teosinte_readcounts); only reads with mapping quality 25 or higher were included

in subsequent analyses. Differential gene expression was performed with DEseq2 1.10.1 [46]

using a linear model (*genotype + condition) accounting for both environment (EH and

MA) and population of origin. The models were run separately for maize and teosinte. In both

cases, we included multiple plants per population/genotype. Individual plants from each maize

inbred line were treated as biological replicates. Teosinte, however, is an outbred and each

plant was thus included separately but population was used as a covariate. The model is then

constructed on n individuals, p genotype or population levels and 2 environmental levels, with

the effect size of environment being the measured effect. We used a false discovery rate (FDR)

cutoff of 0.05 for determining differentially expressed genes (S1 File, Maize_DE and Teosin-

te_DE). We use intra-chamber variation as experimental error, so the statistical significances
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reported here are over-estimates. To mitigate these effects, we also applied a more stringent

FDR cutoff of 0.01. Our results remained qualitatively identical suggesting that effects of such

pseudo-replication would have to be substantial to impact our general conclusions. We

removed 15 genes (5 from maize, 7 from teosinte, and 3 from both, list available in S1 File)

identified as showing differential expression before and after flowering [47] to account for the

difference of developmental stage between the two subspecies.

Co-expression networks

Co-expression analysis was conducted using the program WGCNA [48]. Raw expression

counts were normalized using the variance stabilizing transformation in DESeq2 [46]. Genes

that were not expressed in both maize and teosinte across both environmental treatments were

filtered from the dataset, leaving 29,611 genes. Co-expression networks were created for maize

and teosinte individually based on expression values in the EH treatment. Pearson correlation

values of expression were first assigned to all pairs of genes and then used to create adjacency

matrices by raising the correlation value to a soft power as determined by the data and unique

to each network (24 and 10, for maize and teosinte, respectively). Topological overlap matrices

were then formed from the adjacency matrices. The adjacency matrix indicates the connection

strength between two genes (edge weights within the network), while the topological overlap

matrix indicates the degree of connectivity between two genes based on their interactions with

other genes in the network as well as with each other. Topological overlap matrices were used

to create dissimilarity measures, which were then used to construct modules based on average

linkage hierarchical clustering and the dynamic tree cut method [49]. Modules with similar

eigengenes were merged using a cut-off of 0.25, meaning modules with an overall similarity of

0.75 were merged. To compare modules between EH and MA environments, a module preser-

vation analysis was performed [50] using EH as the reference and MA as the test for both

maize and teosinte modules. Gene ontologies for each module in the maize and teosinte net-

works were calculated using AgriGo (https://bioinfo.cau.edu.cn/agriGO/). The top hub genes

were identified for each module [51] and visualized within the module using VisANT [52].

Enrichment analyses

We performed Gene ontology (GO) term enrichment analyses in AgriGo (https://bioinfo.cau.

edu.cn/agriGO/), using a customized reference consisting of the genes expressed in leaf tissue

according to our expression data in parviglumis or mays, depending on which subspecies was

used for the enrichment analysis. GO terms of all differentially expressed genes were function-

ally classified into three major GO categories: molecular function (MF), biological process

(BP) and cellular component (CC). Genes without GO terms were removed from the analysis.

We identified significantly enriched GO terms using a Fisher’s exact test and a p-value cut-off

of� 0.05 after applying the Yekutieli FDR correction. To test for enrichment between different

categories of genes, we conducted Monte Carlo re-sampling, comparing the overlap of a par-

ticular category (e.g. teosinte-specific differentially expressed genes) with 10,000 equal-sized

sets of randomly sampled genes expressed in leaf tissue (S1 File).

Additional data sets

We re-analyzed the data of Lemmon et al. [19], following their methods to identify candidate

genes for differential expression between maize and teosinte. For categories included in the

published data (Cis only, Cis + Trans), our reanalysis identified identical gene lists. In addition

to these, we followed their filtering protocol to identify a list of top candidates in Trans only

and Cis x Trans regulated genes. Because these data come from leaves at a different
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developmental stage from ours, we also ran analyses using ear and stem tissue from the same

data to assess the robustness of our conclusions.

