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Abstract

This study investigated the potential role of sirtuin 1 in Müller glial cells in choroidal neovascu-

larization. In the in vitro study, primary Müller glial cells were cultured and treated with resver-

atrol, a sirtuin 1 activator. Glial fibrillary acidic protein expression and angiogenesis-related

gene expression were examined using quantitative polymerase chain reaction and phagocy-

tosis, as a marker of Müller glial cell function; in addition, a latex bead assay was used to ana-

lyze cell function. For the in vivo study, choroidal neovascularization was induced in C57BL/6

mice via laser photocoagulation, and resveratrol was administered intravitreally. Eyecup

whole mounts were created to measure choroidal neovascularization volumes on day 7.

Immunohistochemical analysis with anti-glial fibrillary acidic protein antibody was used to

detect Müller glial cell activation in eyes with choroidal neovascularization on day 1, 3, 5, and

7 after laser surgery. Resveratrol significantly promoted glial fibrillary acidic protein, anti-

angiogenic factor, pigment epithelium-derived factor, and thrombospondin-1 expression in

the cells as well as the phagocytic activities. Treatment of the choroidal neovascularization

model with resveratrol resulted in early activation of Müller glial cells near choroidal neovas-

cularization sites. Resveratrol-activated cells but not the controls migrated to the top of cho-

roidal neovascularization sites and into the lesions from day 3. Resveratrol reduced the

choroidal neovascularization size relative to controls. In conclusion, sirtuin 1 activation in

Müller glial cells suppressed the development of choroidal neovascularization, and therefore,

might be a therapeutic option.

Introduction

Choroidal neovascularization (CNV) is the pathological growth of abnormal new blood vessels

from the choroid into the sub-retinal space. CNV develops in certain conditions including

age-related macular degeneration (AMD), pathologic myopia, angioid streaks, trauma, and

inflammation [1]. In particular, AMD characterized by CNV is the leading cause of blindness

among the elderly in developed countries [2]. Recently, anti-vascular endothelial growth factor
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(VEGF) drugs have been used for the treatment of CNV [3]. However, some patients show

decreased responses to anti-VEGF drugs [4], and the consequent delay in CNV regression can

lead to serious retinal damage resulting in irreversible and considerable vision loss [5]. The

pathogenesis of CNV and the mechanism of its regression are not fully understood.

Müller glial cells (MGCs) are a specialized type of glia found only in the retina, spanning

from the inner limiting membrane of the vitreous surface to the outer limiting membrane

of the subretinal space [6]. MGCs play critical roles in maintaining retinal homeostasis and

metabolism through the expression of neuroactive signaling molecules, and the phagocytosis

of outer segment discs shed from photoreceptors [6]. Furthermore, MGCs express anti-angio-

genetic factors such as pigment epithelium-derived factor (PEDF) and thrombospondin-1

(TSP-1) under normal conditions [6,7]. Increased expression of glial fibrillary acidic protein

(GFAP), which indicates MGC activation, has been observed in patients with AMD [8] and

murine CNV models [9]. This observation suggests that MGCs contribute to some aspects

of AMD pathogenesis. However, the precise involvement of MGCs in AMD pathogenesis

remains unclear.

It has been reported that Sirtuin 1 (Sirt1), an NAD+-dependent histone deacetylase

(HDAC), regulates cell senescence, DNA damage repair, and apoptosis, and can control lon-

gevity in response to caloric restriction in numerous organisms including yeast, worms, flies,

and possibly mammals [10]. In addition to its function as an HDAC, Nagineni et al. [11]

showed that resveratrol (RSV), a Sirt 1 activator, inhibited hypoxia-induced VEGF secretion in

cultured human retinal pigment epithelial cells (RPE). Furthermore, Zhang et al. [12] showed

that RSV downregulated VEGF receptor 2 phosphorylation in endothelial cells and Nagai et al.

