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Abstract

Measuring the eye’s mechanical properties in vivo and with minimally invasive techniques

can be the key for individualized solutions to a number of eye pathologies. The development

of such techniques largely relies on a computational modelling of the eyeball and, it optimally

requires the synergic interplay between experimentation and numerical simulation. In Astro-

physics and Geophysics the remote measurement of structural properties of the systems of

their realm is performed on the basis of (helio-)seismic techniques. As a biomechanical sys-

tem, the eyeball possesses normal vibrational modes encompassing rich information about

its structure and mechanical properties. However, the integral analysis of the eyeball vibra-

tional modes has not been performed yet. Here we develop a new finite difference method

to compute both the spheroidal and, specially, the toroidal eigenfrequencies of the human

eye. Using this numerical model, we show that the vibrational eigenfrequencies of the

human eye fall in the interval 100 Hz–10 MHz. We find that compressible vibrational modes

may release a trace on high frequency changes of the intraocular pressure, while incom-

pressible normal modes could be registered analyzing the scattering pattern that the

motions of the vitreous humour leave on the retina. Existing contact lenses with embebed

devices operating at high sampling frequency could be used to register the microfluctuations

of the eyeball shape we obtain. We advance that an inverse problem to obtain the mechani-

cal properties of a given eye (e.g., Young’s modulus, Poisson ratio) measuring its normal

frequencies is doable. These measurements can be done using non-invasive techniques,

opening very interesting perspectives to estimate the mechanical properties of eyes in vivo.

Future research might relate various ocular pathologies with anomalies in measured vibra-

tional frequencies of the eye.
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Introduction

Obtaining the mechanical properties of the human eye is fundamental for the future develop-

ment of artificial materials that can be employed as substitutes for natural tissues [1]. Measur-

ing the eye’s mechanical properties in vivo and with minimally invasive techniques can be the

key for individualized solutions to a number of eye pathologies. The development of such tech-

niques largely relies on a computational modelling of the eyeball [2] and, it optimally requires

the synergic interplay between experimentation and numerical simulation [3].

The eye is a complex organ consisting of several functional and mutually interacting parts

[4]. The most important ones from the mechanical point of view are the cornea, lens, vitreous,

sclera and retina. Each of these elements holds distinctive mechanical properties that are

closely related to their respective anatomic functionality. Changes in the mechanical properties

may entail a number of pathologies or even a loss of functionality [5]. Reciprocally, damage

inflicted to a healthy eye may result in changes in its elastic and mechanical properties [6]. The

mechanical modelling of the human eye is a field that has gained relevance to rationalize the

physiology and pathology of the eye [3]. The field is exponentially developing pace to pace

with our ability of implementing more complex models on modern computers [7]. Our knowl-

edge of the mechanical properties of the eye has basically come through three different ways:

experimentation, in vivomonitoring, or computational modelling. We develop our work in

the later framework.

Measuring the elasticity properties of the different tissues forming an eye is challenging.

Very often, the determination of mechanical properties of the eye results from a mechanical

interaction with its different parts [8–10]. In addition to standard mechanical testing, the cor-

nea has been characterized through high-resolution microscopy techniques [11], as well as

with the Ocular Response Analyzer [12, 13]. Likewise, multiple studies have examined the

overall biomechanical properties of the sclera [14, 15]. Ultrasound biomicroscopy has been

used to measure the scleral thickness [16, 17]. Magnetic Resonance Imaging (MRI) techniques

applied in vivo resulted inaccurate because of the random eye movement of the patients,

though it is possible to use MRI scans to produce 3D models of the corneoscleral shells in

post-mortem patients [18].

Novel non-invasive techniques need to be devised to measure the mechanical properties of

the human eye. Here we show that these properties are related to the normal vibrational

modes of the eyeball, i.e., to the periodic variations of matter inside of the eyeball resulting

from perturbations with respect to its equilibrium state. A germane idea, but restricted to the

corneal biomechanics, has been addressed in other works considering the vibrational proper-

ties of the cornea. Employing the dispersive properties of Lamb waves, Zhang et al. [19] assess

the viscoelastic properties of ex-vivo bobine corneas. The vibration analysis of the cornea has

also been the subject of a handful of very recent publications [20–22]. Kling S. et al. [20], show

simulations of deformation and vibration of the cornea focusing on the impact of a number of

parameters as, e.g., different intraocular pressures and corneal elastic and viscoelastic proper-

ties. These authors built a sophisticated viscoelastic finite element model that predicts the

experimental corneal deformation response to an air-puff for different conditions. Later, Kling

et al. [21] analysed the corneal deformation vibrations in terms of the numerical model applied

to data from optical coherence tomography. Their model predicted response vibrational cor-

neal frequencies in the range 50–510 Hz.

Remarkably, the previous works have focused on the vibrational deformations of the eyeball

shape (spheroidal modes), but not on periodic motions, which do not involve radial displace-

ments of the inner constituents of the eye (toroidal modes), specially the vitreous humor. As we

shall see, toroidal modes also encode valuable information about the biomechanics of the
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eyeball and smaller frequencies than the commonly studied spheroidal modes. We have been

inspired by the extensive use of the remote measurements of normal-mode related physical

quantities in Geophysics and Astrophysics. For instance, the solar interior is routinely scanned

by means of helioseismic techniques, which are based on the measurement of the global reso-

nant oscillations of the Sun [23]. Likewise, employing the principles of asteroseismology, neu-

tron star interiors are proven [24, 25] in an attempt to decipher the equation of state for matter

at nuclear densities. We believe that this treatment opens up a new set of techniques for remote

measuring of the eyes structural properties.