We used expression data from Hirsch and coauthors [53] to calculate the coefficient of vari-

ation of expression of 48,136 genes over 503 modern inbred lines of maize to compare them to

our sets of genes. Finally, we included analysis of nucleotide diversity of genes in maize and

teosinte, taken from Hufford et al. [17] and downloaded from https://figshare.com/articles/

Gene_Popgen_Stats_from_Hufford_et_al_2012_Nat_Gen_/746968.

Results

We grew four accessions of teosinte (parviglumis) and four inbred lines of domesticated maize

in controlled environmental chambers simulating temperature and CO2 conditions reflecting

Early Holocene (EH) or Modern Ambient (MA) conditions. The largest difference in average

temperature and average concentration of CO2 within environmental treatments was 0.1˚C

and 3 ppmv respectively (see Methods). Many of the teosinte, particularly in the MA, had not

developed inflorescences or complete branches at the time of harvest, preventing direct com-

parison of inflorescence sexuality. Other phenotypic characteristics we observed were none-

theless consistent with our previous experiments under these conditions [26], with teosinte

plants grown in EH conditions exhibiting smaller stature and fewer axillary nodes—indicating

fewer branches—than their counterparts grown in MA (S2 Table and S1 Fig). Maize grown in

EH conditions was also smaller and less fecund than plants in MA conditions, but in contrast

to teosinte grown in previous experiments [26] we observed no variation in branching, inflo-

rescence sexuality, or cob development, further indicating these traits are invariant in domesti-

cated maize (S3 Table and S1 Fig).

To assess differences in gene expression plasticity between teosinte and maize, we sampled

leaf tissue from 39 plants and extracted and sequenced total mRNA (see Methods). On average

we sampled 10 million reads per individual (S4 Table) and identified a total of 34,341 and

35,390 expressed genes in teosinte and maize, respectively, representing 87–90% of genes in

the reference transcriptome. Analysis of differentially expressed (DE) genes under EH and MA

conditions identified 3,953 and 3,355 DE genes in maize and teosinte at a false discovery rate

(FDR) of 0.05 (Fig 1a; S1 File Maize_DE and Teosinte_DE). Many genes were differentially

expressed in both taxa, and the observed 1,021 shared genes (Fig 1b) is significantly more than

expected under a simple model of independence (p-value <1e-04).

Co-expression analysis (see Methods) identified a total of 35 and 52 gene modules in maize

and teosinte, respectively. Module preservation analysis indicated that gene networks were much

more highly conserved between MA and EH conditions in maize than in teosinte: while only 3%

of modules showed no preservation in maize, over 35% were significantly changed in teosinte,

indicating a much more labile co-expression response of teosinte to environment (Fig 2).

We then investigated the role of selection during domestication in shaping the observed dif-

ferences in expression across environments and between teosinte and maize by taking advan-

tage of a number of published datasets. We first reanalyzed allele-specific expression data from

Lemmon et al. [19] to generate lists of candidate genes with regulatory divergence between

maize and teosinte in leaf tissue (see Methods). We identified sets of genes differentially

expressed in only one of the two taxa; we call these sets maize-specific and teosinte-specific DE

genes. Both maize- and teosinte-specific DE gene sets were enriched for genes showing cis—
but not trans—differences in expression between maize and teosinte (Fig 3). Genes differen-

tially expressed in both maize and teosinte but in opposite directions were also similarly

enriched in cis (p-value 0.029) but not trans (p-value 0.501), while shared DE genes showing

similar direction in maize and teosinte were not enriched in any category.
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We next compared our set of taxon-specific DE genes (maize or teosinte -specific) to those

showing evidence of selection during domestication [17], but found no evidence of enrich-

ment for candidate loci (p-value >0.05 in all cases; Fig 3), and maize genes exhibit similar pat-

terns of lower nucleotide diversity when compared to teosinte across both DE and non-DE

genes (S3 Fig), consistent with overall patterns expected due to the demographic impacts of a

domestication bottleneck [17]. Results were similar when using data from ear or stem tissue as

well, with the exception that teosinte-specific DE genes in our data also became enriched for

trans differences when compared to expression from ear and stem tissues (p-value 0.0098 and

