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Abstract

This paper focuses on the indirect adaptive tracking control of renewable energy sources in

a grid-connected hybrid power system. The renewable energy systems have low efficiency

and intermittent nature due to unpredictable meteorological conditions. The domestic load

and the conventional charging stations behave in an uncertain manner. To operate the

renewable energy sources efficiently for harvesting maximum power, instantaneous nonlin-

ear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy

indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for

variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-

wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic

(PV) system to extract maximum power and indirect adaptive tracking control scheme for

Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-

connected hybrid power system is developed in Matlab/Simulink. The robustness of the sug-

gested indirect adaptive control paradigms are evaluated through simulation results in a

grid-connected hybrid power system test-bed by comparison with conventional and intelli-

gent control techniques. The simulation results validate the effectiveness of the proposed

control paradigms.

1 Introduction

The global warming and environmental deterioration are considered as a factor of supply and

consumption of energy based on the fossil fuels. The fastest growing electrical energy demand,

continuously diminishing fossil fuel energy sources and pollution crises bring renewed interest

in renewable energy. Renewable energy is clean, sustainable and inexhaustible.

Among numerous renewable energy sources, wind energy conversion system (WECS) and

PV energy conversion system (PVECS) are the fastest growing energy sources. In WECS, the

wind turbine blades are used to harvest the kinetic energy of wind. The kinetic energy is
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converted to electrical power by using an appropriate generator. WECS can be categorized

into fixed-speed generation and variable-speed generation. The variable-speed WECS has sev-

eral advantages as compared to fixed-speed WECS in-terms of operation, efficiency and power

quality [1]. The use of a direct-drive permanent magnet synchronous generator (PMSG) with

a wind turbine, significantly enhances the reliability of the VSWT-PMSG, because, the absence

of magnetizing current in PMSG allows it to operate at high power factor [2]. The PVECS con-

verts the solar energy into electrical energy. The power generation capability of WECS and/or

PVECS is heavily dependent on local weather patterns, i.e., wind speed, irradiance and temper-

ature. To improve the output efficiency of WECS and PVECS, it is crucial to operate WECS

and PVECS near maximum power point (MPP).

For WECS, Optimal torque control (OTC) MPPT strategy is quite popular, as it extracts the

optimum wind energy [3], [4]. In OTC MPPT method, the torque of PMSG at the given wind

speed is amended on the basis of the maximum power reference torque. Although, the OTC

MPPT strategy is simple and fast but the efficiency of this method is low, because, the wind

speed is not measured directly. Therefore, the wind fluctuations cannot be captured substan-

tially and abruptly on the reference signal [5]. Tip speed ratio (TSR) is another commonly

used MPPT technique for WECS. The optimal TSR remains constant irrespective of wind

speed and guarantees that the maximum power is extracted [6]. Although, TSR MPPT scheme

is simple as it continuously and directly measures the wind speed but in reality, measuring the

accurate wind speed becomes challenging and also, increases the cost of the system. In power

signal feedback (PSF) MPPT for WECS, the wind turbine reference optimum power curve is

obtained through experimental results. Then, the data of MPPs versus wind speeds are used

from a lookup table [7]. However, the PSF MPPT scheme is complex to implement. In pertur-

bation and observation (P&O) or hill climbing (HC) MPPT for WECS, the control variable is

perturbed with a small step-size and the subsequent variations are observed in the objective

function till the slope becomes zero [8]. The main disadvantage of P&O or HC MPPT scheme

is that the indistinct difference between the powers results in incorrect decision in defining the

direction for next step. The intelligent MPPT controls for WECS are also reported in the litera-

ture. The intelligent MPPT controls include artificial neural network (ANN) [9], fuzzy logic

[10] and NeuroFuzzy [11]. Though, the neural network has the strong capability of learning

but it needs a tremendous amount of training data and requires a long time to train the net-

work. The fuzzy logic controllers have high convergence speed and acceptance of ill-defined

signals but their design depends upon trial-and-error method. The NeuroFuzzy MPPT is suc-

cessfully implemented to acquire the maximum power from WECS. However, the inherent

shortcoming of the NeuroFuzzy system is that it has long computational time and becomes

trapped in local minima of the search space [12].

There are two main categorizes of MPPT control schemes for PV named as conventional

and soft computing. Conventional MPPT control schemes include P&O, HC and incremental

conductance (IC), whereas, the soft computing MPPT include ANN, fuzzy logic and evolu-

tionary algorithms. The efficiency of the P&O MPPT is improved by subsiding the steady-state

oscillation and reducing the probability of losing its tracking direction [13]. However, a boun-

dary condition is applied to confine the MPP voltage in the range of the MPP locus. The HC

MPPT control scheme is successfully applied for stand-alone parallel PV power generation

[14]. However, the dynamic performance of HC suffers the divergence of MPP. The IC MPPT

control scheme has a fast and accurate response but the perturbation step and marginal error

are computed on the basis of trial and error approach [15]. The ANN based MPPT method is

implemented to spontaneously identify the global MPP based on the preselected number of

power measurements [16]. Although, the results yield the robustness of the proposed MPPT

control scheme but at the cost of long computational time. In [17], two types of fuzzy logic
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controllers are implemented to track the PV MPP. One is an adaptive fuzzy logic controller

and other is the conventional fuzzy logic controller. However, the adaptive fuzzy logic control-

ler still requires fine tuning via trial and error, because, it exhibits the same behavior as that of

the conventional fuzzy logic controller. A wavelet-based NeuroFuzzy control scheme is used to

track the MPP of PV [18], [19]. Wavelets are introduced in the structure of NeuroFuzzy to

improve the performance. The simulation results reveal high efficiency and fast response of

wavelet-based NeuroFuzzy control scheme. The most popular evolutionary algorithms used to

track the MPP of PV are the genetic algorithm (GA) [20], particle swarm optimization (PSO)

[21] and differential evolution (DE) [22]. Although, evolutionary algorithms are the stochastic

methods which are quite efficient to solve a real valued, nonlinear, multi-modal optimization

problems. But the appropriate selection of control parameters, initial values, solution archive

and locality of the search space are still the potential areas of concern.

SOFC is versatile, efficient and alternative energy source which generates electrical power

directly from hydrocarbon fuels at 800–1000˚C. The limitation of SOFC is that it has dynamic

load following issue. In the case of large power variations, the hydrogen starvation occurs

owing to the slow fuel supply which results in voltage drop, anode oxidation, and catalyst cor-

rosion. In literature, the load following issue of SOFC is addressed by using two different con-

trol strategies. In one control strategy, the input hydrogen which is directly proportional to

the SOFC stack current is controlled to resolve the load following issue [23]. In the other con-

trol strategy, the SOFC terminal voltage is maintained at a constant value to get the swift

response of SOFC [24]. To address the load following issue of SOFC, different conventional

and advanced control strategies are available. A feedforward controller is designed to resolve

the fuel starvation problem but the system is not very efficient due to the weaknesses of feed-

forward controller, i.e., sensitive to external disturbances and the occurrence of steady state

error [25]. In [26], a multi-loop feedforward/feedback control scheme is presented. Although,

the plant is well stable under a tight linear region of operation but the overall system becomes

complex and complicated. A master control PID feedback approach is adopted for load follow-

ing but large load variations need more effective control scheme [27]. Model predictive control

(MPC) is a predictive model and receding horizon optimization based feedback control sys-

tem. This is an attractive approach for SOFC, because, a wide-range constraints of input/out-

put variables of a nonlinear system are directly handled [28]. However, MPC is complex and

computationally slow to get a reliable and accurate first-principles prediction model for a

large-scale nonlinear system. Likewise, the advanced control methods are also used for the

SOFC system which includes ANN predictive control [29] and fuzzy logic predictive control

[30]. The effectiveness and stability of ANN predictive control and fuzzy logic predictive con-

trol is satisfactory. However, the resulting controllers are too convoluted and increase the cost

of the system for hardware implementation.

