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Abstract

Background

Three variant formulations of a spatiotemporal shared component model are proposed that

allow examination of changes in shared underlying factors over time.

Methods

Models are evaluated within the context of a case study examining hospitalisation rates for

five chronic diseases for residents of a regional area in New South Wales: type II diabetes

mellitus (DMII), chronic obstructive pulmonary disease (COPD), coronary arterial disease

(CAD), hypertension (HT) and congestive heart failure (CHF) between 2001–2006. These

represent ambulatory care sensitive (ACS) conditions, often used as a proxy for avoidable

hospitalisations. Using a selected model, the effects of socio-economic status (SES) as a

shared component are estimated and temporal patterns in the influence of the residual

shared spatial component are examined.

Results

Choice of model depends upon the application. In the featured application, a model allowing

for changing influence of the shared spatial component over time was found to have the

best fit and was selected for further analyses. Hospitalisation rates were found to be increas-

ing for COPD and DMII, decreasing for CHF and stable for CAD and HT. SES was substan-

tively associated with hospitalisation rates, with differing degrees of influence for each

disease. In general, most of the spatial variation in hospitalisation rates was explained by

disease-specific spatial components, followed by the residual shared spatial component.
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Conclusion

Appropriate selection of a joint disease model allows for the examination of temporal pat-

terns of disease outcomes and shared underlying spatial factors, and distinction between

different shared spatial factors.

1. Background

The economic and social costs of the increasing incidence of potentially avoidable hospital

admissions are a growing burden to health services in Australia and internationally [1–4]. In

1990, the concept of using ACS conditions as a proxy for avoidable hospital admissions was

proposed [5]. In Australia, diabetes complications are the leading cause of avoidable hospitali-

sation, and together with COPD and angina due to CAD account for almost one half (44.5%)

of all avoidable hospital admissions [6]. DMII accounts for 90–95% of all cases of diabetes [7–

9] and has shown to be associated with other ACS conditions including COPD [10, 11], CAD

[12–14], HT [15] and CHF [16, 17].

Residents of areas with indicators of socio-economic deprivation have been associated

with increased risk of avoidable hospital admissions [18, 19] and emergency admissions after

adjusting for other risk factors [20]. Individuals of lower SES are also more at risk for prevent-

able hospitalisation even after adjusting for severity of illness [21]. To this end, accounting for

area-level SES is important in joint disease spatiotemporal models exploring temporal trends

in hospitalisation incidence for each ACS condition. Measures of SES are typically reported at

a geographic residential scale such as a Statistical Local Area (SLA) or Local Government Area,

so it is natural to consider this as a shared spatial factor. A shared spatial factor, or shared spa-

tial component, is an underlying risk that is common to more than one disease. Although spa-

tial studies have been performed in the US, UK and Europe to examine high-risk areas for

avoidable hospitalisation, little is known about temporal trends in avoidable hospitalisation

incidence in Australia specific to residential areas [20]. This paper aims to fill this gap in

knowledge.

Much work in disease mapping has focused on the role of joint spatial modelling of two

or more diseases [22–27]. Joint spatial modelling of diseases has the benefits of borrowing

strength across both neighbouring regions and across diseases with common aetiological fac-

tors [28]. This is particularly useful when uncertainty is present due to sparse disease counts or

under-reporting of disease [29, 30], as well as adjusting for unmeasured confounders [31, 32].

A shared component is defined as an underlying spatial component common to multiple dis-

eases. The incorporation of shared and disease-specific spatial and temporal components has

three key advantages. Firstly, it highlights regions with the greatest exposures to aetiological

factors common to all diseases being modelled and shared temporal patterns in these disease

outcomes: these regions would be expected to benefit most from additional resource place-

ment and health promotion programmes to simultaneously decrease risk for multiple disease

outcomes in one step. Secondly, it allows the exploration of differences between diseases with

respect to spatial and temporal trends. Finally, it improves the precision of estimates compared

with estimates from single disease models [22].

Early work in Bayesian joint disease modelling included the two-disease shared compo-

nent model proposed by Knorr-Held and Best (2001) [22]. This model partitioned the rela-

tive risk of each of the two diseases into three spatial components allowing for spatial
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clustering: one component common to both diseases and two disease-specific components

reflecting residual spatial variation in each disease. A variation on this model, presented by

Dabney and Wakefield (2005), proposed one shared and one disease-specific component

and was termed a “proportional model” [23]. Kim et al. (2001) proposed an alternative for-

mulation using a bivariate Bayesian Poisson model to jointly model two diseases [24]. A

shared spatial component model was extended to three or more diseases by Held et al.

(2005) and was further developed by application to a four-disease case study accounting for

spatial variation in smoking and alcohol consumption [25]. Further work by Held et al.

(2006) that jointly modelled four infectious diseases, included three shared and four dis-

ease-specific spatial components to account for differential risk for diseases with related

aetiological factors [30].

The incorporation of temporal effects was introduced by Richardson et al. (2006) in a two-

disease model with disease-specific linear temporal effects and an exchangeable hierarchical

structure for spatiotemporal interaction [26]. An alternative formulation was proposed by

Tzala and Best (2008) for joint spatiotemporal modelling of three or more diseases [27]. The

authors proposed a model with a shared spatial component specific to each year of the study

period and a semi-parametric autocorrelation structure for time. Earnest et al. (2010) com-

pared model fit between a standard shared component model to one with a zero-inflated Pois-

son extension to model excess zeros [29]. A recent study by Mahaki et al (2017) compared four

alternative formulations for model fit, examining addition of a heterogeneity term and a

shared spatiotemporal interaction term [33]. It is thus useful to compare formulations for sev-

eral reasons: to examine the sensitivity to choice of hyperpriors [34]; and to examine which

patterns of spatiotemporal interaction are appropriate to the dataset and which covariates

should be included as shared components in the model [27]. Selection of the best-fitting for-

mulation through model comparison has the potential to improve the accuracy and precision

of risk estimates [33]. A detailed discussion of the relative advantages and disadvantaged of the

above approaches is canvassed in Baker (2017) [35].