0.0135 for ear and stem, respectively). Finally, we asked whether taxon-specific DE genes show

different patterns of variation in expression among modern maize lines. We find that both

maize- and teosinte- specific genes show reduced variation in expression across a panel of

Fig 1. Differential expression in maize and teosinte under EH and MA conditions. (a.) Categories of

genes are shown in color (maize-specific DE genes in blue, teosinte-specific DE genes in red, shared DE

genes in purple and non DE genes in gray), and point size represents the log mean counts per million in

teosinte. (b.) Venn diagram of the overlap (purple), among DE genes of maize (blue) and teosinte (red) when

exposed to the EH environment.

https://doi.org/10.1371/journal.pone.0184202.g001
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Fig 2. Module preservation in co-expression analysis. WGCNA preservation scores for teosinte (a.) and maize (b.) modules across

early Holocene and modern ambient environmental conditions. Modules with scores below 2 (blue dashed line) have no preservation

across conditions, those between 2 and 10 (green dashed line) are moderately preserved, and those above 10 are highly preserved.

https://doi.org/10.1371/journal.pone.0184202.g002

Fig 3. Overlap with domestication candidate genes. (a) Patterns of expression shown as a proportion of genes differentially expressed between EH

and MA conditions that are also differentially expressed between maize and teosinte. Monte Carlo re-sampling of DE genes in teosinte (b, c) and maize (d,

e) for enrichment in genes showing cis-regulated differential expression between maize and teosinte (b, d) or evidence of selection during domestication

(c, e). Maize and teosinte differential expression data are from Lemmon et al. [19], and selected gene lists are from Hufford et al. [17].

https://doi.org/10.1371/journal.pone.0184202.g003
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more than 500 inbred lines [53], and teosinte-specific DE genes showed a small but statistically

significant decrease in variation beyond that seen in maize-specific genes. (Fig 4).

We conducted GO enrichment analysis of both shared and taxon-specific DE genes (S1

File). DE genes shared between maize and teosinte are enriched in categories involved in pho-

tosynthesis, nitrogen and sugar synthesis, as well as response to stress, starvation or low phos-

phate conditions. Those unique to maize were mostly enriched in categories involved in

photosynthesis, and these genes predominantly showed decreased expression in EH condi-

tions; genes unique to maize also showed enrichment for biosynthesis categories. DE genes

specific to teosinte were enriched for biological processes involving biosynthesis and metabolic

pathways of numerous molecules including small molecules, amines, alcohols, sugars, amino

acids, organic acids, and polyols. Of the few modules with co-expression showing changes in

co-expression patterns across environmental conditions in maize, one module showed enrich-

ment for ontology classes related to membrane-bounded organelles. In contrast, modules

changing co-expression in teosinte were enriched for diversity of ontology classes including

phosphorus metabolism, protein kinase activity, organic and carboxylic acid biosynthesis,

intracellular transport and localization, and amino acid ligase activity.

Discussion

Phenotypic plasticity is a subject of growing importance in evolutionary biology [32–35] and

recent research has shown that gene expression is key to understanding both plastic and

Fig 4. Box plot of the coefficient of variation. Genes not differentially expressed are shown in gray, maize-specific DE genes in

blue, and teosinte-specific DE genes in red. The significance of the Mann-Whitney U test is as shown with **<0.01, ***<0.001.

https://doi.org/10.1371/journal.pone.0184202.g004
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adaptive responses of plants to varying environmental conditions (e.g., [54–56]). Several stud-

ies have shown that selection on segregating genetic variation for environmentally-induced

gene expression can decrease plasticity and result in constitutive expression and even the evo-

lution of novel traits [27, 28, 33]. This process of genetic assimilation has now been detailed in

multiple taxa [39–41] including in response to increased CO2 [57].