[13] reported that RSV administration prevented the development of laser-induced CNV in

mice. However, the mechanisms by which RSV regulates angiogenesis are not fully

understood.

Thus, to elucidate the mechanisms underlying Sirt1 activation-triggered early CNV regres-

sion, we administered RSV into the vitreous of a laser-induced CNV mice model and investi-

gated the correlation between MGC activation and CNV regression.

Materials and methods

Cell culture

MGCs were isolated from murine pup eyes (post-natal day 4–8) as described previously [14–

16], and were cultured in Dulbecco’s modified Eagle’s medium (DMEM, Sigma-Aldrich,

St. Louis, MO, USA) containing 100 U/mL penicillin, 100 μg/mL streptomycin (Wako Pure

Chemical Industries, Osaka, Japan), and 10% fetal bovine serum (FBS, Biowest, Nuaillé,

France) in a 37˚C humidified atmosphere containing 5% CO2. All experiments were per-

formed using first to third passage cells.

Sirt1 activity measurement

MGCs were seeded in six-wells plates and cultured to 100% confluency. RSV was diluted

DMEM with 0.2% Dimethyl sulfoxide (DMSO, Sigma-Aldrich). And the vehicle was used as

controls in following vitro study. The cells were incubated with or without 140 μM RSV for 12

h, and washed twice with PBS, and the protein was finally extracted. We measured the Sirt1

activity of the lysate using the Sirt1 fluorimetric drug discovery kit (ENZO Life Sciences Inter-

national, Inc., Farmingdale, NY, USA) [17]. Samples were incubated with Sirt1 deacetylase

substrate, 25μM) and NAD+ (500μM) in assay buffer at 37˚C on a shaker for 45 min and then

2mM nicotinamide and developer were added followed by incubation at 37˚C on the shaker
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for 10 min. The fluorescence was read using a plate-reading fluorimeter (excitation and emis-

sion wavelengths: 360 and 450 nm, respectively).

Immunocytochemistry

MGCs were seeded on two-well glass slides (Nunc International, New York, NY, USA) and

cultured to 100% confluency. The cells were then incubated with 140 μM RSV without FBS for

24 h, washed twice with PBS, fixed with 4% PFA, washed again, blocked using 10% normal

goat serum, and incubated with anti-GFAP antibody overnight at 4˚C. After three washes with

PBS, the cells were incubated with fluorophore-conjugated secondary antibody for 1 h in the

dark at 25˚C, washed, and then mounted using mounting medium with 4’,6-diamidino-2-phe-

nylindole (DAPI, Vector Laboratories, Inc., Burlingame, CA, USA). Images were acquired

using a laser scanning confocal microscope. GFAP- and DAPI-stained areas were measured

using the ImageJ software (National Institutes of Health, NIH, Bethesda, MD, USA) [18].

Light cycler real-time polymerase chain reaction (PCR)

MGCs were seeded in six-well plates until they were 100% confluent and then incubated in

FBS-free DMEM overnight, following by incubation with or without 140 μM RSV for 6 h.

Total RNA was then extracted from cultured MGCs using an illustra RNAspin Mini RNA Iso-

lation kit (GE Healthcare, Buckinghamshire, UK). cDNA was synthesized from 1 μg total RNA

using the ReverTra Ace (MMLV reverse transcriptase RNaseH-, TOYOBO, Osaka, Japan)

according to the manufacturer’s instructions. Semi-quantitative polymerase chain reaction

(PCR) was performed using KAPA SYBER FAST qPCR Master Mix (KAPA BIOSYSTEMS,

Boston, MA, USA) using a LightCycler 480 II system (Loche, Mannheim, Germany) to detect

the expression of PEDF, TSP-1. We used the geometric mean values of three housekeeping

genes (β-actin, GAPDH, and Ywhaz) as a normalization factor. The amplification schedule

was as follows: initial denaturation at 95˚C, followed by 40–45 cycles of 95˚C for 30 s, 62˚C

(PEDF, TSP-1, and GAPDH), or 55˚C (β-actin) or 64˚C (Ywhaz) for 1 min, and 72˚C for 30 s.

