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Abstract

The proportion of the elderly population in most countries worldwide is increasing dramati-

cally. Therefore, social interest in the fields of health, longevity, and anti-aging has been

increasing as well. However, the basic research results obtained from a reductionist

approach in biology and a bioinformatic approach in genome science have limited useful-

ness for generating insights on future health, longevity, and anti-aging-related research on a

case by case basis. We propose a new approach that uses our literature mining technique

and bioinformatics, which lead to a better perspective on research trends by providing an

expanded knowledge base to work from. We demonstrate that our approach provides useful

information that deepens insights on future trends which differs from data obtained conven-

tionally, and this methodology is already paving the way for a new field in aging-related

research based on literature mining. One compelling example of this is how our new

approach can be a useful tool in drug repositioning.

Introduction

A lot of work has been done in the fields of health, longevity, and anti-aging since long-lived

strains in Caenorhabditis elegans were first isolated [1]. In addition, the human genome project

was completed in 2003 [2], and it has fundamentally altered methods of researching biological

and physiological phenomena. It has also provided a vast amount of data to the research com-

munity. However, it is questionable whether this data is being used effectively in our quest to

understand aging and longevity. Basic research results obtained from a reductionist approach

in biology and a bioinformatic approach in genome science have limited usefulness for gener-

ating insights on future health, longevity, and anti-aging-related research on a case by case

basis.

Bioinformatic analyses are used to provide information overviews, and extract valuable

data by collecting and analyzing an extensive amount of information derived from various

sources, including microarray [3, 4] and literature data [5]. The bioinformatic method has

been incorporated into data analyses in biology, nutrition [6], and medical science [5] as well

as aging research [7, 8], which explains why research terms such as translational bioinformatics
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[9, 10], health informatics [11, 12], and biomedical informatics [13, 14] have been defined and

used on par with the newly coined term ‘bioinformatics’. These terms no longer describe fledg-

ling disciplines but rather firmly established fields. However, the limits of reductionism still

remain.

Deep learning as a machine-learning technique may have the potential to manage the limi-

tations of reductionism on biological and physiological data and provides new insights on

research trends [15]. This technique is capable of discovering intricate structures in high-

dimensional data. Therefore, it is applicable to many domains of science. For example, deep

learning was used to predict the activity of potential drug molecule [16] and the effects of

mutations in non-coding DNA on gene expression and disease [17]. However, deep learning

comprises layers of features that are not designed by human engineers. These layers are

obtained using a general-purpose learning procedure of machine learning. For this reason,

only the input provided by the researcher and the results gained from machine-learning are

observed. Thus, this technique may sometimes provide unsatisfactory results because research-

ers usually pursue the question of “Why?” in the world of science. For example, even if aging-

related genes are identified based on deep learning, the reasons why these aging-related genes

were selected as genes related to aging will remain unclear.

In order to overcome the limitations of reductionism in this study, we implemented a new

approach that incorporates bioinformatics into the literature mining method. Unlike results

obtained solely from deep learning, this new approach provides an explanation as to why

genes are selected as aging-related genes, and which genes should be focused on in future

research. Furthermore, our approach is not confined to aging research and can provide new

insights into various research fields, by the effective use of an expanded knowledge base.

Results

It is indispensable to identify all aging-related genes involved in the aging phenomenon to

comprehend the mechanisms of aging. In addition, overviewing the causal relationship

between aging, disease, food, and lifestyle using these identified aging-related genes can lead to

a better understanding of the mechanisms of aging, which will ultimately lead to the realization

of healthy longevity. First, we identified aging-related genes by using our data mining tech-

niques that identify the latest aging-related genes efficiently, effectively and comprehensively.

Next, in order to verify the identified aging-related genes, we made a comparison to other

aging-related databases. Then, in order to verify the usefulness of our new approach, we made

a comparison between knowledge obtained via our new approach and data obtained via wet

experiments. Finally, we demonstrated that our approach leads to a better perspective on

research trends by providing an expanded knowledge base to work from. It can be observed

that this methodology is already paving the way for a new field based on literature mining in

aging-related research.

Identifying aging-related genes

Aging is characterized by a progressive loss of physiological integrity, leading to impaired

function and increased susceptibility to death. Recently, aging hallmarks, which are generally

considered to contribute to the aging process, have been proposed [18, 19]. Using our efficient

literature mining technique [20], we identified candidate aging-related genes that may be con-

nected to these aging hallmarks.

First, we identified 45 aging-related terms (including ‘aging’, ‘senescence’ and ‘longevity)

that occurred frequently in PubMed abstracts about aging (Table 1). Then, we identified 4,227

aging-related genes based on the hypothesis that a gene is an aging-related gene if it co-occurs
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Table 1. Forty-five aging-related terms.

Aging-related terms Number of aging-related genes based on single sentence

co-occurrence

Number of aging-related genes based on abstract

co-occurrence

AGE-ASSOCIATED 383 1,032

AGE-CORRELATED 5 14

AGE-DEPENDENCE 13 42

AGE-DEPENDENT 949 2,166

AGED-OBESE 4 8

AGE-INDUCED 139 333

AGEING 615 1,629

AGEING-ASSOCIATED 21 51

AGEING-DEPENDENT 4 9

AGEING-INDUCED 10 41

AGEING-LIKE 9 13

AGEING-RELATED 27 118

AGEING-SUPPRESSOR 0 0

AGE-MATCHED 1,533 3,106

AGE-RELATED 1,295 3,229

AGE-SENSITIVE 6 46

AGE-SPECIFIC 191 693

AGING 1,885 4,317

AGING-ASSOCIATED 105 353

AGING-DEPENDENT 24 78

AGING-INDUCED 39 151

AGING-LIKE 20 68

AGING-RELATED 185 566

AGING-SUPPRESSOR 4 21

ANTI-AGEING 17 103

ANTI-AGING 87 365

HEALTH-RELATED 151 789

HEALTHSPAN 17 94

HEALTHSPANS 0 0

LIFE EXTENSION 33 82

LIFE-EXTENDING 8 36

LIFESPAN 832 2,190

LIFE-SPAN 115 362

LIFESPAN: 3 6

LIFESPANS 55 217

LIFE-SPANS 7 33

LONGEVITY 626 1,664

LONG-LIVED 485 1,360

LONG-LIVING 30 107

SENESCENCE 1,597 3,147

SENESCENCE-ACCELERATED 45 258

SENESCENCE-ASSOCIATED 322 841

SENESCENCE-LIKE 103 244

SENESCENCE-RELATED 63 169

SENESCENT 711 1,466

https://doi.org/10.1371/journal.pone.0183534.t001
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with at least one of our pre-selected aging-related terms in a single sentence (S1 Table). A

higher degree of accuracy is guaranteed by obtaining results based on co-occurrences within

single sentences.