Materials and methods

The oscillations under consideration in our model are free elastic vibrations, which we assume

may arise when applying generic stresses, e.g., on the sclera or the cornea. We tackle the numer-

ical calculation of the vibrational eigenfrequencies and eigenmodes of the human eye under a

number of simplifying assumptions. In an initial approximation to the problem, we model the

eyeball as a spherical, homogeneous and isotropic elastic solid ball with axial symmetry. While

assuming that the eyeball is axially symmetric is very well justified, the assumptions of homoge-

neity and isotropy are certainly not the most accurate possible. However, these assumptions

serve for the primary purpose of reducing the dependence of the constitutive equation only to

two elastic constants or moduli of the eye material: the Young’s modulus E, and the Poisson

ratio σ. In this simplified framework, we will compute, first analytically and afterwards numeri-

cally, the eigenfrequencies of the model attempting to grasp the essential mechanics of an aver-

age human eye. In a second step, we model the eyeball differentiating the corneo-scleral layer

from an assumed isotropic interior (model A below). Finally, a more elaborated eyeball model

in axial symmetry is built and its normal toroidal modes computed (model B below).

Results

As we have mentioned above, we first model the eyeball as a spherically symmetric, homoge-

neous and isotropic elastic solid ball (Fig 1). This simplification allows us to use known

Fig 1. Simplified mechanical model of the eyeball. Left: transversal cut of the human eye with the different structural parts annotated in it

(source: Wikipedia). Right: spherically symmetric, homogeneous and isotropic eyeball model employed in this work.

https://doi.org/10.1371/journal.pone.0183892.g001
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analytical solutions (S1 Appendix) in other physics disciplines (e.g., seismology [26] or gravita-

tional wave physics [27, 28]) to calibrate our numerical code (described in Sect. Numerical

code).

Numerical code

Since we aim to employ non-trivial boundary conditions, we are forced to solve numerically

the eigenvalue problem at hand. We have developed a code that solves the eigenvalue problem

set by the Navier-Cauchy equation discretizing the eyeball sphere on a two-dimensional grid

of nodes in spherical coordinates (0� r� R, 0� θ� π). As a first step, we have assumed the

elastic moduli to be uniform throughout the spatial grid. However, there is no restriction to

implement elastic moduli that depend on the location in the eyeball. This is important because

it enables us to improve the degree of realism of our model for the vibrational modes of the

eye, in particular, by using different elastic moduli for the sclera, the cornea, the lens, and the

vitreous humour.

The normal frequencies of the eyeball can be obtained as an eigenvalue problem (see Eq (6)

of the Section Supporting information). In spherical coordinates, and under the assumption of

axisymmetry, i.e., neglecting the φ-dependence, the displacements can be written as

ui ¼ ðurðr; yÞ; uyðr; yÞ; uφðr; yÞÞ:

Using the Einstein summation convention for repeated indices and the “;j” notation to

express the covariant derivative with respect to the j coordinate (j = {r, θ, ϕ}), the stress tensor

reads

sij ¼ mðui;j þ uj;iÞ þ lul;ldij; ð1Þ

which satisfies the equation

sij;j ¼ r p2ui: ð2Þ

In components this equation can be written as

�
m

r
Dur �

lþ m

r
uj;jr þ m;jður;j þ uj;rÞ þ l;rul;l ¼ p

2ur ð3Þ

�
m

r
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2uφ; ð5Þ

where we have considered that the Lamé constants μ and λ (see S1 Appendix for the relation of

these constants with E and σ) can vary spatially. Because of the assumed axial symmetry, all the

derivatives with respect to φ vanish, and Eq (5) decouples from Eqs (3) and (4), yielding the

following equation for the toroidal modes:
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if zero traction boundary conditions, σrφ = 0, are imposed. The spheroidal modes result from
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Eqs (3) and (4):
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also imposing zero traction boundary conditions, σrr = σrθ = 0 (see below) and making use of

the replacement ul;l =r � u. Eqs (7) and (8) can be cast as an eigenvalue equation, Lu ¼ l
~ u, for

the following vectorial operator and l
~

is a generic eigenvalue of L. In matrix form we have:
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The explicit expression for the zero traction boundary conditions in spherical coordinates

is

srr ¼ ð2mþ lÞ@rur þ
2l
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In both types of modes, we compute in a first step the eigenvalues (vibrational frequencies),

and in a second step the eigenfunctions (normal displacements). For the eigenvalues we simply

compute the zeros of the characteristic polynomial. In practice, working in logarithmic space

is advantageous because it reduces the magnitude of coefficients of the polynomial. Knowing

the family of eigenvalues, we compute the kernel for each one of them. We substitute each

eigenvalue into the corresponding equation, Eq (6) or Eqs (7) and (8), obtaining an elliptic

equation. With this, we subtract the eigenvalue from the diagonal of the matrix produced by

the discretization of the elliptic operator, and proceed further solving the corresponding sys-

tem of equations by direct numerical inversion of the matrix of the system. As the rank of this

matrix cannot be complete, we will obtain the compatible but indeterminate solution as a func-

tion of some of the variables (either one or two variables for the toroidal and the spheroidal

case, respectively).

Finally, we outline the fact that our finite difference method to solve for the eigenfrequen-

cies of the L operator is based on the standard LAPACK package. In future upgrades of our

methodology we will make use of suitably adapted methods from [29, 30]. These newly devel-

oped iterative methods are computationally very efficient and have been even implemented on

GPUs [31]. On a single core of a standard laptop it takes ≲ 5 minutes to compute the spectrum

of eigenvalues of L. Due to the high-degree of parallelism of the method, a complete solution

can be obtained in a matter of few seconds in devices harbouring a standard GPU. This effi-

ciency can be employed for future devices requiring real-time solutions.