In this study we sought to evaluate the role of genetic plasticity in the evolution of maize

during its domestication by growing both maize and its wild ancestor teosinte in environmen-

tal conditions reflecting both modern and ancient climates. Previous experiments had demon-

strated dramatic phenotypic changes in teosinte when grown under ancient conditions, and

our experiment found that nearly 10% of genes expressed in leaves are differentially expressed

when grown in low temperature and CO2 conditions reminiscent of the Early Holocene. A

similar proportion of genes were also differentially expressed in maize, and the majority

showed similar direction of change (Fig 1). Nonetheless, we saw much less change in overall

modules of gene co-expression (Fig 2) and comparatively little change in plant morphology

(S3 Table and S1 Fig).

Gene Ontology terms associated with shared and maize-specific DE genes reveal involve-

ment in photosynthesis and are primarily down-regulated in the EH environment. Combined

with GO-enrichment for stress-related genes across all candidates, these results suggest that

decreases in temperature and CO2 were likely stressful for both maize and teosinte, and we

speculate that the stress associated with ongoing rapid climate change [58] may lead to simi-

larly significant changes in gene expression.

While many DE genes were shared between maize and teosinte, from the perspective of

domestication those showing teosinte-specific expression are of most interest, as such genes

are variable in the wild ancestor but appear canalized in domesticated maize. If genetic assimi-

lation—selection on genetic changes that canalize a plastic response such as gene expression—

played a predominant role genome-wide, we might expect to see the set of teosinte-specific DE

genes enriched for genes previously identified as differentially regulated between maize and

teosinte [19]. While both maize- and teosinte- specific DE genes are enriched for genes show-

ing cis-regulatory expression differences between maize and teosinte, this result is perhaps not

surprising because taxon-specific DE genes were identified as genes with variable expression

in one taxon and not the other. We thus expect a priori that these sets may have different cis-

regulatory elements (and thus different response to experimental treatment) in maize and teo-

sinte. For GA to play a genome-wide role in domestication, we also expect genes showing evi-

dence of canalization in maize (teosinte-specific DE genes) to show population genetic

evidence of selection. Instead, we find no enrichment for genes showing evidence of selection

from genome scans [17] (Fig 3), and find that both maize- and teosinte-specific genes show

decreased nucleotide diversity in maize (S3 Fig), likely the result of genetic drift during the

maize domestication bottleneck. While the existing evidence does not support a genome-wide

impact of genetic assimilation, there are a number of reasons we might not observe such a pat-

tern, including maladaptive plasticity [59], selection on standing genetic variation [60], and

inbreeding during the development of modern maize lines.

Although GA may not have played a role genome-wide, our data hint at the possibility such

a process may have been important for subsets of genes. For example, 83 teosinte-specific DE

genes do show evidence of selection during domestication, and 6 of these have also been previ-

ously identified with a fixed regulatory difference between maize and teosinte (S1 File Teosin-

te_specific_in_domestication.xls). Moreover, a number of the differentially expressed genes we

observed not identified as domestication candidates have previously been linked to morpholog-

ical changes similar to those important for domestication—sometimes paralleling differences

between maize and teosinte—and that were previously observed in our growth chamber
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experiments [26, 61–66]. These genes include various auxins; Brassinosteroids; a TCP transcrip-

tion factor; gibberellin, absiccic acid (ABA), and cytokinin regulators; and genes implied in car-

bon and nitrogen fixation. Phenotypic attributes they may influence include vegetative

architecture, inflorescence sexuality, plant height and biomass [e.g., [26, 61–66]]. A relationship

between sub-optimal conditions and plasticity in teosinte is in fact well known: poor growing

conditions (shade, poor soils, crowding) induce plastic phenotypic response in teosinte that

include suppression of branch elongation during growth [8, 9, 67], resulting in plants with

maize attributes in vegetative and inflorescence traits similar to those seen here and in previous

experiments. This suggests that these and other DE genes identified here may also lead to

increased understanding of the maize domestication process by further informing the molecu-

lar basis of plasticity, phenotypic changes, and adaptation in past environments. Some genes

were DE only in teosinte, suggesting genetic assimilation may have occurred. They include the

following auxin and auxin response genes:SAUR 33 (GRMZM2G460861), auxin efflux carrier