However, certain genes with the potential to be classified as aging-related genes will not be

selected based on this criterion. Hence, by changing the criteria to co-occurrences in ‘the same

abstract’, 7,416 aging-related genes were identified from literature collections (S2 Table). Are

the 3,189 genes that were not selected on the ‘single sentence’ criterion true aging-related

genes? The answer to this question will provide clues to the most useful criteria to use when

identifying aging-related genes. In statistics, a confidence interval can be used to describe how

reliable survey results are. For this study, a 95% confidence interval, which reflects a signifi-

cance level of 0.05, was applied used by using the following formula:

R � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð1 � RÞ

n

r

< p < Rþ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð1 � RÞ

n

r

ð1Þ

We randomly selected 127 out of 3,189 genes, and we determined that 115 out of 127 are aging

related genes. We used n = 127, and R ¼ 115

127
¼ 0:906, and obtained a confidence interval of

85.5% to 95.6%. Similarly, we randomly chose 4 more different sets of 127 genes, and we

obtained the following confidence intervals: 82.6% to 93.8%, 87.4% to 96.8%, 88.5% to 97.4%,

90.5% to 98.5%. We have decided whether the genes that we selected randomly are true aging-

related genes, by examining the relationships between genes and aging-related terms in

abstract texts. When this technique used, some aging-related genes may appear as false posi-

tives. Consequently, the lower limit of the confidence interval is likely to be greater than 82.6%

when considering the entire paper rather than just the abstract. On this basis, we decided that

it would be best to use ‘the same abstract’ as the criterion for identifying aging-related genes.

In order to obtain a more comprehensive list of aging-related genes, we not only used litera-

ture mining, but we also used the pathway hypothesis, which states that a gene is an aging-

related gene if it occurs in the same pathway as a pre-established aging-related gene. This

hypothesis is based on the assumption that genes involved in the same biological phenomenon

belong to the same pathway. We identified 1,339 additional aging-related candidate genes

based on the pathway hypothesis. We also did an in-depth investigation of one of these addi-

tional candidate genes, which is the TNF receptor associated factor 5 (TRAF5) gene. It occurs

in the NF-kappa B signaling pathway (hsa04064) of the poly (ADP-ribose) polymerase 1

(PARP1) gene, which was identified as an aging-related gene by our literature mining tech-

nique. The NF-kappa B activation has been reported as a hallmark of the aging process [21]. In

addition, it has been reported that TRAF5 regulates the IL-6R signaling needed for Th17 devel-

opment [22], and the Th17/Treg balance is disturbed during aging [23]. These results suggest

the following: one is that TRAF5 is an aging-related gene, and the other is that extracting genes

that occur in the same pathway as aging-related genes is a valid method for identifying the

highest number of aging-related genes.

However, if pre-selected aging-related genes identified by literature mining include false

positives, aging-related genes identified based on the pre-selected aging-related genes are likely

to include false positives as well. Therefore, the research strategy may be determined on the

basis of the researcher’s aims. Some researchers may favor the highest number of results

whereas others will favor the most accurate results. For example, the following strategy can be

adopted to reduce false positives and accurately select aging-related genes: identify reliable

aging-related genes by intentionally using restricted criteria and then select genes located on

the same pathway as the pre-selected aging-related genes to identify the highest number of

aging-related genes.
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Verifying aging-related genes

In order to verify identified aging-related genes, the data from four public databases were

used: GenAge [24], AgeFactDB [25], Digital Ageing Atlas [26] (hereafter called ‘Atlas’), AGE-

MAP [27]. In this study, because we focused on protein-coding genes obtained from human

gene data, non-human and non-protein-coding genes in these databases were removed as veri-

fication data. For example, a non-coding RNA gene telomerase RNA component (TERC) was

excluded from GenAge, and 304 genes out of 305 genes in GenAge were used. Additionally,

6,742 human homologous genes corresponding to 8,932 mouse genes in AGEMAP were used.

We checked whether the identified aging-related genes covered all of the genes in GenAge,

because GenAge offers benchmark data for aging-related genes. By incorporating pathway

information, the coverage of the genes in GenAge was increased from 90.1% (274 genes) to

94.4% (287 genes) for co-occurrences in a single sentence and from 96.1% (292 genes) to

99.0% (301 genes) for co-occurrences in the same abstract (see the second column from the

right in Table 2). Incidentally, as shown in Table 2, AgeFactDB covered 94.1% (286 genes) of

the genes in GenAge, which was similar to the percentage covered by our database, whereas

Atlas and AGEMAP covered only 23.4% (71 genes) and 55.3% (168 genes), respectively.

In addition, we compared the coverage of the candidate aging-related genes identified by

our method, and those present in other aging databases. The sirtuin genes SIRT1—SIRT7 in

mammals, which are also known as longevity-related genes, have received significant attention

for their regulatory role in metabolism and aging [28–30]. It has been reported that these lon-

gevity-related genes mediate both the anti-aging effect and lifespan extension by way of calorie

restriction [31]. We found that candidate aging-related genes identified by our literature min-

ing approach contained all of the sirtuin genes, whereas the other databases did not despite

being published after all the sirtuin genes had been reported (see the rightmost column in

Table 2). These results suggest that our literature mining approach is effective at rapidly identi-

fying the latest aging-related genes, even when allowing for false positives.

Classification and overview generate insights

The purpose of knowledge integration via heatmaps [32] is to understand the relationship

between aging-related genes and aging-related causes and/or aging-related diseases. Heatmaps

are a tool for obtaining classifications and overviews, and they help predict the future of aging-

related research. For this study, heatmaps were produced based on the Dice score, which is

used to measure the association strength of two words. Dice is defined as follows:

Diceðx; yÞ ¼
2 � f ðx; yÞ
f ðxÞ � f ðyÞ

ð2Þ

Table 2. Comparison of four public databases.

Aging database Number of aging genes GenAge Coverage† Sirtuin genes

Single sentence co-occurrence

(Including gene on the same pathway

4,227

6,140

274 (90.1%)

287 (94.4%)

SIRT1-SIRT7

Abstract co-occurrences

(Including gene on the same pathway)

7,416

8,755

292 (96.1%)

301 (99.0%)

SIRT1-SIRT7

GenAge 304 - SIRT1, SIRT3, SIRT6, SIRT7

AgeFactDB 856 286 (94.1%) SIRT1-SIRT3, SIRT6, SIRT7

Atlas 2,599 71 (23.4%) SIRT1, SIRT5

AGEMAP 6,742 168 (55.3%) SIRT1, SIRT2, SIRT7

†Number of genes in common with the genes in GenAge.

https://doi.org/10.1371/journal.pone.0183534.t002
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f(x;y) being the frequency of co-occurrence of x and y, and f(x) and f(y) are the frequency of

occurrence of x and y anywhere in the abstract. If x and y tend to occur in conjunction, their

Dice score will be high. The Dice score ranges from 0 to 1, where 1 indicates a perfect overlap.