Code calibration. We calibrate the code by comparing the frequencies computed with

our numerical code and the corresponding analytic values at a density of ρ = 1 kg m−3, an elas-

tic moduli of E = 2.5 Pa, σ = 0.25 and a radius of the sphere of R = 1m. Note that these values

do not correspond to a typical human eye. They are employed for numerical convenience.

As shown in Fig 2, we get a good agreement in the toroidal (φ−) case, both in the vibrational

patterns and in their corresponding frequencies, demonstrating the ability of the numerical

code to recover the analytic values. We point out that agreement improves with a finer mesh

encompassing the eyeball (in Fig 2 we employ a relatively coarse grid of 100 × 50 points in the

r × φ directions for our finite-difference method). A similar analysis has been done for modes

where the displacements of the material happen only in the r− and θ−directions (spheroidal

modes). The conclusion of both calibration experiments is that our numerical procedure to

compute the eigenfrequencies of the system and their displacements is accurate enough.

Application of the method to a (simplified) typical human eye. The exact eigenfre-

quency values are sensitive to the imposed boundary conditions. We assume that the surface

of the eye (either the sclera or the cornea) is free to oscillate when suitable perturbations are

inflicted to the eyeball. These perturbations can be originated by the muscles acting either on

the outer eyeball surface or on the lens during the accommodation (e.g., contraction of the cili-

ary body due to stimulation of the autonomic nervous system). Here, we consider a set of
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“standard” eye parameters. We adopt R = 0.0125 m, ρ = 1000 kg m−3 for the eyeball typical

radius and average density, respectively. Mean values for the corneal and scleral Poisson

ratio, σ, are in the range 0.42–0.47 [2]. We take σ = 0.49, slightly above the average to account

for the incompressible character of the vitreous humour. As the eigenfrequencies are roughly

proportional to σ−1/2, their predicted values are basically insensitive to this parameter in the

typical ranges measured for constituents of the human eye. There is a large scattering in the

values of the Young’s modulus, E, of different parts of the eye [6]. We employ a typical value

E = 0.2985 MPa. The eigenfrequencies exhibit a weak dependence with the value of the

Young’s modulus,/ E1/2. Since the largest values reported for the Young’s modulus are

Emax’ 20 MPa, at most a factor of a few increase in the computed frequencies is possible.

Hereafter, we will refer to this simplified, spherically symmetric model as model S0.

In Fig 3 we show six different patterns of toroidal vibrational modes at the lowest frequen-

cies in our simplified model of the eye that correspond to the same transversal cut as shown in

Fig 1 (for a similar figure but considering spheroidal modes, see S2 Fig). The different patterns

are identified by a set of two integer numbers n and l that denote the number of nodes the solu-

tion has in the radial and in the θ−angular direction, respectively. Each pair of values (n, l) has

a unique characteristic frequency. The upper left panel of Fig 3 corresponds to matter rotating

(counter-rotating) about the symmetry axis in the northern (southern) hemisphere (see S1 Fig

for a three-dimensional representation of the mode (1, 2)). There is a number of normal mode

frequencies falling in the range * 100 Hz to * 10 MHz (Table 1). Modes with frequencies of

Fig 2. Calibration of the method. Comparison between the analytic (panels with black background) and numerical (white background)

solutions of vibrational patterns. Because of the symmetries, only one quadrant of the full equatorial plane of an spherical body is shown.

Modes of odd and even parities are displayed in the upper and lower panels, respectively. In this case, we are using 100 points in the radial

direction and 50 in the angular one. We can also observe a good agreement in their corresponding frequencies (listed below each panel),

that improves as we increase the resolution.

https://doi.org/10.1371/journal.pone.0183892.g002
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a few hundreds of Hz have periods of oscillation much shorter than other quasi-periodic varia-

tions of the eyeball volume triggered by phasic processes like respiration and pulse.

Application of the method to improved eyeball models. Without abandoning the axial

symmetry of our model, we have increased the degree of realism of our simplified eyeball by

Fig 3. Toroidal vibrational modes. Six different patterns of toroidal vibration at the lowest frequencies in our model S0 of the eye that

correspond to the same transversal cut as shown in Fig 1. Light and dark blue (red and yellow) shades indicated a motion towards (away

from) the reader and normal to the drawn plane. Left panels: eigenfunctions with even parity in l: (n = 1, l = 2) vibrating at 318 Hz, (1, 4) at

648 Hz and (2, 2) at 909 Hz. Right panels: eigenfunctions with odd parity: (1, 3) at 492 Hz, (2, 1) at 1159 Hz and (1, 5) at 797 Hz.

https://doi.org/10.1371/journal.pone.0183892.g003
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incorporating different viscoelastic properties to different constituents of the eye. In this

section we consider two additional models in which the density of all the constituents is

ρ = 1000 kg m−3, unless specified otherwise. In model A we incorporate an spherical shell with

an outer radius R = 0.0125 m and a thickness of 1 mm (Fig 4, left). In model B, holding an

outer radius R = 0.012035 m, we distinguish between the cornea and the sclera and we model

the lens, the lens capsule, the ciliary body, the suspensory ligament and the iris altogether as a

simple cylindrical region located at a distance ACD = 3.6 mm from the cornea (measured

along the symmetry axis; see the gray-shaded region in Fig 4, right). The thickness of this

region is LT = 3.71 mm, its Young’s modulus ELT = 1 MPa, its Poisson ratio σLT = 0.47 and its

density ρLT = 1050 kg m−3. For the corneo-scleral layer of model A, we have chosen an average

value for the Young’s modulus and Poisson ratio of Es,c = 15 MPa and σs,c = 0.42, respectively.