PIN 5a (GRMZM2G025742), AUX_IAA (GRMZM2G057067) and a PAR (GRMZM2G423863).

Also with evidence of assimilation were TCP (TEOSINTE-BRANCHED1/CYCLOIDEA/PCF)

transcription factor 44 (GRMZM2G089361), ZOG 3 (GRMZM2G338465), gibberellin and

ABA regulators GRMZM2G301932 and GGRMZM2G150363, nitrate reductase NADH 1

(GRMZM2G568636) and ferredoxin 1 (GRMZM2G043162).

Conclusion

Our experimental analysis of transcriptome change has identified a large number of genes show-

ing differential expression in maize and teosinte when grown in environments reminiscent of

the Early Holocene, the time period of maize domestication. We find greater changes in teosinte

morphology and gene networks, and more than 2,000 genes showing differential expression

only in teosinte, suggesting substantial loss of plasticity associated with maize domestication. To

our knowledge, this is the first set of transcriptomic data showing evidence of a loss of plasticity

linked to domestication. Though we find little evidence to support a genome-wide role of selec-

tion and genetic assimilation in patterning this loss of plasticity, we nevertheless identify a num-

ber of genes that show evidence of genetic assimilation including some linked to morphological

changes related to domestication. Future studies should expand on the work presented here by

investigating additional environments (including modeled future climates) and providing more

detailed, functional analysis of genes showing environmentally-induced plastic changes that

may play important roles in patterning phenotypic variation in maize and teosinte.
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Ranere Anthony J, and Castanzo Ronald. Late pleistocene and holocene environmental history of the

iguala valley, central balsas watershed of mexico. Proceedings of the National Academy of Sciences,

104(29):11874–11881, 2007. https://doi.org/10.1073/pnas.0703442104

23. Hodell David A, Anselmetti Flavio S, Ariztegui Daniel, Brenner Mark, Curtis Jason H, Gilli Adrian, Grze-

sik Dustin A, Guilderson Thomas J, Müller Andreas D, Bush Mark B, et al. An 85-ka record of climate

change in lowland central america. Quaternary Science Reviews, 27(11):1152–1165, 2008. https://doi.

org/10.1016/j.quascirev.2008.02.008

24. Bush Mark B, Correa-metrio Alexander Y, Hodell David A, Brenner Mark, Anselmetti Flavio S, Ariztegui

Daniel, Mueller Andreas D, Curtis Jason H, Grzesik Dustin A, Burton Catherine, et al. Re-evaluation of

climate change in lowland central america during the last glacial maximum using new sediment cores
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45. Lawrence Michael, Huber Wolfgang, Pagès Hervé, Aboyoun Patrick, Carlson Marc, Gentleman Robert,

Morgan Martin T, and Carey Vincent J. Software for computing and annotating genomic ranges. PLoS

Comput Biol, 9(8):e1003118, 2013. https://doi.org/10.1371/journal.pcbi.1003118 PMID: 23950696

46. Love Michael I, Huber Wolfgang, and Anders Simon. Moderated estimation of fold change and disper-

sion for rna-seq data with deseq2. Genome Biol, 15(12):550, 2014. https://doi.org/10.1186/s13059-

014-0550-8 PMID: 25516281

47. Alter Philipp, Bircheneder Susanne, Zhou Liang-Zi, Schlüter Urte, Gahrtz Manfred, Sonnewald Uwe,
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