While semi-parametric temporal autocorrelation structures have been proposed in the liter-

ature, the inclusion of more structured temporal parameters may be useful when the focus is

on comparing temporal trends in disease outcomes between diseases, on examining shared

versus disease-specific temporal trends and on temporal prediction. Furthermore, it may be

useful to examine whether the influence of underlying shared spatial factors may change over

time for each disease. In addition, after adjusting for known underlying spatial factors com-

mon to all diseases studied, it may be useful to examine the effect of residual confounders not

captured in the model and their influence on outcomes of each disease over time. These effects

can be measured through the incorporation of a random error term to capture residual effects

unexplained by variables in the model.

The motivation for this paper is to present a method for comparing temporal trends in dis-

ease outcomes between multiple diseases and examine the effect of residual shared latent fac-

tors over time after adjusting for known factors. The proposed methodology is applied to a

case study that examines the incidence of hospitalisation for five ACS diseases in a regional

area of New South Wales (NSW), Australia.

This paper has four objectives. First, to describe, implement and compare three variant for-

mulations of a Bayesian shared component model allowing examination of temporal trends

specific to each disease. Second, to examine disease-specific temporal trends in incidence of

hospitalisation. Third, to distinguish shared and disease-specific spatial variation in hospitali-

sation incidence. The final objective is to examine geographic disparities in hospitalisation

incidence for five ACS conditions.
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2. Methods

2.1 Data

The data for the aforementioned case study was collected from two main sources. These

sources are described in the subsections below.

2.1.1 Admissions data. Data were routinely collected from all admissions among resi-

dents of the NSW region to any hospital in Australia between July 2001 and June 2006, repre-

senting five financial years of data. Residents belonged to one of 21 SLAs within the region,

with an average estimated resident population (ERP) across SLAs of 21,000 (range 4,114 to

47,112). Hospitals in the dataset included urban and rural hospitals both within and outside

the NSW region of residence, representing 100% coverage of hospital admissions within

Australia among residents of the region. All private rural hospitals within the dataset were dei-

dentified and aggregated into one category, thus the exact number of hospitals from which

admissions records are included in the dataset is unknown.

Data were extracted for five ACS conditions: DMII, COPD, CAD, HT and CHF. Observed

counts of hospital admissions for principal diagnosis of each of these five conditions were

aggregated SLA of residence for each financial year using 2001 SLA codes. Using reported

International Statistical Classification of Diseases-10 (ICD10) coding of principal diagnosis for

each hospital admission, an ICD10 code between E11.0 and E11.99 inclusive was classified as a

DMII admission. Similarly, a principal diagnosis of ICD10 code between J41 and J44 inclusive

or J47 was classified as a COPD admission, between I20 and I25 inclusive as a CAD admission,

between I10 and I15 inclusive with the exclusion of I11.0 as an HT admission, and I11.0 or I50

or J81 as a CHF admission.

2.1.2 Demographic/Geographic information. Data were obtained from the Australian

Bureau of Statistics (ABS) for ERP and Socio-Economic Indexes for Areas (SEIFA) in 2001

specific to each of the 21 SLAs of residence, based on information from the five-yearly Census

[36, 37]. The SEIFA was developed by the ABS and ranks areas in Australia according to rela-

tive socio-economic advantage and disadvantage. Among the five financial years included in

this analysis, ERP and SEIFA Indices at SLA level were only available for 2001, and 2001 esti-

mates were used for all time periods in models described below. Four different measures of

SES are available through the SEIFA: the Index of Relative Socio-Economic Advantage and

Disadvantage (IRSAD), Index of Relative Socio-Economic Disadvantage (IRSD), Index of

Education and Occupation (IEO) and the Index of Economic Resources (IER).

The IRSD includes only measures of relative disadvantage, including the proportion of

residents with low income, lack of qualifications and working in unskilled occupations. The

IRSAD includes measures of both relative advantage and disadvantage, including the propor-

tion of residents with high and low income and working in skilled and unskilled occupations.

The IER focuses on the financial aspects of relative socio-economic advantage and disadvan-

tage, by summarising variables related to income and wealth. This includes the proportion of

households with high or low income, the proportion of households paying low rent, and the

proportion of owned homes. The IEO is designed to reflect the educational and occupational

level of communities. The education variables include qualification levels achieved and

whether further education is being undertaken. The occupation variables classify the work-

force into skill levels and the unemployed.

For each of the four indices, a lower score was indicative of relative greater socio-economic

deprivation. Within the dataset, the range for each measure of SES differed as follows. The

range was 869–969 for IRSAD, 894–990 for IRSD, 857–946 for IER and 880–1017 for IEO.

When split into quartiles, the lowest quartile of each range represents the greatest level of

socio-economic deprivation, and the highest quartile represents the lowest level of deprivation.
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2.1.3 Exploratory analysis. Descriptive analysis of the dataset was performed, including

an examination of hospitalisation rates for each disease in each financial year, and an assess-

ment of the correlation between each SEIFA Index and hospitalisation rates for each disease.

Radar plots of SEIFA Index quartiles and hospitalisation rate quartiles were constructed and

evaluated, as well as maps of SEIFA Index quartiles compared with hospitalisation rate quar-

tiles for each SLA within the region.

2.2 Fundamental models

Three Bayesian spatiotemporal shared component formulations were compared for the

estimation of temporal trends in hospitalisation rates for each of the five ACS conditions

described above. Time is measured in financial years; a “year” is defined as a financial year for

the purposes of this paper. The first two models, Models A and B, examine whether the influ-

ence of shared underlying spatial factors changes over time by allowing different factor load-

ings for each disease for each of the five years in the analysis. Model A imposes a linear

structure upon the relationship between year and the log hospitalisation rate for each disease;

Model B extends on Model A by including both shared and disease-specific linear temporal

components. Model C is a simplification of Model A and includes factor loadings common

across all years for the shared underlying spatial factors for each disease.

Markov chain Monte Carlo (MCMC) simulations were used to model joint patterns of hos-

pitalisation rates for the five conditions studied. This was undertaken using R 3.1.2 and Win-

BUGS 14 [38, 39]. The R2WinBUGS package in R 3.1.2 was used to import data, specify

parameter names, initial values and model specifications, and to invoke a BUGS model run in

WinBUGS 14. Each model was run for a total of 200,000 iterations with the first 90,000 itera-

tions discarded as the burnin period. For its association with each outcome, a covariate was

identified as important if the 95% credible interval (CI) for its associated coefficient did not

cover zero. Similarly, an SLA was flagged as having differential excess risk if the 95% CI for its

associated random effect did not cover zero. A high risk area had a substantively greater risk of

hospitalisation relative to other areas.