The heatmap in Fig 1 was produced for 7,416 aging-related genes identified by literature

mining, 3 aging-related causes and 11 aging-related diseases. Aging-related causes and diseases

Fig 1. Heatmap providing an overview of 6,551 aging-related genes. Heatmaps provide overviews of the

relationships between aging-related genes and aging-related causes and/or aging-related diseases. Aging-related

causes are marked with an asterisk. Three aging-related causes and 11 aging-related diseases were selected for

this paper. Out of our 7,416 aging related genes, 6,551 genes co-occurred with at least one of the 14 terms we

selected. The vertical axis consists of all 6,551 genes.

https://doi.org/10.1371/journal.pone.0183534.g001
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can be selected based on specific research objectives, and in this case 14 terms were selected.

865 out of 7,416 aging-related candidate genes did not co-occur with any of the14 terms on the

horizontal axis. A possible explanation for this is that though these genes did not co-occur

with our 14 selected terms, they may have co-occurred with other aging-related diseases.

There were only 128 genes out of 7,416 that co-occurred with all 14 terms (S3 Table). Although

there is some fluctuation, overall most of these genes show a gradually increasing number of

co-occurrences with aging-related terms in PubMed abstracts, and they have been studied

from various standpoints such as pathways and disease. Therefore, these genes may be a key to

understanding the mechanisms involved in aging.

The vertical axis of Fig 1 consists of all 6,551 genes, which co-occurred with at least one of

14 terms, while Fig 2 consists of the top 1,000 genes out of 6,551 aging-related genes. Any

number of aging-related genes can be placed on the vertical axis. In Fig 2, 1,000 were chosen

due to their co-occurrences in the highest number of publications. However, the higher the

number of aging-related genes chosen, the more comprehensive the overview. Interestingly,

by comparing Figs 1 and 2, it can be seen that Reactive oxygen species (ROS) and inflamma-

tion share most of the same aging-related genes, whereas glycation doesn’t. Out of 6,551 genes,

there are only 915 that are involved in glycation, and 590 out of 915 genes are listed in the top

1,000 aging-related genes. As far as the 5,551 genes besides the top 1,000 are concerned, only

325 (0.06%) are involved in glycation. This may suggest that glycation has not been as thor-

oughly studied as it should be in relation to aging. This conclusion may become a guideline for

future research.

ROS and inflammation are in close proximity to deafness on the heatmap. Consequently, it

can be inferred that ROS [33] and inflammation [34] are deeply related to cause of deafness. In

addition, it is likely that glycation shares more of the same aging-related genes with AD and

Fibrosis than it does with other diseases, due to its proximity to them. This finding suggests

that reducing glycation is an important method for preventing or delaying AD and Fibrosis.

As far as aging-related diseases are concerned, the close proximity between deafness and

AD on the heatmap indicates that Deafness and AD are closely related. Incidentally, it has

been established that there is a significant link between hearing loss and the development of

dementia [35–38]. In addition, the heatmap shows that the following pairs are in close proxim-

ity: Hyperinsulinemia and Insulin resistance, Hypertension and Cardiovascular disease, and

Diabetes mellitus and Hyperglycemia. Therefore, it is likely that these pairs share the same

aging-related genes. Moreover, brain-related diseases, such as Neurogenerative disease and

Dementia, are closer to the four diseases on the far right-hand side: Hypertension [39, 40],

Cardiovascular disease [41–43], Diabetes mellitus [44–46], Hyperglycemia [47, 48]. This is a

demonstration of how our approach can provide overviews of scientific literature to date, and

reaffirm scientific results that are understood in the science world.

Mitochondria play a central role in energy production, and their dysfunction is thought to

be involved in aging, Diabetes mellitus, Neurodegenerative diseases and Cancer [49–51]. The

heatmap in Fig 3 was produced for the 474 mitochondria-related genes that co-occurred with

at least one of the14 terms we selected. MitoCarta2.0 [52], which is a public database, was used

to acquire information about mitochondria proteins. This heatmap shows that aging-related

genes that are associated with mitochondria co-occur more frequently with ROS than inflam-

mation, which is considered by many to be the most common cause of aging. This result sug-

gests that the progression of aging in mitochondria might be mainly caused by ROS. The

mitochondrial theory of aging postulates that reactive oxygen species (ROS) generated inside

mitochondria damage key mitochondrial components, including mitochondria DNA

(mtDNA) [53]. Such damage accumulates with time and major phenotypes associated with

aging are caused by mitochondrial dysfunction [53, 54].
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Fig 2. Heatmap providing an overview of the top 1,000 genes. The vertical axis consists of the top 1,000

genes out of 6,551 aging-related genes. Although any number of aging-related genes can be placed on the

vertical axis, in this case, 1,000 were chosen. These genes were selected on the basis of their co-occurrences

with the aging-related causes and/or diseases on the horizontal axis in the highest number of publications.

https://doi.org/10.1371/journal.pone.0183534.g002
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Fig 3. Heatmap providing an overview of aging-related genes that are related to mitochondria. Out of

our 7,416 aging related genes, only 512 genes are related to mitochondria. The vertical axis consists of the

474 mitochondria-related genes that co-occurred with at least one of 14 terms we selected.

https://doi.org/10.1371/journal.pone.0183534.g003
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The reason there is a difference between Figs 1, 2, and 3 is follows: Fig 1 has all aging-related

candidate genes, Fig 2 has the top 1,000 genes on the vertical axis, and Fig 3 has been narrowed

down to aging-related genes that are connected to Mitochondria. The perspective offered by

the heatmap depends on the information in both the vertical and the horizontal axis. There-

fore, one should keep in mind that the heatmaps provided in this paper offer only a limited

number of perspectives out of the many potential overviews possible. Consequently, the

knowledge provided by these heatmaps should be considered a working hypothesis rather

than completely factual data.

Fig 4 summarizes the results for the longevity genes SIRT1-SIRT7. The gene locations are

written in parenthesis on the vertical axis. From this heatmap, it can be seen that SIRT2,

SIRT3, and SIRT5, SIRT7, form two separate clusters. We can infer that the genes in each clus-

ter may have similar functions. However, while SIRT3 and SIRT5 affect the mitochondria,

SIRT 2 and SIRT7 affect the nucleus. Therefore, these two clusters may work interchangeably.

It can be seen that SIRT4 is more closely related to Hyperinsulinemia than other sirtuin genes,

and Hyperglycemia has been well researched in relation to SIRT1, SIRT6, and SIRT7. In addi-

tion, these sirtuin genes are all located in the nucleus, and are related to the same diseases

including Neurogenerative diseases, Insulin resistance, and Cardiovascular disease. It can also

be predicted that these three genes are involved in similar mechanisms of aging.