The following primer sequences were used: PEDF forward, 5’-cacccgacttcagcaagat
tact-3’ and reverse, 5’-tcgaaagcagccctgtgtt-3’ (GenBank accession number:

NC 000077.6) TSP-1 forward, 5’-aacaaaggctgctccagctc-3’ and reverse 5’-ggatg
ctgcctgcagagtg-3’ (GenBank accession number: NC 000068.7), GAPDH forward, 5’-
TGACCACAGTCCATGCCATC-3’ and reverse, 5’-ACTTGGCAGGTTTCTCCAGG-3’ (Gen-

Bank accession number: NC_000072.6), and Ywhaz forward, 5’-cgaggttgctgctggtg
at-3’ and reverse, 5’gtcggctgcatctccttttt-3’ (GenBank accession number:

NC_000081.6). The β-actin primers were commercially purchased (Qiagen, Hilden, Ger-

many). The relative change in mRNA expression was calculated using ΔΔCT values, and

each experiment was performed in triplicate. Levels were normalized to those of β-actin and

reported as fold change compared to the controls.

In vitro phagocytosis assays

MGCs were seeded onto 35-mm dishes (Ibidi GmbH Martinsried, Germany) and cultured to

30% confluence. Then, the cells were incubated with fluorescent latex beads (diameter: 2.0-

μm, 2.5% aqueous suspension, 1:2000, Sigma-Aldrich, St. Louis, MO, USA) with or without

140 μM RSV for 24 h, after which they were prepared and observed as described previously for

the immunocytochemistry. GFAP and bead signal areas were analyzed using the ImageJ

software.
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Animals

All animal study protocols were approved by the Animal Care and Use Committee of the

Tokyo Medical and Dental University (Permit Number: 0150345A, 0160055A, 0160408A, and

0170172A). Experiments were performed using C57BL/6JJcl mice (CLEA Japan, Tokyo,

Japan) in accordance with the Tokyo Medical and Dental University’s Guidelines for the Care

and Use of Animals. The mice were housed under standard conditions of humidity, tempera-

ture, and dark/light cycle. They were fed a laboratory rodent diet and tap water. All treatments

were performed under anesthesia, and all attempts were made to minimize animal suffering.

The humane endpoint criteria were determined to be when the animals exhibited respiratory

disturbance, abnormal behaviors, or difficulty in consuming water and food. During this

experiment, we used totally 64 mice. Among them, eight mice died during the laser coagula-

tion and intravitreous injection because of vagus nerve reflex, and one mouse died the day

after the medical procedures. We observed the animals for 2 h after the procedures and every

day until euthanasia. Finally, 55 mice were euthanized at specified time points for this study.

Laser-induced CNV

CNV was induced in mice using a modified laser-induced CNV method [19,20]. Mice (6-week-

old) were anesthetized using 40 mg/kg pentobarbital (Kyouritu Seiyaku Corporation, Tokyo,

Japan) for all procedures. The pupils were dilated with 0.5% phenylephrine hydrochloride and

0.5% tropicamide (Santen Pharmaceutical Co., Ltd., Tokyo, Japan), and four photocoagulation

lesions were induced per fundus using a diode green laser (150 mW, 0.05 s, 75 μm) between the

retinal vessels in a peripapillary distribution using a slit-lamp delivery system (Ultima 2000SE,

Coherent, Santa Clara, CA, USA) with a handheld coverslip as a contact lens. The formation of

a subretinal bubble during laser treatment confirmed the rupture of Bruch’s membrane.