For model B, we keep the same Poisson ratio as in model A (σc = σs = 0.42), but modify the

Young’s modulus and the thickness of the cornea (CCT), and of the sclera (ST). These values

are Ec = 1 MPa and CCT = 0.552 mm for the cornea, and Es = 45 MPa and ST = 1 mm for the

sclera. The thickness values of the cornea and the location of lens with respect to the corneal

center (equivalently, the width of the anterior chamber), its thickness and the axial length have

Table 1. Frequencies of selected normal modes of the simplified human eye.

T S

l l

1 2 3 1 2 3

n 1 734.46 318.71 492.48 n 1 2835.9 5706.5 8569.3

2 1159.0 909.36 1076.1 2 491.41 947.85 1364.7

3 1570.3 1339.9 1514.1 3 339.58 694.99 1130.0

Left: Table containing the frequencies (measured in Hertz) of selected toroidal modes (T) computed with our numerical code for an average human eyeball

(model S0). The set of material parameters employed to obtain these values are R = 0.0125 m, ρ = 1000 kg m−3, E = 0.2985 MPa, and σ = 0.49. Toroidal

modes with n = 0 are forbidden since they require driving external forces (assumed non existing in this model). Right: Same as the left table for spheroidal

modes (S).

https://doi.org/10.1371/journal.pone.0183892.t001

Fig 4. Improved eyeball models. Left: model A, where the spherical shell limiting the eyeball represents

the cornea/sclera of the eye, holding a Young’s modulus much larger than the interior (Es,c = 15 MPa,

Ein = 0.2985 MPa). Right: model B, where we include a simplified model for the structure formed by the lens,

lens capsule, suspensory ligaments and iris (gray shaded region). Also the cornea and the sclera (red

colored) are differentiated.

https://doi.org/10.1371/journal.pone.0183892.g004
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been taken from recent in vivomeasurements performed by our group [32]. The typical values

of the Young’s modulus and Poisson ratio of the sclera and of the cornea have been obtained

from Hugar & Ivanisevic [3]. The medium filling the interior of either models A or B is charac-

terized by a Poisson ratio and Young’s modulus of νin = 0.49 and Ein = 0.2985 MPa,

respectively.

The identification of the mode numbers (n, l) is an involved task in model B, where the

spherical symmetry is lost. This is specially true for the spheroidal modes. Thus, we list in

Table 2 the 10 lowest frequencies of each kind (toroidal or spheroidal) obtained with our

numerical method, without identifying the vibrational numbers (n, l) they correspond to. We

note, however, that the lowest frequencies usually correspond with the lowest allowed values of

(n, l).
We observe that the frequencies reported have become substantially smaller than those of

the spherically symmetric model S0. In both improved models the frequency decrease is fun-

damentally triggered by the presence of a thin layer representative of the cornea/sclera. In

model B, the presence of the lens with a reduced Poisson ratio and Young’s modulus places

and “obstacle” in the inner resonant cavity added to the thicker sclera and cornea of this

model. Both elements reduce effectively the inner cavity radius and, thereby, result in a fre-

quency increase of the normal modes. Noteworthy, the values of the frequencies obtained with

improved models are closer to other preexisting models in the literature [33], fact that we take

as a hint of the robustness of our approach.

Toroidal modes have not been typically considered as relevant in the previous literature,

but we they have eigenfrequencies in a similar range that spheroidal ones. However, toroidal

modes begin at frequencies a factor * 2 larger than those corresponding to spheroidal vibra-

tions in the more realistic models A and B. This is in clear contrast with the situation described

for model S0, where the toroidal eigenfrequencies are typically smaller than the spheroidal

ones.

Discussion

In the following, we discuss first the limitations of our current model (Sect. Model limitations).

Next, we compare our model with some earlier attempts to reconstruct the mechanical

Table 2. Frequencies of selected normal modes of improved eyeball models.

model A model B

Toroidal Spheroidal Toroidal Spheroidal

41 107 193 85

47 144 355 184

52 159 431 267

147 210 452 482

180 225 483 538

211 245 583 626

241 335 610 702

333 379 625 736

Table containing the lowest frequencies (measured in Hertz) of toroidal and spheroidal modes computed with our numerical code for the model A (columns

1 and 2) and for the model B (columns 3 and 4) of the human eyeball. The errors in the calculation of the vibrational frequencies for these two models are

of the order of * 10%–15% (a bit larger than those of model S0). The set of material parameters employed inside of the eyeball to obtain these values are

ρ = 1000 kg m−3, E = 0.2985 MPa, and σ = 0.49, while the outer radius is R = 0.0125 m and R = 0.012035 m for the models A and B, respectively. For the

properties of the surrounding layer see Sec. Application of the method to improved eyeball models.

https://doi.org/10.1371/journal.pone.0183892.t002
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properties of the eyeball from the vibrational properties of the cornea (Sect. Comparison to

previous work). Then, we analyze the prospects to measure the vibrational modes of the eye

with existing technologies that where devised for different purposes, but can be suitably

adapted (Sect. Methods to measure the eigenfrequencies of the eye).

Model limitations

The current notion is that the eyeball constituents are complex anisotropic composites, with

nonlinear elastic and viscoelastic properties and highly heterogeneous [34]. However, a

detailed 3-dimensional description and modeling of such a complex system is hardly possible

nowadays. Thus, we are forced to reduce the complexity by assuming that the eyeball constitu-

ents possess linear, piece-wise isotropic properties in order to formulate a problem with a feasi-

ble solution in terms of material science.