Surprisingly, no publications with co-occurrences between deafness and sirtuin genes were

found. In contrast, we found that ‘age-related hearing loss’ co-occurred with 118 genes includ-

ing SIRT1,2,3,6, and 7. The first result was obtained by using ’deafness’ as the keyword disease

name for literature mining, while the second was obtained using ’age-related hearing loss’.

Considering these results, it is clear that selecting disease names and/or causes precisely is

important in the prediction of significant genes for future aging-related research.

By using our literature mining approach, we can firstly identify the genes of interest quickly,

including the latest genes, and then overview the relationships between aging-related genes

and aging-related causes and/or aging-related diseases. In addition, our new approach can

provide both an overview and a highly-detailed view, which is useful in gaining new insights.

Consequently, we can obtain useful information that deepens insights on future trends, which

differs from data obtained conventionally.

Discussion

Gene dictionary

Generally, a gene has a primary gene symbol and a number of aliases. The publications where

the gene occurs are mined for both primary gene symbols and the corresponding aliases. How-

ever, this can lead to false positives for the following two reasons: a primary gene symbol can

be used as an alias for other genes, and (in such cases) the primary gene symbol was deleted as

the alias of other genes, and the same aliases can also be used for other genes (which requires

the identification of the genes that correspond to the alias). This problem must be considered.

Measures were taken to mitigate this problem in our study. However, they are not addressed

in this paper.

Identifying aging-related terms

Aging research has been done for various research purposes, such as clarifying the cause of dis-

ease, preventing aging, and realizing health longevity. In order to include so many aspects of

aging research, we selected a wide range of aging-related terms, which are involved in aging,

anti-aging, and health longevity as candidate terms, and which also occurred frequently in

PubMed abstracts about aging. In this paper, we regard a gene as an aging-related gene if it co-
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Fig 4. Heatmap providing an overview of sirtuin genes. The vertical axis consists of sirtuin genes SIRT1-SIRT7. This heatmap shows

that SIRT2, SIRT3, and SIRT5, SIRT7, form two separate clusters. SIRT3 and SIRT5 affect the mitochondria, while SIRT 2 and SIRT7

affect the nucleus. Therefore, we can infer that these two clusters may work interchangeably.

https://doi.org/10.1371/journal.pone.0183534.g004
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occurs with at least one of these aging-related terms in a single sentence or the same abstract.

In order to reduce false positives, we considered a method that can cover more aging-related

genes using fewer aging-related terms. By viewing a histogram (Fig 5), we were able to see that

45 aging-related terms were both necessary and sufficient to identify all aging-related genes. In

this graph, we can see that, by using the terms from ‘aging’ to ‘age-dependence’ exclusively, the

cumulative number of aging-related genes that correspond to our 45 aging-related terms is

7,416. This indicates that our 45 aging-related terms are sufficient to identify all of the aging-

related genes needed to meet our research objectives.

In addition to the 45 aging-related terms chosen, we originally listed another 14 terms that

were eventually discarded (Fig 6). We questioned whether they should be considered aging-

related terms. We identified 8,582-related genes by using only ‘healthy’ as shown in Fig 6.

2,808 of them did not co-occur with any of the 45 aging-related terms chosen, and 5,774 of

them had already been identified in the group of 7,416 aging-related genes. This means that

every one of those 5,774 genes co-occurred with at least one of the 45 aging-related terms,

aside from healthy, in the same abstract. Incidentally, 1,642 out of 7,416 aging-related genes

were not identified by using ‘healthy’. This means that though the term ‘healthy’ can identify a

wide range of genes, is too versatile to identify specific genes. This study is aimed at clarifying

the mechanisms of aging and making healthy longevity attainable. While the 5,774 genes are

likely to be involved in both aging and healthy longevity, the additional 2,808 genes widen the

scope beyond that. We have decided not to use ‘healthy’ as an aging-related term, or consider

the 2,808 new genes, which were identified by using ‘healthy’, as healthy longevity genes

related to aging for this reason. If the scope of the research requires it, these genes can be

included. There are various types of aging-related research and we should choose aging-related

terms according to their purpose. In our opinion, this potential flexibility is one powerful

advantage of text mining. We found that the higher number of aging-related terms used, the

Fig 5. Histogram representing the cumulative number of aging-related genes. The blue bars show the number of aging-related genes for

each individual term and the orange line represents the cumulative number of aging-related genes identified by the terms progressively. For

example, 5,083 aging-related genes were identified by using the terms “aging” and “age-related”, and when the term ‘senescence’ is added, the

total comes to 5856.

https://doi.org/10.1371/journal.pone.0183534.g005
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higher the number of false positives present in the newly discovered aging-related genes.

Therefore, we listed 45 aging-related terms that satisfy our requirements for avoiding both

false positives and false negatives aging-related genes.

Identifying aging-related genes

In this study, we proposed two hypotheses for identifying aging-related genes. One is that a

gene is an aging-related gene if it co-occurs with at least one of our pre-selected aging-related

terms in a single sentence or the same abstract. Another is that a gene is an aging-related gene

if it occurs in the same pathway as a pre-established aging-related gene. In order to guarantee

the accuracy of identified aging-related genes we should choose the ‘single sentence’ criterion.

Conversely, in order to guarantee quantity, we should choose to use the pathway hypothesis.

In this study, in order to guarantee both sufficient quantity and quality, we chose to use the

’same abstract’ criterion, and identified 7, 416 aging-related genes, which consist of 4,227

aging related gene with co-occurrences in the same sentences, and 3,189 with co-occurrences

in the same abstracts.

In Contrast, the classification of false positives depends on the focus of the research. There-

fore, we determined that certain genes, which were not in alignment with our research objec-

tives, were false positives. The tally of false positives is dependent on the criterion used to

identify the aging-related genes. We randomly selected 845 out of the 4,227 genes (20%) and

638 out of the 3,189 genes (20%) in order to check for false positives, and we found that 41 and

Fig 6. Histogram of the 14 terms that were discarded. The blue bars show the number of genes that are included in the group of 7,416 aging-

related genes identified by using 45 aging-related terms. The orange bars show the number of newly identified genes for each term, and the gray

line represents the cumulative number of newly identified genes by the terms progressively.

https://doi.org/10.1371/journal.pone.0183534.g006
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53 genes were not aging-related genes, respectively. It is better to avoid giving a specific per-

centage, as the definition of false positives depends on the focus of the research. Our research

gives false positives to some extent. Even when attempting to guarantee quality by using the

single sentence criterion, false positives occur. Most of these false positives are due to gene

symbol occurrences, because the gene symbol has the same spelling as acronyms, which sym-

bolize other gene names or phrases unrelated to genes. In terms of reducing false positives, our

study was successful to a certain extent. However, this will be the focus of our further research

as more work is needed in this area.