Intravitreal injection of RSV

Mice were administered 1 μL of 30 μM RSV (Tokyo Chemical Industry Co., LTD, Tokyo,

Japan) diluted in PBS into the right eye (Gibco, Palo Alto, CA) or 1 μL of PBS as control into

the left eye with a 30-gauge needle introduced into the vitreous at 200 μm posterior to the lim-

bus on the same day as the laser surgery. To minimize injection outflow and prevent infection,

ofloxacin (Santen Pharmaceutical Co.) was applied to the injection site and surrounding exter-

nal areas. Caution was exercised to avoid damaging the retina and lens.

Retinal flat mounting

Eyes from laser-induced CNV mice (n = 10) were enucleated on day 7 after laser treatment,

and the cornea, lens, and retina were removed. Dissected eyecups were fixed with 4% parafor-

maldehyde overnight and washed with PBS buffer containing 0.5% Triton-X. After blocking

with 1% bovine serum albumin in PBS/Triton-X for 1 h, the endothelial cell marker fluores-

cein-conjugated isolectin B4 (1:200, Vector Laboratories, Inc., Burlingame, CA, USA) was

added and incubated at 4˚C overnight. The eyecups were washed with PBS/Triton-X and

placed on slides, mounted with Mount-Quick “Aqueous” (Daido Sangyo Co., Ltd., Saitama,

Japan), and imaged using a laser scanning confocal microscope (LSM, model 510; Carl Zeiss,

Oberkochen, Germany).

CNV volume quantification

Z-stack images of CNV retinal flatmounts stained with isolectin B4 were acquired using a laser

scanning confocal microscope with a 10× objective lens. The image stacks were rendered in
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3D using the IMARIS imaging software (Carl Zeiss) and processed to digitally extract the fluo-

rescent lesion volume.

Immunohistochemical analysis of GFAP

Mice were euthanized for immunohistochemical analysis on day 1, 3, 5, and 7 after laser sur-

gery and intravitreal injections (n = 4 per time point). The mouse eyes were enucleated and

fixed with 1% paraformaldehyde for 30 min at 25˚C, after which the cornea and lens were

removed and fixed again with 1% paraformaldehyde for 30 min at 25˚C and washed with PBS.

The eyecups were perfused with 0.1 M phosphate-buffered 10% sucrose for 1 h at 25˚C, and

0.1 M phosphate buffered 20% sucrose overnight at 4˚C, then frozen in optimal cutting tem-

perature (OCT) compound (Sakura Finetek Japan, Tokyo, Japan) using liquid nitrogen. The

frozen blocks were cut into 10-μm sections for immunohistochemical analysis, and were

washed thrice with PBS and blocked with 10% normal goat serum in PBS. The sections were

then incubated with a polyclonal rabbit anti-GFAP primary antibody (DACO Japan, Kyoto,

Japan) (IR524, antigen, GFAP isolated from cow spinal cord) [9] overnight at 4˚C, washed

with PBS, and then incubated with appropriate fluorophore-conjugated secondary antibodies

for 1 h in the dark at 25˚C. After washing three times with PBS, the sections were mounted

with Mount-Quick “Aqueous” (Daido Sangyo Co., Ltd.) and imaged using a laser scanning

confocal microscope.

Statistics

Each experiment was performed at least three times, and all the data were analyzed using the

Student’s t-test. A p-value < 0.05 was considered statistically significant, and the data are

expressed as the mean ± standard error of the mean (SEM) or standard deviation (SD).

Results

Activation of Sirt 1 by RSV activated cultured MGCs

We studied the change of activity of Sirt1 in MGCs treated with RSV. RSV significantly

increased the activity of Sirt1 by up to 1.3-fold comparing with the control (Fig 1A, p< 0.01).

Further, RSV treatment significantly increased the number of GFAP-positive MGCs by up to

2.4-fold relative to that of the control (Fig 1B–1D, p< 0.01).

Activation of Sirt 1 in MGC involved gene expression and functions

related to CNV regression

Next, we focused on the involvement of Sirt 1 in the expression of CNV regression-related

genes and determined whether Sirt1 activation in MGC enhanced anti-angiogenic factors.