Formulations for the three compared models are described below.

2.2.1 Model A: Disease-specific temporal trends. We assign each disease and each

year an index as follows: DMII (j = 1), COPD (j = 2), CAD (j = 3), HT (j = 4) and CHF (j = 5);

k = 1, . . ., 5 for 2001–2005. For SLA of residence, i = 1, . . ., 21, for disease, j = 1, . . ., 5 and for

year, k = 1, . . ., 5, the observed number of hospital admissions Yijk with a principal diagnosis

for disease j is modelled as a Poisson generalised linear mixed model (GLMM) with a shared

spatial component si weighted by factor δjk for each disease in each year, a disease-specific spa-

tial component vij, and a temporal component βjtk where βj is a disease-specific coefficient for

the year of admission, tk. Let the ERP for SLA i using 2001 estimates be denoted ni, and θijk
denote the estimated hospitalisation incidence rate for SLA i for disease j in year k.

A sum-to-zero constraint is placed on the sum of the log of weighting factors for the shared

component at each time point. This is an extension of the joint multiple disease model with

sum-to-zero constraints for one time point as described by Held et al. (2005). The shared and

disease-specific spatial components are assigned conditional autoregressive (CAR) priors as

first described by Besag, York and Mollie (1991) [40]. A CAR specification was selected due to

the presence of sparse data for smaller SLAs, motivating the use of local smoothing to borrow

strength across neighbouring areas.

Let αj denote a disease-specific intercept, uijk the uncorrelated residual error for each obser-

vation and σ2 the variance for the log of θijk. We define I = 21, J = 5 and K = 5. The model takes

Joint modelling of potentially avoidable hospitalisation
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the following formulation:

Yijk � PoissonðniyijkÞ

logðyijkÞ � Nðsidjk þ nij þ bjtk þ aj þ uijk; s
2Þ ð1Þ

XJ

j¼1

logðdjkÞ ¼ 0

Priors for hyperparameters in the model are as follows:

uijk � Nð0;o
2

j Þ ð2Þ

sijsð� iÞ; s
2

s � N
Pn

h¼1
shwhi

mi
;
s2
s

mi

� �

vijjvð� iÞj; s
2

vj � N
Pn

h¼1
vhjwhi
mi

;
s2
vj

mi

� �

whi ¼
1 if h and i are neighbours

0 otherwise

(

for i = 1, . . ., 21 with (−i) denoting all regions excluding i.
Pn

h¼1
shwhi

mi
is the average correlated

random effect for the neighbours of region i,mi is the number of such neighbours, and s2
s is

the overall spatial variance across all regions. A neighbour is defined as any region immediately

adjacent in space to region i. It can be seen that this type of prior induces a form of local

smoothing across regions, where the degree of smoothing is controlled by the spatial correla-

tion between regions.

Additional priors for hyperparameters include Normal distributions for log(δjk), αj and βj;
log(δjk)~N(0,0.25); αj, βj ~ N(0,100)), and s2

S, s2
Vj, σ

2, o2
j � IGð1:0; 0:01Þ. The selected prior for

log(δjk) was based on the prior belief that log(δjk) is between -0.5 and 0.5 with 95% probability

for each disease at each timepoint, similar to foundational shared component models in the lit-

erature [22, 25]. Given the lack of prior knowledge surrounding estimates for other parameters

in the model, priors for other parameters were selected as they are uninformative while allow-

ing a wide range of plausible values.

2.2.2 Model B: Shared and disease-specific temporal trends. Model B is an extension of

Model A that includes coefficients for both shared and disease-specific temporal components,

in order to examine evidence for a temporal trend common to all diseases. For Model B, Eq

(1) is changed to:

logðyijkÞ � Nðsidjk þ nij þ ðb0 þ bjÞtk þ aj þ uijk; s
2Þ ð3Þ

Given βo, the interpretation of βj has now changed to the difference between each disease-

specific temporal trend and the shared temporal trend common to all diseases in the model.

Priors for hyperparameters are as described for Model A, and N(0,100) for the new parameter,

β0. As described above, priors were selected to be uninformative and allow a wide range of

plausible values.
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2.2.3 Model C: Shared weighting factor. Model C is a simplification of Model A. The

year-specific weighting factor δjk is changed to a single weighting factor δj for each disease, j,
across all years as follows:

logðyijkÞ � Nðsidj þ nij þ bjtk þ aj þ uijk; s
2Þ ð4Þ

XJ

j¼1

logðdjÞ ¼ 0

Priors for hyperparameters are as described for Model A in Eq (2), and log(δj)~N(0,0.25).

2.3 Model comparison

Model fit was compared between the three basic models described above using Deviance

Information Criterion (DIC), the log likelihood, root mean squared error and predictive con-

cordance. Each measure is briefly described in S1 Text.

2.4 Sensitivity analysis

Sensitivity analysis was performed to determine the robustness of inferences from the selected

model. Different classes of prior distributions were fit and results were compared. The selected

model from Part 2.4 was rerun with the following variations of prior distribution:

1. o2
j ; s

2; s2
s ; s

2
vj � IGð1:0; 0:01Þ—Base model

2. o2
j ; s

2; s2
s ; s

2
vj � IGð0:001;0:001Þ

3. o2
j ; s

2; s2
s ; s

2
vj � IGð0:5; 0:0005Þ

4. ωj, σ, σs, σvj*Uniform(0,5)

5. ωj, σ, σs, σvj*N(0,1)I(0,1)

6. log(ωj), log(σ), log(σs), log(σvj)~N(0,0.25)

For each model included in sensitivity analysis, the posterior mean estimates and 95% CIs

for model parameters were compared to check for model robustness. The four types of priors

above represent a wide variety of classes of distribution, with differing means, variances and

probabilities assigned to each value within the distribution. Thus, if similar estimates are

obtained despite the choice of prior, this indicates that inferences are robust.

Following sensitivity analysis, the selected model was utilised to examine temporal patterns

in hospitalisation rates for each disease, the influence of SES, temporal patterns in the influ-

ence of the residual shared spatial component after accounting for SES, and the proportion of

variation in hospitalisation rates that is explained by each spatial component.