A more accurate modelling of the eye structure than the one presented in the Sect. Materials

and methods requires differentiating (at least) between the eye interior (including the lens and

the aqueous humour) and its elastic boundary (the cornea and the sclera). In our model, this

has been done assigning different elastic properties to different parts of the eye. Indeed, it is

possible to assign different elastic properties on a point-by-point basis, to account for the het-

erogeneity of the various eye constituents. The results of more elaborated models have been

presented in Sec. Application of the method to improved eyeball models. In spite of the added

complexity, the degree of realism of the more sophisticated models is not optimal, but in this

paper we have shown the path for easily improve them. Here, our goal is to outline that the

analysis of the normal modes may provide useful mechanical information of the eyeball. If we

could measure variations in the eyeball structure and if they could be attributed to normal

modes, it would be possible to set an inversion problem [35] to obtain, for instance, the elastic

moduli of the eye. The accuracy of the solutions obtained by the inversion problem depends

on the number of properly identified eigenmodes and on the degree of realism in the model of

the eyeball. As working hypothesis we assume that variations in the intraocular pressure (IOP)

can be used as tracers of the eyeball volumetric changes induced by (spheroidal) normal

modes of the eye. A lot of work has been done to connect the dynamics of the intraocular fluid

by specifically modelling the aqueous humour as a hydrodynamic system where the inflow/

outflow balance of such humour sets its physical properties, including the IOP [36]. The varia-

tions of the intraocular blood volume can be produced by many factors, the foremost being

pulse, respiration, IOP fluctuations, and nervous mechanisms. The arteries of the eye are

thick-walled and relatively inelastic; thus the influence of pulse pressure on intraocular pres-

sure is heavily damped [37]. Contrarily, the venous system is thin-walled and easily collapsible

and hence, its volume can sensitively change, though in a tiny amount compared to the full

eyeball volume [38]. We also point out that other works have attempted to model only the vit-

reous humour as a viscoelastic fluid, considering the vitreous chamber as a sphere, and assum-

ing only the effect of toroidal modes (see [33] and references therein). Different from these

works, we also compute possible radial modes and present a general method that can be

adapted to arbitrary geometries.

Our model needs to be ultimately calibrated with the acquisition of actual data of the eye-

ball. The ability to measure the changes in the eyeball shape resulting from spheroidal normal

modes by mechanical means strongly relies on the maximum amplitude of the deformations

induced. In practice, the amplitude of the modes will depend on the amplitude of the perturba-

tions applied to the eye. As we will show in the next section, devices developed for the continu-

ous monitoring of the IOP variations in glaucoma treatment [39] can be used to measure the

temporal variations of the eyeball volume (and, thus, its normal modes). Since the inner eye
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constituents are nearly incompressible, the spherical elastic outer shell comprised of the sclera

and the cornea must stretch to accommodate their respective volume changes. The volume of

the eyeball may change as a result of the finite compressibility of intraocular tissue (iris, lens,

ciliary body) or due to intraocular muscular contraction. However, these latter effects are sec-

ondary, and it is primarily the distension of the wall of the eyeball by its incompressible con-

tents that governs the IOP [38].

Comparison to previous work

We point out that there are some remarkable efforts along the direction of measuring the

mechanical properties of different types of eyeballs (not exclusively human) employing the

vibrational properties of the eyeball constituents. For instance, employing pulses of ultrasound

radiation at frequencies between 100 and 200 Hz, Zhang et al. [19] have been able to measure

the mechanical properties of ex-vivo bovine corneas. Zhang’s work and, more generally speak-

ing, Lamb wave dispersion ultrasound vibrometry methods [40], stem from a concept similar

to ours: a radiation source induces Lamb waves (propagating inside of the cornea) whose fre-

quencies can be computed numerically from a suitable dispersion relation as an eigenvalue

problem. Certainly, simplifying approximations need to be done in this kind of approaches, in

as much as Lamb waves are solutions for infinitely thin layers, while the cornea and the sclera

have finite thickness. Comparing our work to that of Zhang et al. [19] is not straightforward,

since our model includes not only the cornea but also the (simplified) interior structure of the

eyeball. As expected (due to the larger size of the resonance cavity in which we compute our

models), the solutions to the dispersion relation for Lamb waves propagating in thin layers

mimicking the cornea tend to possess smaller vibrational frequencies than those obtained in

our model.

The finite element viscoelastic model of Kling et al. [21] was verified experimentally in flaps

from bovine corneas and in porcine eyes employing sound excitation in the range 100–110 dB

together with phase-sensitive optical coherence tomography in order to measure the frequency

response function, expected to yield observable vibrations in the range 50–510 Hz. Simulations

showed that corneal vibration in flaps is sensitive to geometrical as well as biomechanical

parameters, whereas in whole globes it is primarily sensitive to corneal biomechanical parame-

ters only. Employing an ultra-high-speed Scheimpflug camera and taylor-made image process-

ing algorithms, Koprowski et al. [41] have recently confirmed the existence of corneal

vibrational models with harmonic frequencies of 54.3 Hz, 131 Hz, 232 Hz, 369 Hz and so on

up to 458 Hz (i.e., values compatible with the ones reported in [21]). In our language, these fre-

quencies correspond to the normal frequencies of radial modes, since they result from the

measurements of corneal displacements with respect to their equilibrium position. Our models

A and B display several frequencies in a range fully compatible with the measurements quoted

by [41], considering that both their data and our eigenfrequencies may be affected by

errors * 10%–20%.

Akca et al. [42] proposed a finite element model that included an inner incompressible

fluid bounded by a viscoelastic material with a shape very similar to that of bovine eyeballs.