The hybrid power system (HPS) is an emerging power generation scheme, because, the

integration of renewable energy sources along with the storage systems improve the efficiency

and energy supply, and its environmental and economic sustainability. A PV and SOFC along

with electrolyzer based HPS is developed for supplying the electricity to residential load [31].

However, the stated HPS has small scale application. The dynamic operation and control of

PV, wind and SOFC based HPS is presented [32]. A proficient power sharing method for all

energy sources is also presented. However, the system is unable to store the surplus power pro-

duced by renewable energy sources. The dynamic performance of a stand-alone wind-solar-

battery based HPS is investigated [33]. However, the HPS is not connected to the utility grid.

A stand-alone PV, fuel cell and ultra-capacitor based HPS for the residential load is presented

in [34]. The sizing and designing of PV, fuel cell and ultra-capacitor are also addressed to

enhance the performance of the HPS. But the application of stated HPS is stand-alone. The
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dynamic modeling and control of a grid-connected wind–PV–battery based HPS is designed

with versatile power transfer [35].The HPS is stable and has the dispatch-ability to provide the

power to the grid. However, a small scale application of HPS is presented. The solar, wind and

diesel engine based stand-alone HPS is used to meet the load [36]. However, the quality of

power is not addressed. A novel operation and control strategy for a stand-alone HPS with bat-

tery storage is presented [37]. Different wind and load conditions are investigated. The opti-

mum power from wind is extracted using machine side converter. A boost converter is used to

control fuel cell and a buck converter is used to control electrolyzer. The stated HPS prevents

the blackouts. However, the stand alone application of HPS is offered. A PV-FC-WES based

grid-integrated HPS is used to meet the load [38]. The P&O algorithm is used to extract the

MPP from PV. A pitch angle controller is used to extract the MPP from wind turbine. How-

ever, the load power is still unmanageable, therefore, local power shedding is used. The sto-

chastic energy management is applied for a PV power based smart home with plug-in electric

vehicle (PEV) to minimize the consumer’s energy charges [39]. By using the stochastic dyna-

mic programming (SDP), home demand as well as the PEV charging requirements are satis-

fied. The modeling of PEV energy storage is reported for the first time. However, only a single

home is considered. A PV array, battery storage system and the utility grid are used to provide

the power to a building’s electrical loads [40]. The PV and battery are coupled to a DC bus. A

DC/AC inverter connects the DC bus to AC loads and with the utility grid. A nonlinear pre-

dictive energy management strategy is used for optimal power flow. The energy management

strategy uses real-time forecasted load, weather conditions and electricity cost. However, wind

turbine and SOFC with appropriate models need to integrate in the system.

To address all the afore mentioned hitches, an efficient Chebyshev wavelet embedded Neu-

roFuzzy indirect adaptive MPPT control scheme for VSWT-PMSG, an efficient Hermite wave-

let embedded NeuroFuzzy indirect adaptive MPPT control scheme for PV system and an

effective Hermite wavelet incorporated NeuroFuzzy indirect adaptive control scheme for

SOFC system integrated into a grid-connected HPS are proposed. In order to supply uninter-

rupted and consistent power to the load, a supervisory control policy which consists of nine

different modes of operation is also presented. In the stated HPS, tracking the MPP for

VSWT-PMSG system, tracking the MPP of PV system and getting the swift response of SOFC

are quite difficult, because, this system is highly characterized by nonlinearity. The nonlinear-

ity arises due to the erratic load, variable wind speed, dynamic solar radiation and inconsistent

temperature. This work is actually an extension of the work presented in [12], [18], [19]. The

rest of the paper is organized into five main sections. Section 2 presents the problem formula-

tion. Section 3 presents the mathematical modeling for VSWT-PMSG, PV and SOFC system.

Section 4 gives the details of operation strategy and supervisory control. Simulation results are

discussed in section 5. Section 6 concludes the outcomes of this research work.

2 Problem formulation

The nonlinear MIMO hybrid power system with renewable energy sources is shown in Fig 1.

The auto-regression NeuroFuzzy model of the nonlinear dynamic HPS can be described as:

ŷNF� WTðkÞ

ŷNF� PVðkÞ

ŷNF� SOFCðkÞ

2

6
6
4

3

7
7
5 ¼

fNF� WTðOðkÞÞ 0 0

0 fNF� PVðOðkÞÞ 0

0 0 fNF� SOFCðOðkÞÞ

2

6
6
4

3

7
7
5 ð1Þ

Where Ω(k) = y(k-1), . . ., y(k-n), u(k), u(k-1), . . ., u(k-m). ŷNF-WT(k) gives predictive output

at time step k for a SISO VSWT system. ŷNF-PV(k) gives predictive output at time step k for a
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SISO PV system. ŷNF-SOFC(k) gives predictive output at time step k for a SISO SOFC system.

The nonlinear dynamic models for VSWT system, PV system and SOFC system is captured

online if:

lim
t!1

XIde ¼ lim
t!1

yNF� WTðkÞ � ŷNF� WTðkÞ

yNF� PVðkÞ � ŷNF� PVðkÞ

yNF� SOFCðkÞ � ŷNF� SOFCðkÞ

2

6
6
4

3

7
7
5) εIde ð2Þ

Where εIde is the identification error and εIde ¼

ε1� Ide

ε2� Ide

ε3� Ide

2

6
6
4

3

7
7
5 is a vector of small constant finite

values. The hybrid power system is stable if:

lim
t!1

XCont ¼ lim
t!1

yNF� WTðkÞ � yNF� WT� ref ðkÞ

yNF� PVðkÞ � yNF� PV� ref ðkÞ

yNF� SOFCðkÞ � yNF� SOFC� ref ðkÞ

2

6
6
4

3

7
7
5) εCont ð3Þ

Fig 1. Hybrid power system.

https://doi.org/10.1371/journal.pone.0183750.g001
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Where εCont is the controller error and εCont ¼

ε1� Cont

ε2� Cont

ε3� Cont

2

6
6
4

3

7
7
5 is a vector of small constant finite

values.

s.t. (general hybrid power system constraints)

Battery) 20% < SOCBat < 90%f

SC) 20% < SOCSC < 90%f

mTurbine) fDVtrm ¼ DVref

CS)
20% < SOCBSS < 90%

20% < SOCPHEVi < 90% 8 i ¼ 1; � � � ; 5:

8
<

:

Load)

THDV < 5%; THDI < 5%;

� 0:8% < f < þ0:8%

� 5% < VRMS < þ5%

8
>>>>><

>>>>>:

Grid stability)

DPDC� bus ¼ 0

DPAC� bus ¼ 0

DQAC� bus ¼ 0

8
>>>>><

>>>>>:

Main inverter) fDVInv ¼ DVGrid

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

The μTurbine, battery storage system, super capacitor and the charging station are inter-

faced to either DC bus or AC bus via PID-PWM based converters. The DC and AC buses are

connected through the main inverter which are controlled by a PID-hysteresis based PWM

technique. All these devices are operated by the supervisory control system. They are made to

follow their respective reference power signals computed by the supervisory control system. In

a guaranteed stable HPS, the change in all the system variables (states) diminishes asymptoti-

cally as the time goes to infinity. For the safe and stable operation of the HPS, it is extremely

important to supply quality and reliable power to the load. It will also facilitate the smooth and

uninterrupted bidirectional flow of power between the grid and HPS.

2.1. VSWT-PMSG MPPT subsystem adaptive control design

For the wind-turbine subsystem control strategy design, the objective is to acquire the MPP of

the wind-turbine subsystem through the indirect adaptive Chebyshev wavelet based Neuro-

Fuzzy algorithm. The unknown subsystem model, fNF-WT(Ω(K)) is identified online as defined

in (1) and depicted in Fig 2.