3. Results

3.1 Data

Over the study period, among the five ACS conditions included in this analysis, hospitalisation

was most frequent for CAD, followed by COPD, CHF, DMII and HT respectively. Among the

estimated 2001 ERP of 443,199 across the region, there were a recorded 13,866 cases of CAD,

6,401 cases of COPD, 5150 cases of CHF, 4,869 cases of DMII and 804 cases of HT principal

hospital admissions over the five-year study period. Temporal patterns in number of
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admissions for each disease in this region are shown in Fig 1. Overall, the number of admis-

sions for DMII and COPD appears to be increasing over time, and the number of admissions

for CHF appears to be decreasing over time. Numbers of hospital admissions for CAD and HT

remained relatively stable over the study period. From exploratory analysis, there appear to be

varying temporal patterns for hospitalisation for each disease by area of residence, especially

for DMII, COPD and HT. Fig 2 shows temporal patterns in the number of admissions per

10,000 capita for each disease for three randomly selected SLAs. Whereas for some SLAs, the

number of admissions per 10,000 capita appears to be consistently increasing, decreasing or

remaining similar across the study period, a nonlinear pattern is observed for other SLAs in

the region. The ERP and age-gender composition of the background population in each area

remains relatively stable over the study period based on 2001 and 2006 Census statistics.

Therefore, it is possible that differences in temporal patterns between areas may be related to

differences in underlying aetiological factors between areas and may change over time, the

investigation of which is an objective of this study.

Table 1 summarises Pearson correlations between the four SES measures and overall hospi-

talisation rate per 10,000 capita across the 21 SLAs for each disease across the study period. All

four measures of SES are negatively correlated with hospitalisation rates for all five diseases.

Thus areas that are less deprived tend to have lower rates of hospitalisation for ACS conditions.

In general, IRSAD and IEO Indexes have the strongest association with hospitalisation rates

across all diseases, indicated by the size of the Pearson’s correlations and associated p values

(Table 1). This suggests that variation in overall relative advantage and disadvantage, education

and occupation may play an important part in explaining variation in hospitalisation rates.

Among the five ACS conditions, CHF appears to have the strongest correlation with SES mea-

sures, followed by HT, COPD, CAD and DMII respectively.

Fig 3 shows radar plots for each of the 21 SLAs. Quartiles internal to the dataset are plotted

for hospitalisation rate for each disease and deprivation level as measured by IRSAD, IRSD,

IER and IEO indexes. Quartile 4 indicates the largest hospitalisation rates and largest depriva-

tion levels among the 21 SLAs, and quartile 1 indicates the smallest hospitalisation rates and

least deprived areas. It is clear from the radar plots that areas with large hospitalisation rates

Fig 1. Temporal patterns in observed numbers of primary admissions for five diseases across a

regional area of New South Wales. CAD = coronary arterial disease, COPD = chronic obstructive

pulmonary disease, CHF = congestive heart failure, DMII = type II diabetes mellitus, HT = hypertension.

https://doi.org/10.1371/journal.pone.0183653.g001
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tend to have greater levels of socioeconomic deprivation, and areas with small hospitalisation

rates tend to have less deprivation. Results of this exploratory analysis support the inclusion of

SES measures within the joint disease model as an additional shared spatial component com-

mon to all diseases.

3.2 Model comparison

All models were assessed to have converged and similar estimates were produced for disease-

specific temporal trends from all three models. Results from Models A and B indicate

Fig 2. Temporal patterns in number of hospital admissions per 10,000 capita for three randomly selected New

South Wales Statistical Local Areas for five diseases. DMII = type II diabetes mellitus, COPD = chronic obstructive

pulmonary disease, CAD = coronary arterial disease, HT = hypertension, CHF = congestive heart failure.

https://doi.org/10.1371/journal.pone.0183653.g002
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substantive variation in disease-specific factor loadings for the shared spatial component over

time. The term for the shared temporal component in Model B was not substantive.

Table 2 shows results of comparison of Models A-C for each disease. Overall, Models A and

B performed equally well on all measures of fit and better than Model C based on DIC and log

Table 1. Pearson’s correlations between incidence of hospitalisation for each of five diseases across the study period and measures of socio-eco-

nomic status across Statistical Local Areas within the regional area of New South Wales.

DMII COPD CAD HT CHF

IRSAD -0.20 -0.24 -0.18 -0.30 -0.32

IRSD -0.11 -0.10 -0.09 -0.20 -0.34

IER -0.12 -0.21 -0.05 -0.31 -0.21

IEO -0.23 -0.24 -0.24 -0.26 -0.32

DMII = diabetes mellitus type II, COPD = chronic obstructive pulmonary disease, CAD = coronary arterial disease, HT = hypertension, CHF = congestive

heart failure, IRSAD = Index of Relative Socio-Economic Advantage and Disadvantage, IRSD = Index of Relative Socio-Economic Disadvantage,

IER = Index of Economic Resources, IEO = Index of Education and Occupation

https://doi.org/10.1371/journal.pone.0183653.t001

Fig 3. Radar plots of quartiles for incidence of hospitalisation for each of five diseases across the study period (4 = highest incidence,

1 = lowest incidence) and quartiles of socio-economic deprivation measured by four Indexes (4 = most deprived, 1 = least deprived) across the

Statistical Local Areas within the regional area of New South Wales. Statistical Local Areas are ordered from highest to lowest total incidence

of hospitalisation across all diseases. DMII = diabetes mellitus type II, COPD = chronic obstructive pulmonary disease, CAD = coronary arterial

disease, HT = hypertension, CHF = congestive heart failure, IRSAD = Index of Relative Socio-Economic Advantage and Disadvantage, IRSD = Index of

Relative Socio-Economic Disadvantage, IER = Index of Economic Resources, IEO = Index of Education and Occupation.

https://doi.org/10.1371/journal.pone.0183653.g003
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likelihood. This suggests that the influence of shared underlying aetiological factors common

to all five diseases may have changed over time, and is important to account for within this

application. Across all models, the best fit was observed for HT and the poorest fit for CAD

based on log likelihood and RMSE; however, observed values for HT fell into predicted 95%

CIs less frequently as measured by predictive concordance.

Models A and B performed equally well on posterior predictive checks, however, the shared

temporal component in Model B was found to be negligible. Therefore, Model A was selected

as the marginally preferred model for further analysis.

As a comparison to Model A, a model with dummy variables for year was also fit which did

not constrain the temporal component to be linear. Coefficients for each year from this model

followed a roughly linear trend for each disease matching findings from Model A, thus sup-

porting the use of a linear temporal trend.