These authors identified three eigenfrequencies of radial vibrations of the cornea: 86 Hz (fun-

damental mode with (n, l) = (0, 1)), and 200 Hz and 310 Hz for the harmonic modes (0, 2) and

(0, 3), respectively. The frequency range of obtained in [42] is slightly below the one presented

in our more elaborated human eyeball models. The main reasons for the discrepancy where

the larger radii of the bovine eyeballs (R = 0.0175 m) as well as the smaller values for assumed

the corneal and scleral Young’s moduli (Ec = 37 kPa and, Es = 79 kPa, respectively). We have

computed also a model with parameters as defined in Acka et al. [42]. Among lowest
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frequencies of the radial modes we find 67 ± 10 Hz, 186 ± 24 Hz, 307 ± 45 Hz. Therefore, our

results are also compatible with those of paper [42] within the error intervals at hand.

In analogy to our refined finite differences models A and B, there are a few papers which

consider a finite element eyeball model coupled to an internal fluid [43, 44]. The model of Sal-

imi et al. [44] consists of an spherical shell structure coupled to a an inviscid pressurized fluid

devoid of any mean flow, which is filling it. Salimi S. et al. [44] showed that the frequency

response of their fluid-solid coupled system exhibits an increase in the normal frequencies in

response to the internal pressure growth. A relevant conclusion of Salimi et al. work is that the

interaction between the inner fluid and the surrounding shell becomes important in order to

accurately predict the system dynamics. This is certainly the case also for us, since we observe

that, as the model is sophisticated including different regions with different mechanical prop-

erties, the normal eyeball modes display noticeable changes.

Methods to measure the eigenfrequencies of the eye

Devices currently employed for the continuous measurement of the IOP or suitable upgrades

thereof can be used to measure the eyeball spheroidal normal modes. There are intraocular

sensors that require surgical implantation, e.g., telemetric pressure transducer systems [45],

which have an acquisition rate of * 500 Hz, which may suffice for the purpose of measuring

the lowest frequency spheroidal modes in a human eye. So far, the high-frequency IOP fluctua-

tions have been attributed to measurement noise [45]. Yet, our results suggest the possibility

that they are (partly) produced by the eyeball eigenfrequencies.

Among the least invasive devices to monitor the IOP soft contact lens sensors [46] (CLS)

seem to be promising for the detection of normal spheroidal modes. The CLS measure at rates

of 10 Hz. This acquisition rate is insufficient to detect the volume variations induced by sphe-

roidal modes. Likely, faster measurement rates are technically plausible. However, such ability

is possibly not employed because there was no reason to provide a finer coverage of the IOP

variations so far. Should it be technically viable to improve the data acquisition rate in CLS

based devices, they could be used for the purpose of measuring the eye’s normal mode eigen-

frequencies. Yet another minimally invasive way of measuring spheroidal normal modes is the

pulse Doppler technique, which has been used to track Lamb waves propagating in the cornea

[19]. Recently, Akca et al. [42] have presented an experimental methodology to record the

vibrations of the cornea, and to derive its mechanical properties. The stimuli source was a

speaker (rather than an imposed displacement) with frequencies sweeping almost the same

range as the current study.

The idea of measuring the elastic properties of the human eye taking advantage of its inter-

nal motions has been treated from different perspectives in the literature. The scattering pat-

tern of attenuated laser sources on the retina has allowed measuring the motion of the vitreous

humour [47]. The shear elastic modulus could be determined from these observations [47].

Walton et al. [48] employed ultrasound films of eyes undergoing impulsive rotations and

tracked the speckles present in the vitreous humour. Hence, the same technique can be used to

measure toroidal normal modes, which have not received the same attention so far. The topic

has recently gained momentum since the knowledge of the mechanical properties of the vitre-

ous humour is instrumental for finding materials that can be used as vitreous substitutes [1].

Bonfiglio et al. [1] find resonances between the forcing frequency of their device and the artifi-

cial vitreous. Remarkably, high frequency resonances may result in undesirably large values of

the stress acting on the retina yielding retinal detachments in extreme cases. These resonances

are similar to the toroidal eigenmodes we consider here. The frequencies of some of the reso-

nances are above 100 Hz, in line with our results.
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Toroidal normal modes of the eye are incompressible and, hence, do not leave a trace on

the IOP. However, toroidal normal modes are potentially accessible by alternative devices. The

IOLMaster 700 SSOB has shown an excellent performance [32, 49, 50]. Should they take mea-

surements at high enough rate, SSOBs could be used to identify toroidal normal modes. As the

later modes yield axial displacements about the eyeball axis, they may produce (tiny) variations

of the light propagating in a moving medium [51]. Light rays propagating in a whirling fluid

remain straight. The travel times of rays that propagate with or against the flow differ by a

characteristic number. The light rays differ by a certain phase. Consequently, light waves that

move with or against the medium will show a distinct interference pattern in analogy to the

Aharonov-Bohm effect of electrically charged matter waves [52]. Perhaps it will be possible in

the near future to employ this effect in optical biometers permitting the measurement of inter-

nal displacements of the inner constituents of the eye. The non-invasive character of swept-

source optical biometers (SSOBs) is the utmost advantage over alternative techniques for bio-

metric data acquisition [53]. We foresee that the technical capabilities of SSOBs can be

improved to obtain high frequency data acquisition of the size of distinct eye structures. Then,

they could be used to identify the displacements of the internal constituents of the eye and,

therefore, to try to set an inversion problem to recover their normal mode toroidal

eigenfrequencies.

Pulse and respiration are periodic phenomena. Therefore, they neither affect the mean IOP

nor the eyeball average volume. The typical frequencies of pulse and respiration are below 2

Hz and, thereby, they yield quasi-periodic displacements of the vascular system which can be

distinguished from the computed eyeball eigenfrequencies (typically above 100 Hz). Further-

more, in order to trigger the normal eyeball modes, it is optimal to employ perturbations hav-

ing frequencies as close as possible to the eigenfrequencies. The perturbations induced by

pulse and respiration may fall short for this purpose if the (non-linear) mode coupling is weak.