In any case, one of the goals of this study is to propose genes that will be of interest to exper-

imental researchers in the future. Whether genes can suppress or promote disease, it is impor-

tant to recognize the fact that both types of genes have been attracting attention as research

subjects. The advantage of text mining is that it can be used to gain high quality coverage. In

addition, it is possible to narrow the focus down to genes of interest that match specific

research objectives by using keywords, which are related to research objectives with a particu-

lar focus.

Comparison to other aging databases

Recently, several databases developed for aging-related genes have become widely accessible.

In order to verify our identified aging-related genes, we compared them to aging-related genes

in the following four databases: GenAge, AgeFactDB, Atlas, AgeMap. All the genes related to

aging must be identified to understand the molecular mechanisms of aging and related dis-

eases. The databases mentioned above are manually curated and provide information on high-

quality aging-related genes, although they do not cover all of the genes that are associated with

the aging process. However, because our approach is based on the scientific journal literature

published to date, our database covers potential aging-related genes published so far.

Providing new insights

We investigated how many of our aging-related genes were used as target genes for known

drugs, in order to demonstrate that our approach is an efficient tool for discovering new thera-

peutic indications for existing drugs. We found that 522 out of 7,146 aging-related genes that

we identified using our literature mining approach are used as the target genes for known

drugs. These genes can be used as a primary filter for discovering new uses for approved

drugs. Metformin targets AMP-activated protein kinase (AMPK), and has been used to treat

diabetes since the 40’s [55]. It is currently in clinical trials as an anti-aging drug [56]. Genes

known as AMPK are PRKAA1 and PRKAA2, and they are aging-related genes. Moreover, 38

out of 128 genes that co-occurred with 14 terms that are deeply related to aging are used as the

target genes for known drugs. For example, the TLR2 gene is targeted by Erlotinib (DB00045),

which is used to prevent Lyme Disease. This gene not only exists on pathways involved in

aging and longevity such as MAPK signaling (hsa04010) and PI3K-Akt signaling (hsa04151),

but it also exists on the following signaling pathways: leishmaniasis (hsa05140), malaria

(hsa05144), toxoplasmosis (hsa05145), amoebiasis (hsa05146), tuberculosis (hsa05152), hepati-

tis B (hsa05161), measles (hsa05162), inflammatory bowel disease (hsa05321), rheumatoid

arthritis (hsa05323), etc. TRL2 is clearly related to signaling pathways involved in aging and

infection. The use of Erlotinib can be considered a possible treatment for aging-related dis-

eases and infection-related diseases in the absence of contraindications related to side effects.

For this reason, our approach is considered highly effective as a springboard to new discoveries

that can lead to new therapeutic indications for existing drugs, commonly known as drug

repositioning.
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In this study, to overcome the limitations of reductionism, we implemented a new approach

that incorporates bioinformatics in the literature mining method. The results obtained based

on our approach can explain why genes are selected as aging-related genes and which genes

should be focused on in future research. Furthermore, our approach can also provide new

insights into various research fields, by the effective use of an expanded knowledge base. It

would be also beneficial to collaborate with wet-lab researchers, in order to help them expedite

the selection process for future research, and to fine tune our approach on the basis of their

feedback.

Materials and methods

Our approach consists of 3 parts: creating term dictionaries and literature databases, identify-

ing aging-related genes, and classifying and providing an overview of the integrated informa-

tion. The details of each step are described below.

Creation of term dictionaries and a literature database

In this step, 3 term dictionaries used as keywords for literature mining are created and a docu-

ment database is constructed.

Gene dictionary. The human gene data from the FTP site of the National Center for Bio-

technology Information (NCBI) (ftp://ftp.ncbi.nlm.gov/gene/DATA/) for July 2016 were

downloaded. First, gene IDs, symbols, synonyms, and gene name fields from the data were

selected. Next, the genes that were indicated as protein coding in the ‘Type’ field were selected.

Then, when a primary gene symbol could be used as an alias for other genes, the primary gene

symbol was deleted as the alias of other genes. The resulting gene dictionary contained a total

of 68,260 entries, including gene synonyms (S4 Table).

Disease dictionary. The disease terms from the Comparative Toxicogenomics Database

(CTD) [57], which provides curated disease names for July 2016, were used. First, primary dis-

ease names that had MeSH IDs or OMIM IDs were selected. Next, disease synonyms that were

not specific to a single disease and/or have the same spellings as general words were deleted.

Then, the diseases terms that were indicated as animal diseases in the SlimMapping field were

deleted. The resulting disease dictionary contained a total of 75,756 entries, including disease

synonyms.

Aging-related term dictionary. To collect aging-related terms, GenAge, which is an

aging gene database that provides benchmark data for aging-related genes [24], was used. Gen-

Age offers information on 305 aging-related genes and their PubMed IDs released in October

2015. Frequent terms relevant to aging and longevity in PubMed abstracts were extracted

based on PubMed IDs, with the exclusion of general terms such as ‘is’, ‘a’ and ‘this’. Finally, 45

terms related to aging and longevity were listed (Table 1).

Literature database. To form the foundation of our literature database, MEDLINE/

PubMed abstracts from NLM (ftp://ftp.ncbi.nlm.nih.gov/pubmed/) for June 2016 were down-

loaded and information from a total of 27,420,471 documents was obtained. Because the con-

nections between genes, aging-related terms, and disease names were evaluated by using the

aforementioned dictionaries and identifying frequently used terms in the Abstract Text fields,

documents that did not contain these fields were eliminated. Finally, the PubMed IDs and

Abstract Text fields were extracted from the remaining documents, which totaled 17,541,101.

Identifying aging-related genes

To identify aging-related genes, the following hypothesis was applied: a gene is an aging-

related gene if it co-occurs with aging-related terms in the same sentences. In this study, the
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co-occurrence frequency of gene symbols and aging-related terms in the literature was used as

the evaluation criteria for relationships between aging-related terms and genes. The higher the

number of publications in which the gene and aging-related terms co-occurred, the more

likely that the gene was an aging-related gene. Specifically, the following procedures were used:

First, all of the gene symbol occurrences were extracted from our non-redundant PubMed

abstracts by performing a keyword search. Because gene symbols are generally created from

the acronyms of gene names, certain symbols, such as the gene IMPACT (imprinted and

ancient gene protein homolog), have the same spellings as general words, and these symbols

may produce false positives in keyword searches. Therefore, in addition to the keyword search,

additional gene symbol occurrence checks were performed, which are referred to as neighbor

searches [20]. Neighbor searches check whether any of the words that have been abbreviated

to form a symbol, which can be called a neighbor search word set, appear near the symbol in a

single sentence. If any word from the neighbor search word set is found in the same sentence

as the corresponding gene symbol, the occurrence is considered to be positive. The gene occur-

rence table consists of Gene IDs, PubMed IDs, and the sentence numbers where the corre-

sponding gene symbols appear in the abstracts.