4. Extended model

Model A was extended to include an additional component to account for the influence of SES

on hospitalisation rates. Only one of the four SES measures was included in the model at each

time, and resulting estimates for unknown parameters were compared. The formulation for

Table 2. Goodness of fit comparisons between basic joint disease models.

Model A Model B Model C

DIC 3690.76 3690.12 3788.06

Log likelihood

DMII -336.3 -336.1 -337.3

COPD -360.0 -361.0 -360.2

CAD -394.5 -394.6 -394.8

HT -248.7 -248.0 -250.4

CHF -345.4 -345.9 -356.6

Overall -1685 -1686 -1699

RMSE

DMII 9.65 9.64 9.62

COPD 11.06 11.08 11.03

CAD 16.12 16.10 16.17

HT 4.00 3.99 3.94

CHF 9.83 9.83 9.88

Overall 10.87 10.86 10.88

Predictive concordance (95% CI)

DMII 1.00 1.00 0.99

COPD 0.98 0.98 0.98

CAD 0.99 0.99 0.99

HT 0.89 0.88 0.89

CHF 0.99 0.98 0.96

Overall 0.97 0.97 0.96

DIC = Deviance Information Criteria, DMII = diabetes mellitus type II, COPD = chronic obstructive pulmonary

disease, CAD = coronary arterial disease, HT = hypertension, CHF = congestive heart failure, RMSE = root

mean squared error, CI = credible interval. “Overall” refers to the overall model. Lower values of DIC and

RMSE and higher values of log likelihood and predictive concordance indicate a better fit.

https://doi.org/10.1371/journal.pone.0183653.t002
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this extended model is as follows:

Yijk � PoissonðnijkyijkÞ

logðyijkÞ � Nðsidjk þ ð�þ gjÞxi þ nij þ bjtk þ aj þ uijk; s
2Þ ð5Þ

where xi is the region-specific SEIFA score for one of four measures: IRSAD, IRSD, IEO and

IER, ϕ is the mean random effect for the SEIFA index and γj is the disease-specific variation

from this mean random effect for each disease j. SEIFA scores were included as a continuous

measure in order to estimate the influence of each unit increase on log(θijk). Priors for hyper-

parameters in the model are as described for Model A in Eq (2), and N(0,10) for γj and

N(0,100) for θ, allowing a wide range of plausible values. A sum-to-zero constraint was applied

to γj.
Table 3 compares the estimated coefficients from each of the four SES models. The shared

SES component for the SEIFA Index, ϕ, was found to be associated with hospitalisation rates

for IRSAD, IER and IEO but not for IRSD. Among IRSAD, IER and IEO models, the estimated

mean and 95% CI for ϕ was similar for each of these three measures across all included dis-

eases. There was no evidence of substantive disease-specific variation from ; (measured by γj)
for any of the five diseases. The DIC was similar for these three models indicating similar

goodness of fit. As little difference was found in the estimated effect of IRSAD, IER and IEO

on hospitalisation rates, IRSAD was selected to be included in further analysis.

4.1 Sensitivity analysis

Similar parameter estimates were obtained from models included in sensitivity analysis follow-

ing the model formulation with IRSAD as the measure of SES. However the DIC for each

model varied slightly. The DIC for each model within the sensitivity analysis is summarised

in Table 4. Overall, the model with uniform priors for σs, σvj, σ and ωj had the smallest DIC

(3674.06 vs. 3692.76 for the base model) indicating the best fit. Thus, results of our final model

are presented from the model with uniform priors.

Table 5 summarises the estimated coefficients from the final model. The mean hospitalisa-

tion rate per 10,000 capita for each disease across the study period is estimated by 10; 000eaj .

Consistent with descriptive plots, Figs 1 and 2, the estimated rates are highest for CAD, fol-

lowed by COPD, CHF, DMII and HT respectively.

Table 3. Comparison of estimated coefficients from joint disease models incorporating measures of socio-economic status as an additional

shared spatial component. Coefficients are summarised with regard to posterior mean and 95% credible interval.

Model IRSAD IRSD IER IEO

ϕ -0.008 (-0.012, -0.004) -0.002 (-0.007, 0.003) -0.008 (-0.013, -0.003) -0.007 (-0.010, -0.004)

γ1 0.000 (-0.006, 0.007) 0.000 (-0.007, 0.010) 0.000 (-0.007, 0.008) 0.000 (-0.005, 0.006)

γ2 0.002 (-0.004, 0.009) 0.004 (-0.004, 0.013) -0.000 (-0.000, 0.008) 0.002 (-0.003, 0.007)

γ3 0.002 (-0.005, 0.009) 0.000 (-0.008, 0.009) 0.005 (-0.004, 0.013) 0.000 (-0.005, 0.006)

γ4 -0.009 (-0.017, -0.000) -0.008 (-0.020, 0.003) 0.009 (-0.018, 0.000) -0.006 (-0.013, 0.000)

γ5 0.004 (-0.001, 0.010) 0.003 (-0.005, 0.009) 0.004 (-0.002, 0.010) 0.003 (-0.000, 0.008)

DIC 3692.760 3689.370 3694.410 3692.900

IRSAD = Index of Relative Socio-Economic Advantage and Disadvantage, IRSD = Index of Relative Socio-Economic Disadvantage, IER = Index of

Economic Resources, IEO = Index of Education and Occupation. ϕ is the shared component associated with each measure of socio-economic status

(IRSAD, IRSD, IER and IEO). γ1–5 is the disease-specific factor loading associated with ϕ for type II diabetes mellitus, chronic obstructive pulmonary

disease, coronary arterial disease, hypertension and congestive heart failure respectively.

https://doi.org/10.1371/journal.pone.0183653.t003
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Consistent with appearances in Fig 1, the model estimates an overall increase over time in

hospitalisation rates for DMII and COPD, and a decrease for CHF as measured by the disease-

specific temporal coefficient βj. Hospitalisation rates did not substantively change over time

for CAD nor HT over the study period. The largest variation in hospitalisation rates across

areas after accounting for temporal trends and effect of shared spatial components, was seen

for HT and the lowest for CAD as measured by the standard deviation for correlated residual

error (ωj). Compared with variation in the shared spatial component measured by σS, variation

in disease-specific spatial components measured by σVj was greater. Similarly, compared with

the common term for uncorrelated residual error, σ, the variation in disease-specific uncorre-

lated error measured by ωj is greater.