The nonlinear subsystem dynamic model, fNF-WT(Ω(K)) for VSWT-PMSG is identified by

using the objective function

# XWT� Ide ¼
1

2
½INF� WTðkÞ � Î NF� WTðkÞ�

2
ð4Þ
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s.t. (VSWT-PMSG subsystem model constraints)

PwindðkÞ ¼

0 ðWT � stallÞ if Vwind < Vci or Vwind > Vco

ZgearsZgenNWTCp l; bð Þ
rAs
2
V3

wind if Vci<Vwind<VR

ZgearsZgenNWTPR if VR < Vwind < Vco

ð5Þ

8
>>><

>>>:

Where Vwind is the wind speed, Vci is the cut-in wind speed, Vco is the cut-out wind speed, VR
is the reference wind speed, ηgears is the gearbox efficiency, ηgen is the generator efficiency,

NWT is the capacity factor, PR is the rated power, AS is the swept area, ρ is the air density, Cp is

the power coefficient. Cp is the function of TSR λ and the blade pitch angle β. Based on

XWT-Ide, the parameters, ξij�{mij, σij, wij} of the Chebyshev wavelet based NeuroFuzzy model,

fNF-WT(Ω(K)) are optimized adaptively. Where mij, σij and wij are the mean, variance and

weight of the Gaussian membership function for ith input, jth rule. Where i = 1, . . ., n and

i = 1, . . ., m. The update equations for all parameters are:

mijðkþ 1Þ ¼ mijðkÞ þ aWTeI
bi � Î NF� WTðkÞXn

i¼1
mi

( )

mi
xi � mij

s2
ij

( )" #

ð6Þ

Fig 2. VSWT-PMSG subsystem closed-loop model.

https://doi.org/10.1371/journal.pone.0183750.g002
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sijðkþ 1Þ ¼ sijðkÞ þ aWTeI
bi � Î NF� WTðkÞXn

i¼1
mi

( )

mi
xi � mij

s3
ij

( )" #

ð7Þ

wijðkþ 1Þ ¼ wijðkÞ þ aWTeI
miXn

i¼1
mi

( )

UnmðxiÞ

" #

ð8Þ

Where αWT is the learning rate and eI = INF-WT(k)-Î NF-WT(k) is the identification error.

mi ¼
Yn

i¼1

exp
� 1

2

xi � mij

sij

" #2 !

, xi is the ith input, βi = wij×Ynm(xi) and Ynm(xi) is the Cheby-

shev wavelet which is defined on the interval [0 1] as follows:

UnmðxiÞ ¼
2k=2Gmð2

kxi � 2nþ 1Þ;
n � 1

2k� 1
� xi �

n
2k� 1

0; Otherwise
ð9Þ

8
<

:

Where n = 1, 2, . . ., 2k-1 which is the translation parameter and m = 0, 1, . . ., M-1 is the order

of the polynomial.

Gm ¼

1=
ffiffiffi
p
p

; m ¼ 0
ffiffiffiffiffiffiffi
2=p

q
~Gm; m > 0

ð10Þ

8
<

:

Where ~Gm are Chebyshev polynomials and can be calculated as:

~G0 ¼ 1; ~G1 ¼ xi and ~Gmþ1 ¼ 2xi ~Gm �
~Gm� 1 ð11Þ

The cost function for the controller is:

# XWT� Cont ¼
1

2
½INF� WTðkÞ � INF� WT� ref ðkÞ�

2
ð12Þ

The control law uWT(k) is:

uWTðkÞ ¼

Xn

i¼1

mijbi

Xn

i¼1

mi

¼

Xn

i¼1

Yn

i¼1

exp
� 1

2

xi � mij

sij

" #2 !" #

� ½wij � UnmðxiÞ�

 !

Xn

i¼1

Yn

i¼1

exp
� 1

2

xi � mij

sij

" #2 !" # ð13Þ

The generalized update equation for control law uWT(k) is given as:

wijðkþ 1Þ ¼ wijðkÞ þ ZWT
@℧WTðkÞ
@wijðkÞ

þ ZWTDecðkþ 1Þ ð14Þ

The ec = INF-WT(k)-INF-WT-ref(k) is used to optimize the parameters χij�{κij, ϑij, νij} of the

controller. Where Δec(k + 1) = ec(k)−ec(k−1), ηWT is the learning rate, κij, ϑij and νij are the

mean, variance and weight of the Gaussian membership function for ith input, jth rule. The

term ℧WT(k) can be calculated as:

℧WTðkÞ ¼
1

2
½e2

c ðkÞ þ ZWTu
2

WTðkÞ� ð15Þ
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Where
@℧WT ðkÞ
@wijðkÞ

can be simplified as:

@℧WTðkÞ
@wijðkÞ

¼ ecðkÞ
@ Î NF� WTðkÞ
@uWTðkÞ

� ZWTuWTðkÞ
� �

@uWTðkÞ
@wijðkÞ

ð16Þ

The term
@ Î NF� WT ðkÞ
@uWT ðkÞ

can be calculated as:

@ Î NF� WTðkÞ
@uWTðkÞ

¼

Xn

i¼1

mi �
uWT ðkÞ� mij

s2
ij

� �

ðbi � Î NF� WTðkÞÞ þ 2
ffiffi
2

p

p
f8ci

11
þ ci

12
ð128uWTðkÞ � 0:5Þg

� �

Xn

i¼1

mi

ð17Þ

Where ci
11

and ci
12

are wavelet coefficients for ith input. The MPPT of VSWT-PMSG nonlinear

subsystem is guaranteed by the successful convergence of the variables given below through

the implementation of the proposed adaptive control algorithm.

lim
t!1

Î NF� WTðkÞ ! INF� WTðkÞ

INF� WTðkÞ ! INF� WT� ref ðkÞ

TeðkÞ ! TmðkÞ

TmðkÞ ! Tref ðkÞ

8
>>>>><

>>>>>:

Where Te is the electrical torque, Tm is the mechanical torque and Tref is the reference torque

for VSWT-PMSG. The proposed intelligent adaptive control law, uWT will operate the subsys-

tem via AC/DC/DC/DC converter to generate maximum power based on the available wind

speed. It ensures the maximum power acquired for a safe wind speed profile (between cut-in

and cut-out speeds).

2.2. PV MPPT subsystem adaptive control design

The objective of the photovoltaic subsystem control strategy is to track the maximum operat-

ing point through the indirect adaptive Hermite wavelet based NeuroFuzzy algorithm. The

unknown subsystem model, fNF-PV(Ω(K)) is identified online as given in (1) and depicted in

Fig 3.

The nonlinear subsystem dynamic model, fNF-PV(Ω(K)) for PV system is identified by using

the objective function

# XPV� Ide ¼
1

2
½sðkÞ � ŝðkÞ�2 ð18Þ

s.t. (PV subsystem model constraints)

PPV � Ppeak
VPV � Voc
IPV � Isc
φPV � φmax
TPV � Tmax

8
>>>>>>>><

>>>>>>>>:

Where Ppeak is the peak power, Voc is the open circuit voltage, Isc is the short circuit current,

φmax is the maximum solar irradiance and Tmax is the maximum temperature. They are speci-

fied under standard test conditions (STC). When the change of PV power with respect to the
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operating voltage is zero, then the MPP is achieved as follows:

sjMPP ¼
@Ppv
@Vpv

jMPP ¼
Ipv
Vpv
þ
@Ipv
@Vpv

" #

MPP

¼ 0 ð19Þ

Where s is the slope of PV power with respect to the operating voltage. At MPP, the dynamic

input conductance of the subsystem model is equal to the negative of the input static conduc-

tance. The change in duty cycle also alters the impedance seen at the input of a DC/DC boost

converter. For boost converter, the load impedance (output impedance) is always greater than

the input impedance. Based on XPV-Ide, the parameters, zij�{ƛij,γij,ϖij} of the Hermite wavelet

based NeuroFuzzy model, fNF-PV(Ω(K)) are optimized adaptively. The Hermite wavelet ψa,b(xi)

is defined on the interval [0, 1] as follows:

ca;bðxiÞ ¼
2c=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a!2a
ffiffiffi
p
p

r

Hbð2
cxi � a

_
Þ;

a_ � 1

2c
� xi �

a_ � 1

2c

0; Otherwise
ð20Þ

8
><

>:

Fig 3. PV subsystem model.

https://doi.org/10.1371/journal.pone.0183750.g003
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Where xi is the ith input, c = 1, 2, . . ., cn is the level of resolution, a = 1, 2, . . ., 2c-1, â = 2a-1 is

the translation parameter, and b = 1, 2, . . ., B-1 is the order of the polynomial, B>0. Where Hb

is orthogonal pertaining to the weight function as:

Z 1

� 1

e� x2HbHa ¼
0; b 6¼ a

a!2a
ffiffiffi
p
p

; b ¼ a
ð21Þ

(

The Hermite polynomial Hb of order b is defined on the interval [-1,1] and is given as

H0 ¼ 1; H1 ¼ 2xi and Hbþ1 ¼ 2xiHb � 2bHb� 1 ð22Þ

The update equations for all parameters are:

ƛijðkþ 1Þ ¼ ƛijðkÞ þ aPVeI� PV
�b i � ŝðkÞXn

i¼1
�m i

( )

�mi

xi � ƛij
g2
ij

( )" #

ð23Þ

gijðkþ 1Þ ¼ gijðkÞ þ aPVeI� PV
�bi � ŝðkÞXn

i¼1
�mi

( )

�m i

xi � ƛij
g3
ij

( )" #

ð24Þ

$ijðkþ 1Þ ¼ $ijðkÞ þ aPVeI� PV
�miXn

i¼1
�mi

( )

cabðxiÞ

" #

ð25Þ

Where αPV is the learning rate and eI� PV ¼ sðkÞ � ŝðkÞ is the identification error. ƛij, γij and ϖij
are the mean, variance and weight of Gaussian membership function for ith input, jth rule, i.e.,

�mi ¼
Yn

i¼1

exp
� 1

2

xi � ƛij
g@ij

" #2 !

and �bi ¼ $ij � cabðxiÞ.

The cost function for the controller is:

# XPV� Cont ¼
1

2
½sðkÞ � rðkÞ�2 ð26Þ

The control law upv(k) is:

uPVðkÞ ¼

Xn

i¼1

�mij
�bi

Xn

i¼1

�mi

¼

Xn

i¼1

Yn

i¼1

exp
� 1

2

xi � ƛij
g@ij

" #2 !" #

� ½$ij � cabðxiÞ�

 !

Xn

i¼1

Yn

i¼1

exp
� 1

2

xi � ƛij
g@ij

" #2 !" # ð27Þ

The ec-PV = s(k)-r(k) is used to optimize the parameters ℵij�{}ij, ϛij, τij} of control law upv(k).
The generalized update equation is given as follows:

@ijðkþ 1Þ ¼ @ijðkÞ þ ZPV
@℧PVðkÞ
@@ijðkÞ

þ ZPVDec� PVðkþ 1Þ ð28Þ

Where Δec-PV(k+1) = Δec-PV(k)- Δec-PV(k-1), ηPV is the learning rate, }ij, ϛij, and τij are the
mean, variance and weight of the Gaussian membership function for ith input, jth rule. The

term ℧PV is calculated as:

℧PVðkÞ ¼
1

2
½e2

c� PVðkÞ þ ZPVu
2

PVðkÞ� ð29Þ
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Where
@℧PV ðkÞ
@@ijðkÞ

can be simplified using the following equation:

@℧PVðkÞ
@@ijðkÞ

¼ ec� PVðkÞ
@ ŝðkÞ
@uPVðkÞ

� ZPVuPVðkÞ
� �

@uPVðkÞ
@@ijðkÞ

ð30Þ

The term
@ŝðkÞ
@uPV ðkÞ

can be calculated as follows:

@ ŝðkÞ
@uPVðkÞ

¼

Xn

i¼1

�mi �
upv � ℏij

g2
ij

� �

ð�b i � ŝðkÞÞ þ 2
ffiffi
2

p

p
f8qi

11
þ qi

12
ð128uPVðkÞ � LÞg

� �

Xn

i¼1

�mi

ð31Þ

Where qi
11

and qi
12

are Hermite wavelet coefficients.

L ¼ 32; 0 � uPVðkÞ � 1=2

L ¼ 48; 1=2 � uPVðkÞ � 1

)

ð32Þ

The MPPT of PV subsystem is accomplished by the successful convergence of the variables

given below through the implementation of the proposed adaptive control algorithm.

lim
t!1

ŝðkÞ ! sðkÞ

sðkÞ ! 0

VPVðkÞ ! VPV� MPPðkÞ

PPVðkÞ ! PPV� MPPðkÞ

8
>>>>><

>>>>>:

The proposed intelligent adaptive control law, uPV will operate the subsystem via DC/DC

converter to extract maximum power according to the irradiance and temperature. The maxi-

mum power extraction is guaranteed under the unpredictable climatic conditions.

2.3 SOFC adaptive control problem

The SOFCs have sluggish dynamic response as compared to the dynamic responses of the

power conditioner and the load. The SOFC incapability to alter its electrical output, i.e., cur-

rent as swiftly as the electrical load variation has significant consequences on the overall HPS.

Therefore, the dynamic response of SOFC has substantial importance. For the SOFC swift

response, the quantity of input hydrogen flow rate must be controlled. The input hydrogen

flow rate is proportional to the SOFC stack current. Therefore, the optimal flow rate of input

hydrogen is achieved by controlling the SOFC stack current. The relationship for the SOFC

stack current is given by:

min
H2
¼

2‘

Huti
2

� �

ISOFC ) ISOFC ¼
Huti

2

2‘

� �

min
H2

ð33Þ

WhereHuti
2

is the optimal hydrogen utilization, andmin
H2

is the molar flow of input hydrogen.

Huti
2

has a typical range of 80–90%. For optimal hydrogen utilization, the SOFC current lies

within the following limits:

0:8min
H2

2‘
¼ ISOFC� min � ISOFC� ref � ISOFC� max ¼

0:9min
H2

2‘
ð34Þ

Where ‘ is the constant that gives the amount of hydrogen reacting in the SOFC, and 0:8min
H2

and 0:9min
H2

are the minimum and maximum limits of molar flow of hydrogen, respectively.
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ISOFC-min ISOFC-ref and ISOFC-max are the minimum reference and maximum SOFC currents,

respectively. The SOFC power demand is converted into the current as follows:

ISOFC� ref ¼
PSOFC� ref
VSOFC

ð35Þ

The unknown subsystem model, fNF-SOFC(Ω(K)) is identified online as defined in (1). The

SOFC- electrolyzer subsystem along with hydrogen storage tank is depicted by Fig 4. The non-

linear subsystem dynamic model, fNF-SOFC(Ω(K)) for SOFC is identified by using the objective

function

# XSOFC� Ide ¼
1

2
½INF� SOFCðkÞ � Î NF� SOFCðkÞ�

2
ð36Þ

s.t.

1. (SOFC subsystem model constraints)

Fuel flow ¼ contant

Fuel utilization ¼ contant

Fuel starvation ffi 0

PSOFCðkÞ � PPeakðkÞ

8
>>>>><

>>>>>:

2. (Electrolyzer constraints)

fVElect � VDC� bus

Based on the function, XSOFC-Ide, minimization, the parameters, zij�{ƛij,γij,ϖij} of the Her-

mite- wavelet based NeuroFuzzy model, fNF-SOFC(Ω(K)) are optimized adaptively using the

update Eqs (23–25).