Fig 7 shows an example of a neighbor search. Consider the case in which gene symbol ALK,

Entrez Gene ID 238, occurs in an abstract. The gene names of ALK are anaplastic lymphoma

receptor tyrosine kinase, CD246 antigen and mutant anaplastic lymphoma kinase. By splitting

these gene names at the delimiters, we obtain a neighbor search word set: anaplastic, lym-

phoma, receptor, tyrosine, kinase, CD246, antigen and mutant. Among these words, receptor,

Fig 7. An example of a neighbor search. For the gene names of ALK, the following neighbor search words are generated: anaplastic, lymphoma,

and CD246. In the first case (PubMed ID = 7772531), anaplastic and lymphoma occur. Therefore, this occurrence of ALK is considered to be

positive. In the second case (PubMed ID = 1522609), none of these neighbor search words appear. Therefore, this occurrence is discarded.

https://doi.org/10.1371/journal.pone.0183534.g007

New insights via literature mining

PLOS ONE | https://doi.org/10.1371/journal.pone.0183534 August 17, 2017 16 / 21

https://doi.org/10.1371/journal.pone.0183534.g007
https://doi.org/10.1371/journal.pone.0183534


tyrosine, kinase, antigen, and mutant are dropped as a neighbor search word set because they

are not specific to ALK. Next, the neighbor search attempts to find any occurrence of one of

these neighbor search words in the sentence in which ALK appears. In the first case, as shown

in Fig 7 (PubMed ID = 7772531), we can see that the words anaplastic and lymphoma occur.

On the other hand, in the second case (PubMed ID = 1522609), none of these words appear.

Therefore, this occurrence of ALK is considered a false positive and is deleted from the gene

occurrence table

Next, the occurrence table for aging-related terms was created by performing a keyword

search, which consisted of PubMed IDs and the sentence numbers where the corresponding

aging-related terms appeared in the abstracts. Then, we regarded the co-occurrence of genes

and aging-related terms in a single sentence as an association between the two. In addition, the

range of term co-occurrence varied, such as in one document, one paragraph, a single sen-

tence, and a string of words of a fixed length. In general, a broad range generates high recall

and low-precision results. We chose to use a single sentence in the same abstract to guarantee

the accuracy of our results for this study. However, certain genes with the potential for classifi-

cation as aging-related genes were not selected based on the aforementioned criteria. To guar-

antee quantity over quality, the co-occurrence of genes and aging-related terms in the same

abstract was considered an association between the two.

Furthermore, to identify the highest number of aging-related genes, the pathway hypothesis

was applied, which states that a gene is an aging-related gene if it occurs in the same pathway

as a pre-established aging-related gene. First, the KEGG database [58], which provides infor-

mation regarding molecular interactions, was checked for aging-related genes that co-occur in

the same sentences as aging-related terms. Then, the genes that occur in the same pathway as

aging-related genes were extracted and added to the list of aging-related genes.

Classification and overview of integrated information

Detailed information related to aging-related genes, including the term co-occurrence fre-

quency, was stored in our database. Because all of the data in the database were linked to gene

IDs, a comprehensive aging-related catalogue on the axis of gene IDs could be created quickly.

For example, the comprehensive catalogue may consist of identified aging-related genes, their

related diseases, related foods, and the number of publications where the genes and other

terms co-occur. By using data in the catalogue and the Heatplus package for R/Bioconductor,

which offers several functions for producing a heatmap [32], aging-related genes can be classi-

fied and future trends in aging-related gene research can be predicted.

Supporting information

S1 Table. 4,227 aging-related genes identified based on the ‘single sentence’ criterion.

(XLSX)

S2 Table. 7,416 aging-related genes identified based on the ‘same abstract’ criterion.

(XLSX)

S3 Table. 128 genes co-occurring with all 14 terms.

(XLSX)

S4 Table. 68,260 gene symbols including synonyms. A zero in the Synonym column indi-

cates a gene synonym, while one indicates a primary gene symbol.

(XLSX)
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18. López-Otı́n C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013; 153:

1194–1217. https://doi.org/10.1016/j.cell.2013.05.039 PMID: 23746838

19. Aunan JR, Watson MM, Hagland HR, Søreide K. Molecular and biological hallmarks of ageing. Br J

Surg. 2016; 103: e29–46. J Clin Immunol. 2009 Jul; 29(4):397–405.

20. Kwon Y, Shimizu S, Sugawara H, Miyazaki S. A novel evaluation measure for identifying drug targets

from the biomedical literature. IPSJ Transactions on Bioinformatics. 2014; 7: 16–23.

21. Salminen A, Kaarniranta K. NF-kappaB signaling in the aging process. J Clin Immunol. 2009; 29: 397–

405. https://doi.org/10.1007/s10875-009-9296-6 PMID: 19408108

22. Nagashima H, Okuyama Y, Hayashi T, Ishii N, So T. TNFR-Associated Factors 2 and 5 Differentially

Regulate the Instructive IL-6 Receptor Signaling Required for Th17 Development. J Immunol. 2016;

196: 4082–4089. https://doi.org/10.4049/jimmunol.1501610 PMID: 27076680

23. Schmitt V, Rink L, Uciechowski P. The Th17/Treg balance is disturbed during aging. Exp Gerontol.

2013; 48: 1379–1386. https://doi.org/10.1016/j.exger.2013.09.003 PMID: 24055797

24. Tacutu R, Craig T, Budovsky A, Wuttke D, Lehmann G, Taranukha D, et al. Human Ageing Genomic

Resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res.

2013; 41: D1027–D1033. https://doi.org/10.1093/nar/gks1155 PMID: 23193293

25. Hhne R, Thalheim T, Shnel J. AgeFactDB—the JenAge Ageing Factor Database—towards data inte-

gration in ageing research. Nucleic Acids Res. 2014; 42: D892–D896. https://doi.org/10.1093/nar/

gkt1073 PMID: 24217911

26. Craig T, Smelick C, Tacutu R, Wuttke D, Wood SH, Stanley H, et al. The Digital Ageing Atlas: integrat-

ing the diversity of age-related changes into a unified resource. Nucleic Acids Res. 2014; 43: D873–

878. https://doi.org/10.1093/nar/gku843 PMID: 25232097

27. Zahn JM, Poosala S, Owen AB, Ingram DK, Lustig A, Carter A, et al. AGEMAP: A gene expression

database for aging in mice. PLoS Genet. 2007: 3; e201. https://doi.org/10.1371/journal.pgen.0030201

PMID: 18081424

28. Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol

Cell Biol. 2012; 13: 225–238. https://doi.org/10.1038/nrm3293 PMID: 22395773

29. Li X, Kazgan N. Mammalian Sirtuins and Energy Metabolism. Int J Biol Sci. 2011; 7: 575–587. PMID:

21614150

30. Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007; 404:

1–13. https://doi.org/10.1042/BJ20070140 PMID: 17447894

31. Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev

Pathol. 2010; 5: 253–95. https://doi.org/10.1146/annurev.pathol.4.110807.092250 PMID: 20078221

32. Gatto L, Breckels LM, Naake T, Gibb S. Visualization of proteomics data using R and Bioconductor.

Proteomics. 2015; 15: 1375–1389. https://doi.org/10.1002/pmic.201400392 PMID: 25690415

33. Karkucinska-Wieckowska A, Lebiedzinska M, Jurkiewicz E, Pajdowska M, Trubicka J, Szymanska-

Debinska T, et al. Increased reactive oxygen species (ROS) production and low catalase level in fibro-

blasts of a girl with MEGDEL association (Leigh syndrome, deafness, 3-methylglutaconic aciduria).