RSV treatment increased the gene expression of anti-angiogenic factors, PEDF and TSP-1, by

1.4- and 1.5-fold, respectively (Fig 2A and 2B, p< 0.05).

We next examined the phagocytic activity in activated MGCs by RSV. RSV treatment

increased MGCs phagocytosis of latex beads by 5.0-fold compared to the non-treated control

cells (Fig 3A–3C, p< 0.05).

RSV regulated experimental CNV development

We next examined RSV anti-angiogenic effect in vivo using experimental CNV murine model.

The extent of laser-induced CNV in murine eyes was measured on day 7 after laser application.

In this model, RSV administration (30 μM) significantly suppressed the CNV volume to 40.0%

of control levels (Fig 4A–4C, p< 0.05).
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Fig 1. Resveratrol (RSV) treatment activated cultured Müller glial cells MGCs). (A) The activity of Sirt1 in

MGCs treated with RSV. Sirt1 activity is expressed as arbitrary fluorescence units (AFU). RSV increased the

Sirt1 activity by 1.3-fold relative to control (p < 0.01). (B) The ratio of glial fibrillary acid protein (GFAP)-positive

and 4’,6-diamidino-2-phenylindole (DAPI)-labeled cell nuclear areas (mean ratio ± SD). RSV treatment

significantly increased GFAP-positive MGCs by 2.4-fold relative to control (p < 0.01). (C and D) Representative

images of untreated and RSV-treated MGCs labeled with anti-GFAP antibody (green) and DAPI (blue, ×100).

https://doi.org/10.1371/journal.pone.0183775.g001

Fig 2. Resveratrol (RSV) promoted pigment epithelium-derived factor (PEDF) and thrombospondin-1

(TSP-1) mRNA expression in Müller glial cells (MGCs). (A and B) RSV treatment significantly increased

PEDF and TSP-1 mRNA expression by 1.4 and 1.5-fold, respectively relative to control (p < 0.05).

https://doi.org/10.1371/journal.pone.0183775.g002
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RSV promoted MGC migration to CNV lesions

We studied the correlation of MGC activation and MGCs migration in retina around laser-

induced CNV in murine eyes. On day 1, no GFAP-positive MGCs were observed in both the

control and RSV-treated animals (Fig 5A and 5B). On day 3, GFAP-positive MGCs were

observed in both the control and RSV-treated animals, but the latter showed much higher

quantities in the fields (Fig 5C and 5D). Particularly, GFAP-positive MGCs in RSV-treated

animals had migrated to the surface of CNV lesions missing the RPE layer, and some were

present in the CNV lesions (Fig 5D). On day 5, CNV sizes in the RSV-treated animals were

smaller than those in the controls were, and the retinal GFAP-positive MGC count decreased

relative to that obtained on day 3. However, the control mice showed an increase in the

GFAP-positive MGC count (Fig 5E and 5F). GFAP-positive MGCs were still present in CNV

lesions in the RSV-treated eyes (Fig 5F), but not in the controls (Fig 5E). Finally, on day 7, the

CNV size of the RSV-treated eyes continued to decrease relative to that reported for the con-

trols (Fig 5G and 5H). GFAP-positive MGCs in RSV-treated retinas decreased to the point of

almost disappearing (Fig 5H), whereas they continued to increase in control retinae (Fig 5G).

Similarly, GFAP-positive MGCs were still found inside CNV lesions in RSV-treated eyes (Fig

5H), but not in the controls (Fig 5G).

Discussion

In the present study, we first demonstrated that RSV-activated MGCs showed increased

expression of the antiangiogenic factors, PEDF and TSP-1, as well as the phagocytic ability.