The SOFC nonlinear subsystem convergence is guaranteed if the following variables con-

verge successfully using the proposed adaptive control algorithm.

lim
t!1

Î NF� SOFCðkÞ ! INF� SOFCðkÞ

INF� SOFCðkÞ ! INF� SOFC� ref ðkÞ

H2ðkÞ ! H2� ref ðkÞ

8
>><

>>:

The proposed intelligent adaptive control law, uSOFC(k) will utilize the subsystem via DC/

DC converter to deliver hydrogen swiftly and consequently the output current, INF-SOFC(k).

The control law uSOFC(k) is:

uSOFCðkÞ ¼

Xn

i¼1

�m ij
�bi

Xn

i¼1

�mi

¼

Xn

i¼1

Yn

i¼1

exp
� 1

2

xi � ƛij
g@ij

" #2 !" #

� ½$ij � cabðxiÞ�

 !

Xn

i¼1

Yn

i¼1

exp
� 1

2

xi � ƛij
g@ij

" #2 !" # ð37Þ
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3 Mathematical modeling

3.1 Variable Speed Wind Energy Conversion System (VS-WECS)

modeling

3.1.1 Wind turbine model for maximum power extraction. The aero dynamic power Pa

caught by the wind turbine is:

Pa ¼ 0:5rR2CpðlÞV
3

wind ð38Þ

Where, Vco> Vwind > Vci. λ is the ratio of the tip speed of the turbine blades to the wind speed

is l ¼
Ror
Vwind

.

Fig 4. SOFC-Electrolyzer subsystem model.

https://doi.org/10.1371/journal.pone.0183750.g004
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The rotor power (aerodynamic power) is also defined by:

Pa ¼ orTa ð39Þ

The aerodynamic torque Ta is:

Ta ¼
1

2
prR3CqðlÞV

2

wind ð40Þ

The Ta drives the wind turbine at the ωr (speed). For a specific wind speed, the output

power is proportional to the rotor speed, i.e., Pa = kωr
2. Where k ¼ 0:5rACp R

l

� �3
and the opti-

mum aerodynamic rotor power is captured by controlling the rotor speed ωr. For a certain

wind speed, the optimum power is:

Pa;opt ¼ kopto
3

r ð41Þ

Where kopt ¼ 0:5rACp;opt R
lopt

� �3

.

The optimum power acquisition from the wind refers to acquiring the necessary power

under fluctuating wind speed condition.

3.2 Photovoltaic Energy Conversion System (PVECS) modeling

3.2.1 Modeling of photovoltaic subsystem. A photovoltaic cell converts photon energy

directly into electrical energy in the form of direct current which means that a photovoltaic

device model must be based on the electrical characteristics. The average photovoltaic array

model consists of two controlled current sources Ipv-1 and Ipv-2. The current source Ipv-1 is con-

trolled by IL.

IL ¼
s
sref
ðIL� ref þ aiscðTcell� K � Tref � KÞÞ ð42Þ

The controlled current source Ipv-2 depends upon IL2.

IL2 ¼ Id þ IRsh ð43Þ

Id ¼ I0½expðvd � vTÞ � 1� ð44Þ

vT ¼ vTref
Tcell� K

,

Tref � K

0

@

1

A ð45Þ

I0 ¼ I0� ref
Tcell� K=Tref � K

� �3

exp Egref =K1Tref � K
� �

� E� g=K1Tcell� K
� �� �

ð46Þ

Eg ¼ Egref ð1þ dEgdTðTcell� K � Tref � KÞÞ ð47Þ

IRsh ¼
vd

RshNser=Npar
� �

s
s� ref

ð48Þ

Where s = irradiance, Id = diode current, vd = diode voltage, I0 = diode saturation current, vT =

temperature voltage =
kTcell� K
qnINcellNser

, Tcell-K = cell temperature, k = Boltzman constant = 1.3806×10−23
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Jk−1, q = electron constant = 1.6022×10−19 C, nI = diode identity factor, Ncell = no. of series con-

nected cells per module, Nser = no. of series connected modules per string, Npar = no. of parallel

connected modules per string. The output voltage of the PV array VPV is given as:

VPV ¼ vd � Rs� arrayIPV ð49Þ

Where vd is the voltage across Rsh and Rs� array ¼ Rs
Nser
Npar

. The output power of the PV array at the

PV terminals is given as:

PPV ¼ VPVIPV ð50Þ

Solid Oxide Fuel Cell Energy Conversion System (SOFCECS) modeling

3.3.1 Modeling of SOFC subsystem. The SOFC dynamic model is shown in Fig 5. The

molar flow of hydrogen H2 through the valve is proportional to its partial pressure, and is

given as:

qH2

pH2

¼
k
ffiffiffiffiffiffiffiffimH2

p ¼ K H2 ð51Þ

Where k is the anode valve constant,mH2
is the molecular mass of hydrogen, qH2

is the

molar flow of hydrogen, pH2
is the partial pressure of hydrogen and K_H2 is the valve molar

constant of hydrogen. The molar flow of hydrogen that reacts is calculated as:

qrH2
¼
N0ISOFC

2F
¼ 2KrISOFC ð52Þ

Where N0 is the number of series cells in the stack, F is the Faraday’s constant, Kr is the con-

stant and ISOFC is the stack current. The partial pressure of hydrogen P_H2 yields the following

expression:

p H2 ¼

1
�

K H2

1þ tH2
s
ðqinH2
� 2KrISOFCÞ ð53Þ

Where,

tH2
¼

vanode
K H2 � RT

ð54Þ

The vanode represents the volume of the anode, R is the universal gas constant and T is the

absolute temperature. A similar operation is made to calculate the partial pressures of oxygen

and water. The Nernst’s equation used to calculate the stack output voltage is represented as:

VNernst ¼ E0 þ
RT
2F

ln
p H2 � p O

1=2

2

p H2O

( )

ð55Þ

Where E0 is the voltage associated with the reaction free energy, p_O2 and p_H2O are the par-

tial pressures of oxygen and water. The output voltage of SOFC is given as:

VSOFC ¼ VNernst � VA � VO � VC ð56Þ

where VSOFC is the SOFC output voltage, VNernst is the Nernst potential, VA is the activation

polarization, V0 is the ohmic polarization, and VC is the concentration polarization.
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4. Operation strategy and supervisory control

4.1. General description of the operation strategy

The prime obligation of the supervisory control is to ensure continuous and reliable power

supply to the load. The stated HPS has two types of dynamic loads, one is residential load and

other is charging station load. The total load is the accumulative of both, i.e., load = residential

load + charging station load. There are nine different modes of operation and the supervisory

control switches between these modes depending upon the operation strategy. These operation

modes are determined by the energy balance between the total generation and the total load.

The Modes 1–5 deal with the deficient power, i.e., generation is less than the load, whereas,

Modes 6–9 deal with the excess power, i.e., generation is greater than the load.

4.2. Supervisory control policy

The following control actions take place in every mode of operation.

Mode 1: If PD ref � PRen & SOCBat � 20%)
PRen ¼ PWT� max þ PPV� max
PBat ¼ PBat� d

(

Where PD_ref = PLoad = Presidential + PCS = IL × VL, SOCBat is the state-of-charge of battery

and PBat-d represents the battery in discharge mode. This mode of operation is characterized

by both generation subsystems, i.e., WT and PV set to operate at their maximum energy con-

version points but the load is not met by the maximum power of WT and PV. The battery is in

discharge mode to meet the load. During this mode, only renewable energy sources and bat-

tery system deliver the power to the load.