Tables 6 and 7 summarise the posterior coefficients and proportion of overall spatial varia-

tion that is explained by each of three components for each disease. The first component is the

shared SES component weighted by its disease-specific factor loading, the second is the resid-

ual shared spatial component after accounting for the influence of SES, weighted by its dis-

ease-specific factor loading specific to each year, and the third is the disease-specific spatial

component. The variation in each of these three components is measured by its variance across

SLAs. The variance from the SES component measured by IRSAD Index was small for all dis-

eases, ranging from 0.03 for CAD to 0.24 for HT. This indicates that hospitalisation for CAD

has the weakest and for HT has the strongest association with SES. In general, spatial variation

explained by the residual shared spatial component was smaller than variation explained by

Table 4. Comparison of goodness of fit of models included in sensitivity analysis.

Variation Hyperparameters Priors DIC

1 s2
S, s2

Vj, σ
2, o2

j IG(1.0,0.01) 3692.760

2 s2
S, s2

Vj, σ
2, o2

j IG(0.001,0.001) 3685.160

3 s2
S, s2

Vj, σ
2, o2

j IG(0.5,0.0005) 3692.340

4 σS, σVj, σ, ωj Uni(0,5) 3674.060

5 σS, σVj, σ, ωj N(0,1)I(0,1) 3700.160

6 ln(σS), ln(σVj), ln(σ), ln(ωj) N(0,0.25) 3687.110

DIC = Deviance Information Criteria

https://doi.org/10.1371/journal.pone.0183653.t004

Table 5. Estimated parameters from the selected joint disease model. Coefficients are summarised with regard to posterior mean and 95% credible

interval.

Disease j 1 (DMII) 2 (COPD) 3 (CAD) 4 (HT) 5 (CHF)

αj -6.199 (-6.26, -6.141) -5.922 (-5.970, -5.876) -5.212 (-5.243, -5.182) -7.990 (-8.091, -7.891) -6.115 (-6.161, -6.071)

exp(αj)*10,000 20 (19–22) 27 (26–28) 55 (53–56) 3 (3–4) 22 (21–23)

βj 0.152 (0.113, 0.194) 0.045 (0.014, 0.077) 0.005 (-0.016, 0.025) -0.064 (-0.131, -0.000) -0.035 (-0.065, -0.009)

σ 0.066 (0.002, 0.121)

ωj 0.211 (0.137, 0.286) 0.147 (0.060, 0.217) 0.057 (0.004, 0.118) 0.242 (0.099, 0.368) 0.085 (0.006, 0.159)

σS 0.852 (0.581, 1.250)

σVj 1.008 (0.648, 1.517) 0.990 (0.658, 1.460) 1.051 (0.730, 1.536) 1.103 (0.728, 1.666) 0.863 (0.560, 1.293)

ϕ -0.008 (-0.013, -0.003)

γj 0.000 (-0.006, 0.008) 0.002 (-0.006, 0.010) 0.001 (-0.006, 0.009) -0.008 (-0.017, 0.002) 0.003 (-0.003, 0.011)

DMII = diabetes mellitus type II, COPD = chronic obstructive pulmonary disease, CAD = coronary arterial disease, HT = hypertension, CHF = congestive

heart failure

https://doi.org/10.1371/journal.pone.0183653.t005
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Table 6. The estimated coefficients for of spatial variation in incidence of hospitalisation for five diseases that is explained by variation in: (a) the

shared socio-economic component weighted by its disease-specific factor loading, (b) the residual shared spatial component after accounting for

the influence of (a), weighted by its disease-specific factor loading specific to each year and (c) the disease-specific spatial component, at each

time point k for each disease j. Coefficients are summarised with regard to posterior mean and 95% credible interval.

Disease j 1 (DMII) 2 (COPD) 3 (CAD) 4 (HT) 5 (CHF)

Variation in SES component 0.06 (0.00,0.22) 0.05 (0.00,0.24) 0.06 (0.00,0.21) 0.24 (0.03,0.61) 0.03 (0.00,0.13)

Variation from residual shared spatial component, s2
S 0.65 (0.34, 1.56)

Factor loading, δjk, by year

2001 1.48 (1.20,1.78) 1.44 (1.20,1.69) 1.32 (1.17,1.49) 1.27 (0.83,1.74) 1.36 (1.15,1.61)

2002 1.40 (1.14,1.68) 1.39 (1.14,1.63) 1.28 (1.14,1.47) 1.14 (0.70,1.62) 1.39 (1.19,1.62)

2003 1.51 (1.23, 1.79) 1.58 (1.34,1.86) 1.33 (1.18,1.50) 1.46 (1.08,1.88) 1.39 (1.19,1.61)

2004 0.24 (0.14,0.35) 0.20 (0.12,0.29) 0.36 (0.25,0.47) 0.43 (0.19,0.75) 0.26 (0.15,0.37)

2005 1.39 (1.12,1.66) 1.70 (1.44,1.99) 1.26 (1.11,1.43) 1.23 (0.79,1.66) 1.55 (1.32,1.80)

Variation from weighted residual spatial component

2001 0.64 (0.38,1.04) 0.60 (0.36,0.88) 0.51 (0.34,0.75) 0.48 (0.18,0.84) 0.54 (0.34,0.79)

2002 0.57 (0.33,0.92) 0.56 (0.32,0.85) 0.48 (0.32,0.69) 0.40 (0.11, 0.81) 0.56 (0.34,0.80)

2003 0.66 (0.36,1.00) 0.72 (0.45,1.04) 0.51 (0.35,0.72) 0.63 (0.32,1.12) 0.56 (0.35,0.82)

2004 0.02 (0.00,0.04) 0.01 (0.00,0.03) 0.04 (0.01,0.08) 0.06 (0.01,0.14) 0.02 (0.01,0.05)

2005 0.57 (0.31,0.88) 0.83 (0.53,1.14) 0.46 (0.30,0.67) 0.46 (0.15,0.86) 0.70 (0.45,0.97)

Disease-specific spatial variation, s2
Vj 0.88 (0.42,2.30) 0.87 (0.43,2.13) 1.00 (0.53,2.36) 1.07 (0.53,2.77) 0.65 (0.31,1.67)

SES = socio-economic status measured by the Index of Relative Socio-Economic Advantage and Disadvantage, DMII = diabetes mellitus type II,

COPD = chronic obstructive pulmonary disease, CAD = coronary arterial disease, HT = hypertension, CHF = congestive heart failure.

https://doi.org/10.1371/journal.pone.0183653.t006

Table 7. The estimated proportion of spatial variation in incidence of hospitalisation for five diseases that is explained by variation in: (a) the

shared socio-economic component weighted by its disease-specific factor loading, (b) the residual shared spatial component after accounting for

the influence of (a), weighted by its disease-specific factor loading specific to each year and (c) the disease-specific spatial component, at each

time point k for each disease j. Proportions are summarised with regard to posterior mean and 95% credible interval.