Folia Neuropathol. 2011; 49: 56–63. PMID: 21455844

34. Sone M, Mizuno T, Naganawa S, Nakashima T. Imaging analysis in cases with inflammation-induced

sensorineural hearing loss. Acta Otolaryngol. 2009; 129: 239–243. https://doi.org/10.1080/

00016480802226163 PMID: 18720058

35. Klein CJ, Bird T, Ertekin-Taner N, Lincoln S, Hjorth R, Wu Y, et al. DNMT1 mutation hot spot causes

varied phenotypes of HSAN1 with dementia and hearing loss. Neurology, 2013; 80: 824–828. https://

doi.org/10.1212/WNL.0b013e318284076d PMID: 23365052

New insights via literature mining

PLOS ONE | https://doi.org/10.1371/journal.pone.0183534 August 17, 2017 19 / 21

https://doi.org/10.3414/ME11-06-0002
https://doi.org/10.3414/ME11-06-0002
http://www.ncbi.nlm.nih.gov/pubmed/22146916
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1021/ci500747n
http://www.ncbi.nlm.nih.gov/pubmed/25635324
https://doi.org/10.1093/bioinformatics/btu277
http://www.ncbi.nlm.nih.gov/pubmed/24931975
https://doi.org/10.1016/j.cell.2013.05.039
http://www.ncbi.nlm.nih.gov/pubmed/23746838
https://doi.org/10.1007/s10875-009-9296-6
http://www.ncbi.nlm.nih.gov/pubmed/19408108
https://doi.org/10.4049/jimmunol.1501610
http://www.ncbi.nlm.nih.gov/pubmed/27076680
https://doi.org/10.1016/j.exger.2013.09.003
http://www.ncbi.nlm.nih.gov/pubmed/24055797
https://doi.org/10.1093/nar/gks1155
http://www.ncbi.nlm.nih.gov/pubmed/23193293
https://doi.org/10.1093/nar/gkt1073
https://doi.org/10.1093/nar/gkt1073
http://www.ncbi.nlm.nih.gov/pubmed/24217911
https://doi.org/10.1093/nar/gku843
http://www.ncbi.nlm.nih.gov/pubmed/25232097
https://doi.org/10.1371/journal.pgen.0030201
http://www.ncbi.nlm.nih.gov/pubmed/18081424
https://doi.org/10.1038/nrm3293
http://www.ncbi.nlm.nih.gov/pubmed/22395773
http://www.ncbi.nlm.nih.gov/pubmed/21614150
https://doi.org/10.1042/BJ20070140
http://www.ncbi.nlm.nih.gov/pubmed/17447894
https://doi.org/10.1146/annurev.pathol.4.110807.092250
http://www.ncbi.nlm.nih.gov/pubmed/20078221
https://doi.org/10.1002/pmic.201400392
http://www.ncbi.nlm.nih.gov/pubmed/25690415
http://www.ncbi.nlm.nih.gov/pubmed/21455844
https://doi.org/10.1080/00016480802226163
https://doi.org/10.1080/00016480802226163
http://www.ncbi.nlm.nih.gov/pubmed/18720058
https://doi.org/10.1212/WNL.0b013e318284076d
https://doi.org/10.1212/WNL.0b013e318284076d
http://www.ncbi.nlm.nih.gov/pubmed/23365052
https://doi.org/10.1371/journal.pone.0183534


36. Lin FR, Metter EJ, O’Brien RJ, Resnick SM, Zonderman AB, Ferrucci L. Hearing loss and incident

dementia. Arch Neurol. 2011; 68: 214–220. https://doi.org/10.1001/archneurol.2010.362 PMID:

21320988

37. Lin FR, Yaffe K, Xia J, Xue QL, Harris TB, Purchase-Helzner E, et al. Hearing loss and cognitive decline

in older adults. JAMA Intern Med. 2013; 173: 293–299. https://doi.org/10.1001/jamainternmed.2013.

1868 PMID: 23337978

38. Gurgel RK, Ward PD, Schwartz S, Norton MC, Foster NL, Tschanz JT. Relationship of hearing loss and

dementia: a prospective, population-based study. Otol Neurotol. 2014; 35: 775–781. https://doi.org/10.

1097/MAO.0000000000000313 PMID: 24662628

39. Perrotta M, Lembo G, Carnevale D. Hypertension and Dementia: Epidemiological and Experimental

Evidence Revealing a Detrimental Relationship. Int J Mol Sci. 2016; 17: 347. https://doi.org/10.3390/

ijms17030347 PMID: 27005613

40. Kruyer A, Soplop N, Strickland S, Norris EH. Chronic Hypertension Leads to Neurodegeneration in the

TgSwDI Mouse Model of Alzheimer’s Disease. Hypertension. 2015; 66: 175–182. https://doi.org/10.

1161/HYPERTENSIONAHA.115.05524 PMID: 25941345

41. Firoz CK, Jabir NR, Khan MS, Mahmoud M, Shakil S, Damanhouri GA. An overview on the correlation

of neurological disorders with cardiovascular disease. Saudi J Biol Sci. 2015; 22: 19–23. https://doi.org/

10.1016/j.sjbs.2014.09.003 PMID: 25561878

42. Mahley RW. Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. J Mol Med

(Berl). 2016; 94: 739–746. https://doi.org/10.1007/s00109-016-1427-y PMID: 27277824

43. de Bruijn RF, Ikram MA. Cardiovascular risk factors and future risk of Alzheimer’s disease. BMC Med.

2014; 12: 130. https://doi.org/10.1186/s12916-014-0130-5 PMID: 25385322

44. Verdile G, Fuller SJ, Martins RN. The role of type 2 diabetes in neurodegeneration. Neurobiol Dis. 2015;

84: 22–38. https://doi.org/10.1016/j.nbd.2015.04.008 PMID: 25926349

45. Rajamani U. Causes of Neurodegeneration in Diabetes: Possible Culprits and Therapeutic Targets.

Brain Disord Ther. 2014; 3: 4.