Mode 2: If PD ref � PRen & SOCBat � 20% & SOCSC � 20%)

PRen ¼ PWT� max þ PPV� max
PBat ¼ PBat� d
PSC ¼ PSC� d

8
><

>:

Where SOCSC is the state-of-charge of SC. In this mode of operation, WT and PV subsys-

tems deliver their maximum power but the load still requires the power. The battery is in dis-

charge mode which means the battery is delivering power to the load. The remaining deficient

power is delivered by SC. The SOFC and MT are kept OFF and also, there is no need to take

Fig 5. SOFC system dynamic model.

https://doi.org/10.1371/journal.pone.0183750.g005
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the power from the utility grid, because, the load is met by power taken from renewable

sources and storage system.

Mode 3: If PD ref � PRen & SOCBat � 20% & SOCSC � 20%)

PRen ¼ PWT� max þ PPV� max
PBat ¼ PBat� d
PSC ¼ PSC� d
PSOFC ¼ PSOFC� r

8
>>>><

>>>>:

Where PSOFC is the SOFC power. During this mode of operation, the load is met by the

cumulative power taken from WT, PV, battery, SC and SOFC. The battery and SC both are in

discharge mode but the load requires more power. The SOFC is set to track a power reference.

This reference corresponds to the power required to satisfy the total power demand.

Mode 4: If PD ref � PRen & SOCBat � 20% & SOCSC � 20%)

PRen ¼ PWT� max þ PPV� max
PBat ¼ PBat� d
PSC ¼ PSC� d
PSOFC ¼ PSOFC� r
PGrid ¼ PGrid� r

8
>>>>>>><

>>>>>>>:

Where PGrid represents the grid power. In this mode, WT, PV, battery, SC and SOFC

deliver the power to the load but the load requires more power which is given by the utility

grid.

Mode 5: If PD ref � PRen & SOCBat � 20% & SOCSC � 20%)

PRen ¼ PWT� max þ PPV� max
PBat ¼ PBat� d
PSC ¼ PSC� d
PSOFC ¼ PSOFC� r
PGrid ¼ 0

PMT ¼ PMT� r

8
>>>>>>>>>><

>>>>>>>>>>:

Where PMT represents the micro-turbine power. In this mode of operation, the utility grid

is unavailable due to peak demand hours. The WT and PV subsystem deliver their maximum

powers to the load. The battery and SC both are in the discharge mode, SOFC also delivers the

power to the load. The MT supplies the remaining deficient power to the load.

Mode 6: If PD ref � PRen & SOCBat � 20%)

PExss ¼ PD� ref � PRen
PBat ¼ PBat� d
PElect ¼ PExss

8
><

>:

Where PElect represents the electrolyzer power. In this mode of operation, there is some

excess power PExss in the system. This excess power is utilized by electrolyzer. The battery

remains in the discharge mode.

Mode 7: If PD ref � PRen & SOCBat � 20% & SOCSC � 90%)

PBat ¼ PBat� d
PSC� c ¼ PExss
PElect ¼ PExss � PSC� c

8
><

>:

Where PSC-r represents the SC is in charge mode. During this mode, the renewable energy

sources generate more power than load. The battery is in discharge mode but the SOC of SC is

less than 90%, so the excess power is utilized to charge SC and then by the electrolyzer.

Mode 8: If PD ref � PRen & SOCBat � 20% & SOCSC � 90%)

PBat ¼ PBat� d
PSC� c ¼ PExss
PGrid� r ¼ PExss � PSC� c
PElect ¼ PExss � PSC� c � PGrid� r

8
>>>><

>>>>:
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Where PGrid is the electrolyzer power. In this mode, the WT and PV generate more power

than load. The SC is in charge mode. The excess power after charging the SC is given to the

utility grid. There is still some excess power which is utilized by electrolyzer to produce hydro-

gen for SOFC.

Mode 9: If PD ref � PRen & SOCSC � 90%)

PBat ¼ 0

PSC� c ¼ PExss
PGrid� r ¼ PExss � PSC� c
PElect ¼ PExss � PSC� c � PGrid� r

8
>>>><

>>>>:

In this mode of operation, the battery is disconnected, i.e., neither it will charge nor dis-

charge. The generation is greater than load. The SC is in charge mode. The excess power is

given to utility and then to the electrolyzer.

5 Results and discussion

The performance of the stated HPS and proposed controllers is evaluated in MATLAB/Simu-

link R2015a. In an 11 kV grid-connected HPS, wind generation of 100 kW, PV of 260 kW,

SOFC of 200 kW, electrolyzer of 150 kW, and MT of 200 kVA along with backup sources (200

Ah battery and 165 F Super-Capacitor) are modeled for the accumulative dynamic residential

and charging station load. Defense Housing Authority (DHA), Islamabad, Pakistan, is taken as

a case study. The hourly basis wind speed (m/s), irradiance (W/m2) and ambient temperature

(˚C) levels are recorded by the Pakistan Meteorological Department (PMD). The stated HPS

with suggested controllers is tested for the 24-hrs period of 22nd June 2015. In this study, a

Chebyshev wavelet incorporated NeuroFuzzy indirect adaptive controller (CWNFC) is used to

extract the maximum power from WT subsystem. A Hermite wavelet embedded NeuroFuzzy

indirect adaptive controller (HWNFC) is used to acquire the maximum power from PV sub-

system. A Hermite wavelet incorporated NeuroFuzzy indirect adaptive controller (HWNFC)

is used to get the swift response from SOFC subsystem. To evaluate the performance of

CWNFC, an adaptive indirect NeuroFuzzy Takagi-Sugeno-Kang controller (ITSKC), an adap-

tive direct NeuroFuzzy TSK controller (TSKC) and a hysteresis based PI controller (Hyst-PI)

are also used to extract the MPP from WT subsystem. For PV subsystem, the performance of

HWNFC is compared with ITSKC, TSKC and incremental conductance based PI controller

(InCond-PI). The swift response from SOFC subsystem with HWNFC is also compared with

ITSKC, TSKC and conventional PI controller.

The MPP current of the WT subsystem is shown in Fig 6 (A). The variable speed wind-tur-

bine is used. The base wind speed is taken as 12 m/s, whereas, wind speed varies between 11

and 14 m/s as shown in Fig 6 (A). For t = 0–4 hrs, wind speed is 14 m/s. During this time

period, the current of WT subsystem also increases to 256.4 A. From 4–8 hrs, wind speed

drops to 11 m/s and WT current also starts decreasing and reaches 220A at t = 8 hrs. From

8–12 hrs, wind speed again increases to 12 m/s and keeps increasing to 14 m/s till t = 16 hrs.

The WT current also changes according to the wind speed, i.e., starts increasing from 8–12 hrs

and reaches 226 A at t = 12 hrs and keeps increasing to 249.5 A at t = 16 hrs. In next time inter-

val, i.e., t = 16–20 hrs, again wind speed decreases from 14 m/s to 11 m/s and the WT current

also starts decreasing and reaches to 242.8 A at t = 18.53 hrs. In 20–24 hrs, a small change in

wind speed, i.e., from 11 m/s to 12 m/s also alters the WT current accordingly. As the WT

dynamics cannot change abruptly with the wind speed, therefore, the effect of the change in

current is slow. The CWNF, ITSKC, TSKC and Hyst-PI all extract the power from WT. The

power extraction using CWNFC is more precise, because, the percentage error using CWNFC

is 3.2%, ITSKC is 6.4%, TSKC is 12.4% and Hyst-PI is 42%. The WT MPPT errors with
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CWNF, ITSKC, TSKC and Hyst-PI are shown in Fig 6 (B). The CWNFC has the minimum

error as compared to ITSKC, TSKC and Hyst-PI.

The WT subsystem has two types of torques, one is Tm produced by wind-turbine and the

other is Te produced by PMSG. The variation in wind speed alters the Tm of wind-turbine.

The Te of PMSG changes according to the Tm of wind-turbine. Fig 7 (A) shows the change in

Te with respect to Tm. So, Tm becomes the reference for Te. Fig 7 (B) shows the change in Tm

according to reference torque. All the four controllers, i.e., CWNFC, ITSKC, TSKC and Hyst-

PI capture both the torques but the CWNFC acquires the torques with the minimum steady

error.