Disease j 1 (DMII) 2 (COPD) 3 (CAD) 4 (HT) 5 (CHF)

Proportion of spatial variation attributed to SES component

2001 4% (0–12%) 3% (0–12%) 4% (0–12%) 13% (1–31%) 3% (0–9%)

2002 4% (0–13%) 3% (0–12%) 4% (0–12%) 13% (1–31%) 3% (0–9%)

2003 4% (0–12%) 3% (0–11%) 4% (0–12%) 12% (1–29%) 3% (0–9%)

2004 6% (0–20%) 5% (0–19%) 5% (0–17%) 17% (2–38%) 4% (0–16%)

2005 4% (0–13%) 3% (0–11%) 4% (0–12%) 13% (1–31%) 2% (0–8%)

Proportion of spatial variation from residual shared component

2001 38% (21–57%) 38% (21–55%) 31% (17–46%) 25% (10–43%) 42% (24–60%)

2002 35% (19–54%) 36% (20–53%) 30% (16–45%) 21% (7–39%) 42% (25–61%)

2003 39% (21–58%) 42% (25–59%) 31% (17–47%) 30% (15–49%) 43% (25–61%)

2004 2% (0–5%) 1% (0–4%) 3% (1–8%) 4% (1–11%) 3% (1–7%)

2005 35% (19–53%) 45% (27–62%) 29% (15–44%) 24% (8–42%) 48% (29–66%)

Proportion of spatial variation that is disease-specific

2001 58% (39–77%) 59% (41–77%) 65% (49–81%) 62% (41–82%) 56% (38–74%)

2002 61% (41–79%) 61% (43–79%) 66% (50–82%) 65% (42–87%) 55% (37–73%)

2003 58% (38–77%) 55% (38–73%) 65% (49–81%) 58% (37–79%) 55% (37–73%)

2004 92% (78–99%) 94% (80–99%) 92% (79–98%) 79% (56–97%) 93% (81–99%)

2005 61% (42–79%) 52% (35–70%) 67% (51–82%) 63% (41–84%) 50% (32–69%)

SES = socio-economic status measured by the Index of Relative Socio-Economic Advantage and Disadvantage.

https://doi.org/10.1371/journal.pone.0183653.t007
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the disease-specific spatial component across all years with the exception of 2004. In 2004,

there was a decrease in disease-specific factor loading estimates and in the spatial variation

explained by the residual shared component across all diseases. A similar pattern was observed

in results from basic models A and B, all SES models and models included in the sensitivity

analysis. Thus the proportion of spatial variation explained by each of the three components

above varied both between diseases and across years (Table 7).

Fig 4 compares the relative risk of the residual shared and disease-specific spatial compo-

nents for each disease, with SLAs 1–21 ordered by the size of the relative risk associated with

their shared component. Areas with small values for the shared spatial component tended to

have large values from the disease-specific spatial component and vice-versa.

5. Discussion

We have proposed three Bayesian shared component model formulations to study shared and

disease-specific spatial and temporal trends in hospitalisation rates for five ambulatory care

sensitive conditions. Extending upon the two-disease and multiple disease spatiotemporal

joint disease formulations proposed by Richardson et al. (2006) and Tzala and Best (2008),

advantages of our selected model include:

1. The disease- and time-specific factor loadings for the shared spatial component allow exam-

ination of changes in underlying shared factors over time

2. The log-linear structure of the disease-specific temporal components is useful for prediction

of disease counts specific to area and time and can be extrapolated to timepoints external to

the dataset

3. A shared temporal component can be added to the model where appropriate for the appli-

cation, to investigate temporal trends common to all diseases in the study based on changes

over time in shared underlying aetiological factors

4. Where appropriate to the application, the model can be simplified to include disease-spe-

cific factor loadings for the shared spatial component common to all timepoints where

there is no evidence of change in underlying shared factors over time

5. Where appropriate to the application, additional shared spatial components can be added

to the model such as we have demonstrated by adding an additional shared component for

SES. This allows spatial and temporal patterns for different underlying aetiological factors

to be distinguished from each other, and allows the exploration of patterns of residual

shared and disease-specific spatial factors after accounting for factors that are known to be

shared by all or some of the diseases in the study.

The five conditions included in this study were selected as several share common aetiologi-

cal risk factors. All five diseases share smoking history and increased age as underlying risk fac-

tors [10, 13]. In addition, risk factors shared between DMII, CAD and CHF include physical

inactivity, obesity and central obesity, hypertension, and raised concentrations of insulin,

HbA1c, triglycerides and fasting plasma glucose [12, 16, 17].

COPD has been shown to be associated with increased risk of comorbidity with DMII, HT

and CAD and it has been speculated that the chronic systemic inflammation and recurrent

infections associated with COPD may be a risk factor for the development of these [10, 11].

HT has been shown to be twice as prevalent among diabetic patients than among those with-

out diabetes, and reciprocally, hypertensive patients are more likely to develop DMII com-

pared with normotensive persons [15]. Thus DMII and HT often coexist as comorbid
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Fig 4. Comparison of mean estimates of relative risk for hospitalisation for five diseases, separated

into shared and disease-specific spatial components across Statistical Local Areas within the

regional area of New South Wales from the selected model. Error bars represent 95% credible intervals

for estimates. Statistical Local Areas 1–21 are ordered by the size of the estimated relative risk associated

with their shared component, from smallest to largest. RR = relative risk, DMII = diabetes mellitus type II,

COPD = chronic obstructive pulmonary disease, CAD = coronary arterial disease, HT = hypertension,

CHF = congestive heart failure.

https://doi.org/10.1371/journal.pone.0183653.g004
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conditions and serve to exacerbate each other [15]. DMII patients have been shown to have

excess risk of CAD and CHF even after controlling for shared risk factors [14, 16, 17]. Further-

more, diabetic cardiomyopathy contributes significantly to CAD morbidity and mortality in

diabetic patients, especially when paired with coexistent HT [15].