46. Umegaki H. Neurodegeneration in diabetes mellitus. Adv Exp Med Biol. 2012; 724: 258–265. https://

doi.org/10.1007/978-1-4614-0653-2_19 PMID: 22411248

47. Cardoso S, Correia SC, Santos RX, Carvalho C, Candeias E, Duarte AI, et al. Hyperglycemia, hypogly-

cemia and dementia: role of mitochondria and uncoupling proteins. Curr Mol Med. 2013; 13: 586–601.

PMID: 22934852

48. Craft S, Dagogo-Jack SE, Wiethop BV, Murphy C, Nevins RT, Fleischman S, et al. Effects of hypergly-

cemia on memory and hormone levels in dementia of the Alzheimer type: a longitudinal study. Behav

Neurosci. 1993; 107: 926–940. PMID: 8136068

49. Reeve AK, Krishnan KJ, Turnbull DM. Age related mitochondrial degenerative disorders in humans.

Biotechnol J. 2008; 3: 750–756. https://doi.org/10.1002/biot.200800066 PMID: 18512864

50. Lambert AJ, Brand MD. Research on mitochondria and aging, 2006–2007. Aging Cell. 2007; 6: 417–

420. https://doi.org/10.1111/j.1474-9726.2007.00316.x PMID: 17635416

51. Bratic A, Larsson NG. The role of mitochondria in aging. J Clin Invest. 2013; 123: 951–957. https://doi.

org/10.1172/JCI64125 PMID: 23454757

52. Calvo SE, Clauser KR, Mootha VK. MitoCarta2.0: an updated inventory of mammalian mitochondrial

proteins. Nucleic Acids Res. 2015; 44: D1251–1257. https://doi.org/10.1093/nar/gkv1003 PMID:

26450961

53. Loeb LA, Wallace DC, Martin GM. The mitochondrial theory of aging and its relationship to reactive oxy-

gen species damage and somatic mtDNA mutations. Proc Natl Acad Sci USA. 2005; 102: 18769–

18770. https://doi.org/10.1073/pnas.0509776102 PMID: 16365283

54. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A

dawn for evolutionary medicine. Annu Rev Genet. 2005; 39: 359–407. https://doi.org/10.1146/annurev.

genet.39.110304.095751 PMID: 16285865

55. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in

mechanism of metformin action. J Clin Invest. 2001; 108: 1167–1174. https://doi.org/10.1172/JCI13505

PMID: 11602624

56. Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA. Metformin as a Tool to Target Aging. Cell Metab.

2016; 23: 1060–1065. https://doi.org/10.1016/j.cmet.2016.05.011 PMID: 27304507

57. Davis AP, Wiegers TC, King BL, Wiegers J, Grondin CJ, Sciaky D, et al. Generating Gene Ontology-

Disease Inferences to Explore Mechanisms of Human Disease at the Comparative Toxicogenomics

Database. PLoS ONE. 2016; 11: e0155530. https://doi.org/10.1371/journal.pone.0155530 PMID:

27171405

New insights via literature mining

PLOS ONE | https://doi.org/10.1371/journal.pone.0183534 August 17, 2017 20 / 21

https://doi.org/10.1001/archneurol.2010.362
http://www.ncbi.nlm.nih.gov/pubmed/21320988
https://doi.org/10.1001/jamainternmed.2013.1868
https://doi.org/10.1001/jamainternmed.2013.1868
http://www.ncbi.nlm.nih.gov/pubmed/23337978
https://doi.org/10.1097/MAO.0000000000000313
https://doi.org/10.1097/MAO.0000000000000313
http://www.ncbi.nlm.nih.gov/pubmed/24662628
https://doi.org/10.3390/ijms17030347
https://doi.org/10.3390/ijms17030347
http://www.ncbi.nlm.nih.gov/pubmed/27005613
https://doi.org/10.1161/HYPERTENSIONAHA.115.05524
https://doi.org/10.1161/HYPERTENSIONAHA.115.05524
http://www.ncbi.nlm.nih.gov/pubmed/25941345
https://doi.org/10.1016/j.sjbs.2014.09.003
https://doi.org/10.1016/j.sjbs.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25561878
https://doi.org/10.1007/s00109-016-1427-y
http://www.ncbi.nlm.nih.gov/pubmed/27277824
https://doi.org/10.1186/s12916-014-0130-5
http://www.ncbi.nlm.nih.gov/pubmed/25385322
https://doi.org/10.1016/j.nbd.2015.04.008
http://www.ncbi.nlm.nih.gov/pubmed/25926349
https://doi.org/10.1007/978-1-4614-0653-2_19
https://doi.org/10.1007/978-1-4614-0653-2_19
http://www.ncbi.nlm.nih.gov/pubmed/22411248
http://www.ncbi.nlm.nih.gov/pubmed/22934852
http://www.ncbi.nlm.nih.gov/pubmed/8136068
https://doi.org/10.1002/biot.200800066
http://www.ncbi.nlm.nih.gov/pubmed/18512864
https://doi.org/10.1111/j.1474-9726.2007.00316.x
http://www.ncbi.nlm.nih.gov/pubmed/17635416
https://doi.org/10.1172/JCI64125
https://doi.org/10.1172/JCI64125
http://www.ncbi.nlm.nih.gov/pubmed/23454757
https://doi.org/10.1093/nar/gkv1003
http://www.ncbi.nlm.nih.gov/pubmed/26450961
https://doi.org/10.1073/pnas.0509776102
http://www.ncbi.nlm.nih.gov/pubmed/16365283
https://doi.org/10.1146/annurev.genet.39.110304.095751
https://doi.org/10.1146/annurev.genet.39.110304.095751
http://www.ncbi.nlm.nih.gov/pubmed/16285865
https://doi.org/10.1172/JCI13505
http://www.ncbi.nlm.nih.gov/pubmed/11602624
https://doi.org/10.1016/j.cmet.2016.05.011
http://www.ncbi.nlm.nih.gov/pubmed/27304507
https://doi.org/10.1371/journal.pone.0155530
http://www.ncbi.nlm.nih.gov/pubmed/27171405
https://doi.org/10.1371/journal.pone.0183534


58. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene

and protein annotation. Nucleic Acids Res. 2016; 44: D457–D462. https://doi.org/10.1093/nar/gkv1070

PMID: 26476454

New insights via literature mining

PLOS ONE | https://doi.org/10.1371/journal.pone.0183534 August 17, 2017 21 / 21

https://doi.org/10.1093/nar/gkv1070
http://www.ncbi.nlm.nih.gov/pubmed/26476454
https://doi.org/10.1371/journal.pone.0183534