Fig 3. Phagocytic ability of cultured Müller glial cells (MGCs). (A) The ratio of glial fibrillary acid protein (GFAP)-

positive area to bead-signal area (mean ratio ± standard deviation, SD). Resveratrol (RSV) treatment significantly

increased bead phagocytosis by up to 5.0-fold relative to control (p < 0.05). (B and C) MGCs cultured with latex beads (red)

are shown (×100). Representative images of untreated and RSV-treated cells labeled with anti-GFAP antibody (green) and

4’,6-diamidino-2-phenylindole (DAPI, blue).

https://doi.org/10.1371/journal.pone.0183775.g003
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PEDF is well known to reduce migration and promote apoptosis of endothelial cells [21], and

TSP-1 induces apoptosis of endothelial cells and prevents them from responding to a wide

variety of angiogenic stimulators [22]. While MCGs are known to express PEDF and TSP-1

under normal conditions [6], we demonstrated that RSV treatment upregulated PEDF and

TSP-1 expression, and may have anti-CNV properties. Interestingly, a previous study showed

that intravitreal injection of 2-methoxyestradiol in retinopathy in a premature rat model dem-

onstrated positive GFAP expression in MGCs and negative VEGF immunoreaction in retina

[23]. This study indicates that MGCs activation strongly correlated with anti-angiogenic effect

and enhances our results.

We also showed that RSV treatment induced phagocytosis of MGCs. It has been reported

that CNS astrocytes actively phagocytized debris, including dead cells, in an in vitro model of

brain injury [24]. It has also been suggested that phagocytosis protects healthy neurons from

bystander cell death [24]. MGCs have natural phagocytic capabilities for maintaining retinal

homeostasis, and it has been reported that MGCs phagocytize outer-segment discs shed under

normal conditions [6] as well as bacteria and RPE layer debris [25,26]. Therefore, activated

MGCs may phagocytize dead cell debris, neutralizing their toxicity and, thereby, regressing

CNV.

Based on the in vitro results, we examined the animal CNV model to determine whether

RSV administration affected CNV. The result revealed that RSV administration significantly

suppressed CNV volume to 40.0% of control levels.

To the best of our knowledge, this is the first study to demonstrate the anti-angiogenic

properties of RSV in MGCs using a laser-induced murine CNV model. Furthermore, our

Fig 4. Laser-induced choroidal neovascularization (CNV) volume at 7 days post laser application and

intravitreal RSV injection. (A) CNV volume (mean ± standard error of the mean, SEM). RSV administration

(30 μM) significantly suppressed CNV volume relative to control (p < 0.05). (B and C) CNVs from untreated

and RSV-treated animals labeled with isolectin B4 (×100).

https://doi.org/10.1371/journal.pone.0183775.g004
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Fig 5. Glial fibrillary acid protein (GFAP)-positive Müller glial cells (MCGs) in resveratrol (RSV)-treated

choroidal neovascularization (CNV)-induced eyes. Activated MGCs were labeled with anti-GFAP

antibody (×200). (A and B) On day 1, GFAP-positive MGCs were not present. (C and D) On day 3, GFAP-

positive MGCs were present in both RSV-treated and control animals, but cells only migrated to the CNV

lesion surface and into the CNV in treated eyes. (E and F) On day 5, RSV-treated animals presented both

reduced MGC activity and CNV size, whereas control animals showed increases in both. Again, MGCs were

found inside CNV lesions in RSV-treated animals but not controls. (G and H) On day 7, MGC numbers and

CNV size continued to decrease in RSV-treated eyes relative to controls. GFAP-positive MGCs were also

observed in CNV lesions only in the RSV-treated eyes.

https://doi.org/10.1371/journal.pone.0183775.g005
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results strongly indicate that MGCs were associated with CNV development. In previous stud-

ies, RSV has been shown to suppress VEGF expression by inducing oxidative stress in RPE

cells, resulting in an anti-angiogenic effect on CNV [11,12]. Furthermore, it has also been

reported that RSV facilitated macrophage deactivation and prevented the proliferation and

migration of endothelial cells [13,27]. In addition to these previous results, RSV activated

MGCs, which were likely involved in the CNV regression.