Limitations of our proposed model include that a log-linear relationship is assumed

between disease prevalence and calendar time, and this may not be suitable for certain applica-

tions. In addition, the assumption that the shared and disease-specific spatial components are

independent of each other does not allow for the possibility of interaction between unobserved

underlying spatial factors. Moreover, there is a degree of ecological fallacy in generalising area-

level measures of SES to all residents of each SLA. This may have obscured the true association

between SES and risk of hospitalisation.

We have demonstrated the utility of our selected model in the context of a case study that

examines shared spatial factors for hospital admission rates for five ambulatory-care sensitive

conditions. Findings of this case study suggest that a small proportion of the geographic varia-

tion that is shared between DMII, COPD, CAD, CHF and HT is related to socio-economic sta-

tus. We consider that the remainder of the shared spatial component is due to contributions

from other shared risk factors. These are likely related to access to primary care and lifestyle

factors, and may include distance to primary care provider, rurality, availability of fast food,

healthy food and green spaces, walkability, prevalence of smoking and obesity. Further

research linking the shared and disease-specific spatial variation to further covariates, such as

the Accessibility/Remoteness Index of Australia (ARIA), presence of a hospital and total num-

ber of primary care providers within each region, and prevalence of the above lifestyle factors

would aid interpretation. This would inform health policy decision-making to tailor interven-

tions to factors found to be important.

In applications where the shared risk factors are a stronger predictor of one or two diseases

compared with other diseases being modelled, it is expected that the shared risk component

estimated would only partially reflect the spatial pattern of that particular risk factor. The

excess variation in the disease with the stronger association with this risk factor, would be cap-

tured by the disease-specific component for that disease. Thus, if SES is a stronger predictor of

DMII compared with other diseases, then we would expect that part of this effect would be

captured in the DMII-specific spatial component. Similarly, if a putative risk factor such as

prevalence of smoking is shared among all diseases modelled but is a stronger predictor of

COPD compared with the other diseases, then we would expect that the COPD-specific spatial

component would partially capture the spatial variation associated with this factor. More than

half of all spatial variation was explained by disease-specific spatial factors across all years of

this case study, reflecting varying aetiology and differential effect of risk factors for the five

conditions under study.

Within the general population, admission rates were found to be highest for CAD, followed

by COPD, CHF, DMII and were lowest for HT, likely reflecting the severity of acute illness for

each condition. While admission rates for DMII and COPD increased over the study period,

potentially reflecting the need for better quality of primary care, they decreased for CHF and

remained stable for CAD and HT. After accounting for SES, the effect of the remaining under-

lying shared spatial factors appeared to change over time. Further research adjusting for age/

gender population distributions over time and examining the association of changes in other

covariates over time with temporal variation in the shared component of these diseases may be

useful in explaining these variations.

In an epidemiological context, we found evidence of geographic disparity in hospitalisation

rates for five ACS conditions in the region, and are able to highlight areas within NSW most

at risk for hospitalisation for all five conditions, viz. those with the largest shared spatial
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components. These areas may benefit most from additional services for early detection, closer

monitoring and management of these conditions within a primary care setting to avoid hospi-

talisation for complications. SLAs identified as having the largest shared underlying compo-

nent for all five diseases all contain a hospital; availability of a hospital may be associated with

higher hospitalisation rates for residents of these SLAs but this was not formally assessed

within this study. Further study examining the association between level of primary care and

hospital care provision within each area with the shared underlying risk of hospitalisation

would be useful in informing health policy decisions.

The methodology used in this case study is immediately applicable to other datasets, and to

any combination of diseases with shared risk factors. These could include dietary factors, life-

style factors such as smoking, alcohol, physical activity, and access to healthcare. The model is

useful to health policy planners to highlight regions with high values of the shared component

for adverse health outcomes, incidence and mortality. These regions can then be targeted for

suitable interventions relevant to the underlying shared risk factors.

Strengths of our case study include that we were able to analyse data from a large number

of residents from a large regional area of NSW, Australia and spanning five years, allowing

examination of both spatial and temporal patterns of five related conditions. Limitations of

our case study include that the age of the data limits the ability for future temporal prediction.

These linked hospital admissions data were made available for this study via our collaboration

with the local health service. The process for obtaining access to these data changed during the

course of our research and more recent data from 2006 was not covered under this revised

process. Therefore, it was not possible to obtain more recent data from 2006 under our collab-

orative agreement. The rate of diabetes hospital admission has remained relatively stable over

the past several years and so we believe our results are robust and indicative of more recent

data [41].

A condition of data access in this study was that individual areas not be identified in the

published work. Although we were able to discuss the area-specific results with individual

Local Health Districts, these results are not available for public release. It is now possible to

obtain ethics and data custodian approval to access and publicly release area-specific data.

However, this process was not available to us at the time of our study.

Another limitation is that information regarding SES and ERP was available for only one

year of the study. Moreover, the ERP is based on usual place of residence, thus transient popu-

lations with a usual address outside the health region were excluded from the analysis. How-

ever, the small number of admissions within the region for any transient populations are

unlikely to have a substantial impact on our analysis.

Information regarding the prevalence of other underlying aetiological factors was not avail-

able at a spatial and temporal level. Therefore, it is difficult to assess whether the variability in

spatial components over time is related to a change in underlying covariates or to assess the

possibility of hospital data coding errors in 2004 contributing to the variation. A sensitivity

analysis of the extended model using only data from 2001 to 2003 yielded similar estimates

to those reported in Tables 5 and 6, but without any unexpectedly low estimates for δjk as

observed for 2004 in the full model (S1 Table). There is potential for further investigation of

this with more detailed data.

This case study identifies the role of SES versus other shared and disease-specific factors in

explaining variation in potentially avoidable hospital admissions for five conditions, and high-

lights regions most at risk. By targeting these regions for the provision of better quality primary

care, early detection, monitoring and management of disease, we have the potential to reduce

the costs and social burdens of hospitalisation for these conditions in the future.
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