Micro saccadic motions of the eye can potentially trigger normal modes, since they happen at

frequencies of up to * 60 Hz, typically last 20–200 ms and their rotational peak speeds can be

as large as 1000 deg/sec [54]. Micro saccades follow the saccadic main sequence, suggesting a

common generator for micro saccades and saccades [54]. Micro saccadic motions are triggered

by oscillatory motions of suitable frequencies [55]. The lowest frequencies of the normal

modes of our model are close to the observed micro saccadic frequencies, or even closer to

measured tremors, which consist of very fast (* 90 Hz), extremely small oscillations (about

the diameter of a foveal cone) superimposed on drifts [54]. Employing loudspeakers with suffi-

cient power is also a very promising technique [42] to stimulate the radial normal modes of

the human eyeball.

Conclusion

We have presented a novel way of performing the analysis of the normal modes of an idealized

human eye importing the analytical results developed in a number of areas of Physics, more

precisely in the field of Gravitational Wave Physics. Developing a simplified, spherically sym-

metric eyeball model, for which there exist analytic solutions for the eigenfrequencies, we have

shown that our finite difference scheme is properly calibrated. Without lifting the assumption

of spherical symmetry, we have resized our baseline model to the typical dimensions of human

eyes. Additional refinements have been added to the model like, e.g., an outer crust that mim-

ics the corneo-scleral layer of the eyeball (model A). Finally, a more elaborated, axially sym-

metric model has been developed, where a number of physiological components of the eye are

incorporated in an idealized way (model B). The frequencies obtained for the fundamental

and harmonic eigenmodes display a range of variation ≲ 15%. This small scatter in the
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obtained frequencies, together with the comparison with previously existing work shall be con-

sidered as a hint of the robustness and reliability of our approach.

While spheroidal (compressible) normal modes are broadly employed to characterize the

mechanical properties of different eyeball constituents (specially the cornea), we find that

toroidal (incompressible) normal modes have not been sufficiently deemed in the ocular bio-

mechanics, with the notable exception of the numerical rheological studies of viscous flows in

spherical cavities (e.g., [33]), which are conducted for the development of vitreous substitutes

[1]. One of our goals in this paper has been to highlight the fact that toroidal modes are mea-

surable and encode a valuable information to estimate the mechanical properties of the eyeball.

This information is complementary to that contained in spheroidal modes and has been recog-

nized in diverse fields of Physics (notably in Astrophysics and Geophysics).

Beyond the mechanical characterization of the eyeball components, the normal vibrational

modes of the eye could be involved in physiological processes like, e.g., the accommodation.

Accommodation occurs through changes in the shape and thickness of the crystalline lens.

The thickness and the curvature of the lens increase, causing an increase in the eye’s optical

power. Since it is a muscle-induced activity, accommodation is a highly fluctuant and dynamic

process. These fluctuations are related to the fluctuations in ocular aberrations, and occur with

corresponding frequencies [56–58]. The microfluctuations of accommodation play an impor-

tant role in the variability of the optical quality of the eye. There are two main components of

the accommodation response: a low frequency component (< 0.5 Hz), which corresponds to

the drift in the accommodation response, and a peak at higher frequency, in the 1–2 Hz band

[56, 57]. The vibrational eyeball modes we have considered –having the lowest frequencies–

seem to happen on timescales of a few milliseconds. The exact way in which the normal eyeball

modes are correlated with the accommodation process is beyond the scope of this paper. How-

ever, we anticipate that to tackle such study one would need to improve our current model.

Towards this direction we will conduct our future research.

Supporting information

S1 Appendix.

(PDF)

S1 Fig. Three-dimensional representation of the toroidal mode n = 1 and l = 2. The mode

displayed corresponds to the upper left panel of Fig 3. The arrows indicate the direction of the

motion about the symmetry axis of the system (showed with a black arrow).

(TIFF)

S2 Fig. Spheroidal modes. The number of radial (angular) nodes is annotated by n (l). Left
panels: The eyeball spheroidal mode (0,1), corresponding to a purely radial mode vibrating at

2836 Hz, in three different moments of its oscillatory vibrational pattern encompassing a half

displacement period. We illustrate a typical vibrational period, from maximum expansion (top

left) to maximum compression (bottom left) along the horizontal axis. On the central panel

the displacements everywhere in the eyeball are null. The bottom and top panels correspond to

times of maximum radial displacement in the horizontal direction. The arrows mark the direc-

tion of the displacements. In these left panels it is possible to observe the radial displacement

of the boundaries with respect to the equilibrium state. The maximum displacement of the eye-

ball boundary is * 0.15 mm for the mode (0, 1), but this value is fixed for illustration pur-

poses, since the displacement corresponding to a given normal mode frequency is an

eigenfunction of the Navier-Cauchy operator, thus it possesses an arbitrary normalization.

The quantification of the maximum radial displacements must be done measuring

Estimation of the mechanical properties of the eye through the study of its vibrational modes

PLOS ONE | https://doi.org/10.1371/journal.pone.0183892 September 18, 2017 15 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183892.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183892.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183892.s003
https://doi.org/10.1371/journal.pone.0183892


experimentally the variations of the eyeball shape. Right panels: Snapshots of different vibra-

tional, spheroidal modes when the displacements are maximal. From top to bottom, we display

the modes (n, l) = (0, 2), (1, 1) and (1, 2) oscillating at frequencies 5707 Hz, 491 Hz and

948 Hz, respectively. Black circumferences mark the location of the eyeball boundary in the

relaxed state.