We previously reported that differentiated RPE cells expressed high levels of both VEGF

and PEDF, and a critical balance between these two was important to prevent CNV develop-

ment and AMD [28,29]. Recently, anti-VEGF therapy has become a standard treatment for

CNV [30], and while it is useful for stabilizing visual acuity [31] the actual recovery of visual

acuity has proven difficult and non-responsive cases have been reported [4]. Therefore, it is

possible that cells other than RPE are involved in CNV development. MGCs are known to

have critical roles in maintaining retinal structural and functional homeostasis [6]. In contrast,

MGCs have been observed in human AMD-affected retinas [8] and murine laser-induced

CNV lesions [9].

It is interesting to note that the maximum number of activated MGCs was achieved on day

3 by the administration of RSV, but those in the control group still increased on day 7. In addi-

tion, activated MGCs migrated towards the surface of the CNV lesions that lacked the RPE

layer, and RSV-activated MGCs were present inside the CNV lesions. Both of these phenom-

ena were more remarkably pronounced in RSV-treated eyes than in the controls. Thus, RSV

treatment promoted CNV regression by an RSV-induced activation of MGCs. The present

study showed that activated MGCs migrated to the CNV surfaces missing the RPE layer. Previ-

ously, Lassota [32] similarly showed that MGCs formed a plaque on CNV surfaces where the

RPE layer was missing in an animal CNV model, but could not determine the role of this par-

ticular plaque. During central nervous system (CNS) damage, it is known that brain astrocytes

elongate and surround injured areas to restrict the spread of inflammatory cells to healthy tis-

sues [33] These phenomena may be similar to what has been observed with MGCs and CNV

lesions. Based on our findings, RSV treatment promoted the early formation of MGC plaques

on the surfaces of CNV lesions, possibly restricting the spread of inflammatory and endothelial

cell invasion from the CNV lesion, thereby protecting the healthy retina. This quarantine pro-

cess may be key to accelerating CNV regression and maintenance of visual acuity.

In addition, a significant number of activated MGCs were found inside the CNV lesions in

RSV-treated animals, but very few were found in the controls. This phenomenon was con-

firmed in a previous study, but the mechanism underlying its development remains unclear

[9] Generally, cell motility is correlated with f-actin formation in cell bodies [34], and it has

been reported that RSV promotes f-actin formation through deacetylation of the actin-binding

protein cortactin in podocytes [35]. Indeed, RSV is an activator of Sirt 1, which deacetylates

numerous sites of many proteins [36–38]. Therefore, RSV may promote the formation of f-

actin in MGCs, inducing MGC migration. In the present study, RSV clearly promoted MGC

migration into the CNV lesions, but the role of these cells in this location remained unclear.

To clarify this, we investigated MGC expression of anti-angiogenic factors and phagocytic

activity.

Recently, several studies have demonstrated that oral or intraperitoneal administration of

RSV suppressed CNV by approximately 30% and 12%, respectively [13,27,39]. We found that

intravitreal administration of RSV reduced the CNV volume by ~60% relative to the control,

indicating that intravitreal RSV injection was more effective than the previously investigated

routes. This observation is reasonable considering that an intravitreal injection can maintain

high vitreous drug concentrations and presents a direct route to the retina.
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In summary, RSV activated the MGCs, which then migrated to the surface of the CNV and

inside the lesions. Activated MGCs distinguish CNV lesions from the healthy retina, and facili-

tate CNV regression, resulting in decreased retinal damage. MGCs have numerous functions

in the maintenance of retinal homeostasis, and MGC activation may have a critical role in pro-

moting early CNV regression. The present study is the first to focus on the relationship

between RSV and MGCs in CNV treatment, and is the first step to developing a novel therapy

for all patients with CNV. Further investigation is required to develop new treatments for

CNV.
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