In order to evaluate the performance of all four controllers, various performance indexes,

i.e., Integral Time-weighted Absolute Error (ITAE), Integral Absolute Error (IAE), Integral

Squared Error (ISE) and Integral Time-weighted Squared Error (ITSE) are computed. These

performance indexes are computed using eWT(t) = PWT-ref(t)-PWT(t) for CWNFC, ITSKC,

TSKC and Hyst-PI. The CWNFC indexes have the least and flattest profile as shown in Fig 8.

The CWNFC can track with a more stable output WT power as compared to other controllers.

The output power of the PV subsystem depends upon the ambient temperature and irradi-

ance level which are shown in Fig 9. For t = 0–6 hrs, when the sun power is not available, the

ambient temperature also decreases and reaches 27˚C at t = 6 hrs. During 5.5–12 hrs, the irra-

diance level keeps increasing and reaches to 1058 W/m2. After t = 12 hrs, the irradiance level

starts decreasing and become zero at t = 19 hrs. The ambient temperature reaches a maximum

value of 41˚C at t = 15 hrs, but after 15 hrs, the temperature starts decreasing again.

The maximum powers extracted by PV subsystem using HWNFC, ITSKC, TSKC and

InCond-PI are shown Fig 10 (A). The HWNFC extracts the PV subsystem output power with

steady-state error = 0.4 kW, % overshoot = 0 and % undershoot = -2. The ITSKC extracts the

PV subsystem output power with steady-state error = 20.03 kW, % overshoot = 6 and % under-

shoot = -13. The TSKC extracts the PV subsystem output power with steady-state error = 105

kW, % overshoot = 61 and % undershoot = -92. The InCond-PI extracts the PV subsystem out-

put power with steady-state error = 135 kW, % overshoot = 2 and % undershoot = -8. The

HWNFC has minimum steady-state error, % overshoot and % undershoot as shown in Fig 10

(B). HWNFC has lowest values of all the indexes.

Fig 6. WT (a) MPP currents and wind speed (b) MPPT errors with all four controllers. Ref. is designated as red, CWNFC as blue, ITSKC as black,

TSKC Magenta and Hyst-PI as green.

https://doi.org/10.1371/journal.pone.0183750.g006
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The performance indexes ITAE, IAE, ISE and ITSE are also computed for PV subsystem.

These indexes are computed using ePV(t) = PPV-ref(t)-PPV(t) for HWNFC, ITSKC, TSKC and

InCond-PI as shown in Fig 11. The HWNFC has lowest values of all the indexes.

The power drawn from the SOFC depends upon the molar flow of input hydrogen. The

molar flow of input hydrogen is controlled to get the swift response of SOFC. The HWNFC,

ITSKC, TSKC and PI are used to get the swift response from SOFC. In the case of load varia-

tions, after a short transient period, the HWNFC quickly achieves the stable condition com-

pared to the other controllers as shown in Fig 12 (A). The ITSKC, TSKC and PI take time and

fluctuate more for load variations. The HWNFC has steady-state error = 410 Watts, % over-

shoot = 0 and % undershoot = -7. The ITSK has steady-state error = 16400 Watts, % over-

shoot = 21 and % undershoot = -12. The TSK has steady-state error = 49880 Watts, %

overshoot = 368 and % undershoot = -4. The PI has steady-state error = 61890 Watts, % over-

shoot = 12.75 and % undershoot = 0. The HWNFC provides a better control than ITSKC,

TSKC and PI as shown in Fig 12 (B).

The performance indexes ITAE, IAE, ISE and ITSE are computed for SOFC. These indexes

are computed using eSOFC(t) = PSOFC-ref(t)-PSOFC(t) for HWNFC, ITSKC, TSKC and PI. The

HWNFC indexes have least and flattest profile as shown in Fig 13. The HWNFC has a more

stable output SOFC power as compared to other controllers.

The reference power is shown in Fig 14 is the load required power. The load is actually the

cumulative load of residential load and charging station load, i.e., PLoad = Presidenitial+PCS. At

each hour, the load required power is essentially satisfied by the power extracted from the gen-

erating sources used in the HPS. In Fig 14, the PWNFC is the load power when the WT has

CWNFC, PV has HWNFC and SOFC has HWNFC, whereas, the PTSKC is the load power

when the WT has ITSKC, PV has ITSKC and SOFC has ITSKC, the PTSKC is the load power

when the WT has TSKC, PV has TSKC and SOFC has TSKC and, the PPI is the load power

when the WT has Hyst-PI, PV has InCond-PI and SOFC has PI. The active power of the load

provided by PWNFC has 800 watts steady-state error, whereas, PITSKC has 10 kWatts, PTSKC has

35 kWatts and PPI has 50 kWatts. The reactive power of the load provided by QWNFC has 1000

watts steady-state error, whereas, QITSKC has 7.2 kWatts, QTSKC has 25.3 kWatts and QPI has

36.5 kWatts. Moreover, the active and reactive powers of the load provided by PWNFC and

QWNFC have less fluctuations as compared to other controllers.

Fig 7. WT (a) Electrical vs mechanical torque (b) Mechanical vs Reference torque. Ref. is designated as red, CWNFC as blue, ITSKC as black,

TSKC Magenta and Hyst-PI as green.

https://doi.org/10.1371/journal.pone.0183750.g007
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Fig 8. Performance indexes (a) ITAE, (b) IAE, (c) ISE and (d) ITSE for WT controllers. CWNFC is designated as blue, ITSKC as black, TSKC

Magenta and Hyst-PI as green.

https://doi.org/10.1371/journal.pone.0183750.g008

Fig 9. Irradiance and temperature levels for 22nd June 2015. Irradiance is designated as red and

temperature as blue.

https://doi.org/10.1371/journal.pone.0183750.g009
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In the stated HPS, the continuous and reliable power supply to the load is ensured by using

nine different modes of operation. Fig 15. Shows all the nine modes of operation. Mode 1 is

activated during 0–0.4 hrs, 2–5.5 hrs and then again 18.5–24 hrs. During this mode of

Fig 10. PV (a) MPP power (b) MPPT error with all four controllers. Ref. is designated as red, HWNFC as blue, ITSKC as black, TSKC Magenta and

InCond-PI as green.

https://doi.org/10.1371/journal.pone.0183750.g010

Fig 11. Performance indexes (a) ITAE, (b) IAE, (c) ISE and (d) ITSE for PV controllers. HWNFC is designated as blue, ITSKC as black, TSKC

Magenta and InCond-PI as green.

https://doi.org/10.1371/journal.pone.0183750.g011
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Fig 12. SOFC (a) Power (b) Power acquisition error with all four controllers. Ref. is designated as red, HWNFC as blue, ITSKC as black, TSKC

Magenta and PI as green.

https://doi.org/10.1371/journal.pone.0183750.g012

Fig 13. Performance indexes (a) ITAE, (b) IAE, (c) ISE and (d) ITSE for SOFC controllers. HWNFC is designated as blue, ITSKC as black, TSKC

Magenta and PI as green.

https://doi.org/10.1371/journal.pone.0183750.g013
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operation, the load power is met by the power taken from renewable sources and battery stor-

age system. Mode 2 is activated during 0–0.5 hrs, 2–6 hrs and then again 18.5–24 hrs. In this

mode, renewable sources, battery and SC deliver the power to the load. In mode 3, renewable

sources, battery, SC and SOFC deliver the power to the load. In mode 4, the load power is met

by the power taken from renewable sources, battery, SC, SOFC and utility grid. The mode 5

remains active during 0–0.5 hrs, 2.08–6 hrs and 22.25–24 hrs. During this mode of operation,

the grid is unavailable due to having peak load hours, so, renewable sources, battery, SC, SOFC

and MT deliver the power to the load. The mode 6 is activated during 0.5–2.015 hrs, 2.63 hrs,

2.84 hrs and 6–18 hrs. Mode 6, the HPS has excess power, because, the renewable sources gen-

erate more power than the load. This excess power is utilized by electrolyzer to produce

Fig 14. Load (a) Active power (b) Reactive Power with all four controllers. WNFC is designated as blue, ITSKC as black, TSKC Magenta and PI as

green.

https://doi.org/10.1371/journal.pone.0183750.g014

Fig 15. Modes of operation.

https://doi.org/10.1371/journal.pone.0183750.g015
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hydrogen for SOFC. Mode 7 activates and deactivates during 6.02–16.49 hrs. During mode 7,

again there is excess power which is used to charge the SC and then given to the electrolyzer.