(TIFF)
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29. Adsuara JE, Cordero-Carrión I, Cerdá-Durán P, Aloy MA. Scheduled Relaxation Jacobi method:

Improvements and applications. Journal of Computational Physics. 2016; 321:369–413. https://doi.org/

10.1016/j.jcp.2016.05.053
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41. Koprowski R, Ambrosió R, Reisdorf S. Scheimpflug camera in the quantitative assessment of reproduc-

ibility of high-speed corneal deformation during intraocular pressure measurement. Journal of Biopho-

tonics. 2015; 8(11-12):968–978. https://doi.org/10.1002/jbio.201400137 PMID: 25623926

42. Akca BI, Chang EW, Kling S, Ramier A, Scarcelli G, Marcos S, et al. Observation of sound-induced cor-

neal vibrational modes by optical coherence tomography. Biomed Opt Express. 2015; 6(9):3313–3319.

https://doi.org/10.1364/BOE.6.003313 PMID: 26417503

43. Coquart L, Depeursinge C, Curnier A, Ohayon R. A fluid-structure interaction problem in biomechanics:

Prestressed vibrations of the eye by the finite element method. Journal of Biomechanics. 1992; 25(10):

1105–1118. doi:http://dx.doi.org/10.1016/0021-9290(92)90067-B. PMID: 1400511

44. Salimi S, Simon Park S, Freiheit T. Dynamic Response of Intraocular Pressure and Biomechanical

Effects of the Eye Considering Fluid-Structure Interaction. Journal of Biomechanical Engineering. 2011;

133(9):091009–091009–11. https://doi.org/10.1115/1.4005166 PMID: 22010744

45. Downs JC, Burgoyne CF, Seigfreid WP, Reynaud JF, Strouthidis NG, Sallee V. 24-Hour IOP Telemetry

in the Nonhuman Primate: Implant System Performance and Initial Characterization of IOP at Multiple

Timescales. Investigative Ophthalmology & Visual Science. 2011; 52(10):7365. https://doi.org/10.1167/

iovs.11-7955

46. Leonardi M, Pitchon EM, Bertsch A, Renaud P, Mermoud A. Wireless contact lens sensor for intraocular

pressure monitoring: assessment on enucleated pig eyes. Acta Ophthalmologica. 2009; 87(4):

433–437. https://doi.org/10.1111/j.1755-3768.2008.01404.x PMID: 19016660

47. Zimmerman RL. In vivo measurements of the viscoelasticity of the human vitreous humor. Biophysical

Journal. 1980; 29(3):539–544. doi:http://dx.doi.org/10.1016/S0006-3495(80)85152-6. PMID: 7295871

48. Walton KA, Meyer CH, Harkrider CJ, Cox TA, Toth CA. Age-Related Changes in Vitreous Mobility as

Measured by Video B Scan Ultrasound. Experimental Eye Research. 2002; 74(2):173–180. doi:http://

dx.doi.org/10.1006/exer.2001.1136. PMID: 11950227

Estimation of the mechanical properties of the eye through the study of its vibrational modes

PLOS ONE | https://doi.org/10.1371/journal.pone.0183892 September 18, 2017 18 / 19

https://doi.org/10.1016/j.jcp.2016.05.053
https://doi.org/10.1016/j.jcp.2016.05.053
https://doi.org/10.1016/j.jcp.2016.12.020
https://doi.org/10.1007/s00417-016-3555-z
https://doi.org/10.1007/s00417-016-3555-z
http://www.ncbi.nlm.nih.gov/pubmed/27900479
https://doi.org/10.1017/jfm.2011.263
http://dx.doi.org/10.1016/j.exer.2006.03.015
https://doi.org/10.1134/S001546280705002X
https://doi.org/10.1134/S001546280705002X
https://doi.org/10.1136/bjo.42.6.321
http://www.ncbi.nlm.nih.gov/pubmed/13546562
https://doi.org/10.1007/BF02478410
http://www.ncbi.nlm.nih.gov/pubmed/5867001
https://doi.org/10.1088/0031-9155/56/7/021
http://www.ncbi.nlm.nih.gov/pubmed/21403186
https://doi.org/10.1002/jbio.201400137
http://www.ncbi.nlm.nih.gov/pubmed/25623926
https://doi.org/10.1364/BOE.6.003313
http://www.ncbi.nlm.nih.gov/pubmed/26417503
http://dx.doi.org/10.1016/0021-9290(92)90067-B
http://www.ncbi.nlm.nih.gov/pubmed/1400511
https://doi.org/10.1115/1.4005166
http://www.ncbi.nlm.nih.gov/pubmed/22010744
https://doi.org/10.1167/iovs.11-7955
https://doi.org/10.1167/iovs.11-7955
https://doi.org/10.1111/j.1755-3768.2008.01404.x
http://www.ncbi.nlm.nih.gov/pubmed/19016660
http://dx.doi.org/10.1016/S0006-3495(80)85152-6
http://www.ncbi.nlm.nih.gov/pubmed/7295871
http://dx.doi.org/10.1006/exer.2001.1136
http://dx.doi.org/10.1006/exer.2001.1136
http://www.ncbi.nlm.nih.gov/pubmed/11950227
https://doi.org/10.1371/journal.pone.0183892


49. Kunert KS, Peter M, Blum M, Haigis W, Sekundo W, Schütze J, et al. Repeatability and agreement in

optical biometry of a new swept-source optical coherence tomography–based biometer versus partial

coherence interferometry and optical low-coherence reflectometry. Journal of Cataract & Refractive

Surgery. 2016; 42(1):76–83. doi:http://dx.doi.org/10.1016/j.jcrs.2015.07.039.
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