Mode 8 activates and deactivates during 8.75–16.49 hrs. In this mode of operation, the excess

power is given to SC, utility grid and electrolyzer. Mode 9 is activated during 3.7–4 hrs, 8.2–

15.52 hrs, 15.84–16.49 hrs and 18–23 hrs. During this mode of operation, the battery is discon-

nected and the excess power is utilized by SC, utility grid and electrolyzer.

In order to ensure the stability of HPS, the net power on DC as well as AC bus must be

zero. Fig 16 shows the net power on the DC bus with all four controllers. The ΔPWNFC is the

net DC bus power when the WT has CWNFC, PV has HWNFC and SOFC has HWNFC,

whereas, the ΔPITSKC is the net DC bus power when the WT has ITSKC, PV has ITSKC and

SOFC has ITSKC, the ΔPTSKC is the net DC bus power when the WT has TSKC, PV has TSKC

and SOFC has TSKC and the ΔPPI is the net DC bus power when the WT has Hyst-PI, PV has

InCond-PI and SOFC has PI. The net power on DC bus is close to zero in ΔPWNFC case.

Similarly, the net active and reactive powers on AC bus are shown in Fig 17. Among all the

four cases, the net active and reactive powers on AC bus are approximately zero in ΔPWNFC

and ΔQWNFC case.

Power quality is the most important aspect of the stated HPS. Power quality is particularly

addressed in HPS, which is clearly shown in Fig 18. Total harmonic distortion (THD) for load

voltage and load RMS voltage are all in their acceptable limits in all four cases, which ensures

that the system is quite stable. The maximum deviations of voltage THD and RMS voltage are

quite less in the case of THDWNFC and VRMS-WNFC as compared to other two cases.

The power conversion efficiency for WT, PV and SOFC is the ratio of its output power to

the input power, over a specified operating period. The power conversion efficiency for WT,

PV and SOFC can be either static or dynamic. The static efficiency refers to the stable condi-

tions of wind speed, irradiance level and load, whereas, the dynamic efficiency is associated

with the varying conditions of wind speed, irradiance levels and load. The dynamic efficiency

Fig 16. Net power on DC bus with all four controllers. WNFC is designated as blue, ITSKC as black, TSKC

Magenta and PI as green.

https://doi.org/10.1371/journal.pone.0183750.g016
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of adaptive MPPT-VSWT-PMSG, MPPT-PV and SOFC tracking control system can be com-

puted using the following equation:

Z100 ¼

Ztf

t0

Pdt

Ztf

t0

Pref dt

� 100 ¼

Ztf

t0

ðV � IÞdt

Ztf

t0

Pref dt

� 100 ð57Þ

Where η100 is the efficiency and P is PWT-CWNFC, PPV-HWNFC and PSOFC-HWNFC in the case of

VSWT-PMSG, PV and SOFC, respectively. The dynamic efficiency for MPPT-VSWT-PMSG,

MPPT-PV and SOFC tracking control with all four controllers is shown in Fig 19. The dyna-

mic efficiency for MPPT-VSWT-PMSG with CWNFC has 98.82%, ITSKC has 77.76%, TSKC

has 68.65% and Hyst-PI has 43.4% at t = 24 hrs. Similarly, the dynamic efficiency for MPPT-

PV with HWNFC has 99.6%, ITSKC has 89.44%, TSKC has 59.24% and InCond-PI has

50.35% at t = 24 hrs. The dynamic efficiency for SOFC tracking control with HWNFC has

99.14%, ITSKC has 80%, TSKC has 49.99% and PI has 40.05% at t = 24 hrs.

The dynamic efficiency based on the proposed MPPT-VSWT-PMSG, MPPT-PV and

SOFC tracking control is maximum throughout the simulation time. This implies that the pro-

posed adaptive control paradigms extract maximum power as compared to the other control

schemes. Fig 20 shows that the rate of change for (a) VSWT-PMSG power (b) PV power (c)

SOFC power computed with CWNFC, ITSKC and TSKC. The rate of change for

VSWT-PMSG power, PV power and SOFC power can be computed as follows:

dP
dt
¼
PðtÞ � Pðt � 1Þ

Dt

�
�
�
�
�
t>ðt� 1Þ

ð58Þ

Where P is PWT-CWNFC, PPV-HWNFC and PSOFC-HWNFC in the case of VSWT-PMSG, PV and

SOFC, respectively. The rate of change is minimum in VSWT-PMSG power using CWNFC,

PV power using HWNFC and SOFC power using HWNFC. The rate of change of the powers

extracted by the proposed control paradigms remains minimum during simulation. It clearly

Fig 17. Net (a) Active power (b) Reactive power on AC bus with all four controllers. WNFC is designated as blue, ITSKC as black, TSKC Magenta

and PI as green.

https://doi.org/10.1371/journal.pone.0183750.g017
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indicates that the converters switches will be subjected to minimum stress in case of the pro-

posed adaptive control schemes.

Fig 18. Percentage change in load (a) Voltage THDs (b) RMS voltage with all four controllers. WNFC is designated as blue, ITSKC as black, TSKC

Magenta and PI as green.

https://doi.org/10.1371/journal.pone.0183750.g018

Fig 19. Dynamic efficiency for (a) MPPT-VSWT-PMSG (b) MPPT-PV (c) SOFC tracking control with all four controllers. WNFC is designated as

blue, ITSKC as black, TSKC Magenta and PI as green.

https://doi.org/10.1371/journal.pone.0183750.g019
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6 Conclusion

This paper presents the integration of VSWT-PMSG, PV, SOFC, electrolyzer, MT along with

storage systems (battery and SC) in a grid-connected HPS to meet the cumulative load of resi-

dential load and charging station load. The stated HPS is a large-scaled nonlinear model of var-

ious subsystems. In order to improve the performance of the HPS, three different wavelets

based indirect adaptive NeuroFuzzy control schemes are used which is the main contribution

of this research work. A Chebyshev wavelet embedded NeuroFuzzy indirect adaptive MPPT

control scheme is used to extract the optimum power from VSWT-PMSG. A Hermite wavelet

embedded NeuroFuzzy indirect adaptive control scheme is used to acquire the optimum

power from PV system. Moreover, the load following issue of SOFC is solved using a Hermite

wavelet incorporated NeuroFuzzy indirect adaptive control scheme. To maintain a balance

between the generation and load in the HPS, a supervisory control policy which consists of

nine different modes of operation is used. To validate the performance, the proposed control

techniques are tested in a Matlab/Simulink environment. The proposed control paradigms

have higher precision than ITSKC, TSKC and PI in terms of efficiency, steady-state error and

performance indexes. The effectiveness of the proposed schemes is confirmed by the simula-

tion results.

Fig 20. Rate of change of (a) VSWT-PMSG power (b) PV power (c) SOFC power with all four controllers. WNFC is designated as blue, ITSKC as

black, TSKC Magenta and PI as green.

https://doi.org/10.1371/journal.pone.0183750.g020
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Future work

The future work is to replace the conventional PID controllers by adaptive PID controllers

used to control the converters more effectively.
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