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Abstract

Mass migrations by Odonata, although less studied than those of Monarch butterflies and

plague locusts, have provoked comment and study for many years. Relatively recently,

increasing interest in dragonflies, supported by new technologies, has resulted in more

detailed knowledge of the species involved, behavioral mechanisms, and geographic

extent. In this paper we examine, in four independent but complementary studies, how larval

habitat and emergence phenology interact with climate to shape the evolution of migratory

strategy in Anax junius, a common species throughout much of the eastern United States

and southern Canada. In brief, we argue that fish predation on larvae, coupled with the need

for ample emergent vegetation for oviposition and adult eclosion, dictates that larval devel-

opment and survival is optimal in ponds that are neither permanent nor extremely ephem-

eral. Coupled with annual variation in regional weather and winters in much of their range

too cold for adult survival, conditions facing newly emerged A. junius may unpredictably

favor either local reproduction or long-distance movement to more favorable areas. Both

temperature and hydroperiod tend to favor local reproduction early in the adult activity period

and migration later, so late emerging adults are more likely to migrate. No single pond is

always predictably suitable or unsuitable, however, so ovipositing females also may spread

the risk to their offspring by ovipositing at multiple sites that, for migrants, may be distributed

over very long distances.

Introduction

Although insect migration has not received as much popular or scientific attention as migra-

tion of birds or large mammals, it is a biologically widespread and important phenomenon,

with consequences for community structure and interactions, biomass and nutrient transfer,

and vectoring of disease and ecological community interactions [1, 2]. Moreover, comparison

of genetic structures of migratory and non-migratory populations have shed sometimes
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surprising light on their biogeography and demography [3]. Here we present new data on an

important but understudied North American dragonfly and use these data to infer how selec-

tion has shaped its life history to include sometimes spectacular but facultative migration.

The Common Green Darner, Anax junius (Drury, 1770), is an abundant and conspicuous

dragonfly throughout much of temperate North America, with adults occurring as far north as

50˚N and larvae overwintering to at least 45˚N [4]. Adult females, usually accompanied by a

male in tandem, oviposit in a variety of aquatic habitats, ranging from longer-lasting rain

pools to large lakes and occasionally slow-flowing canals or streams [5] (MLM, JHM, pers.

obs). Most often, however, successful reproduction takes place in fairly shallow ponds with

ample emergent or floating, non-woody vegetation available for oviposition [6, 7, 8]. Adults

mate and oviposit at lakes or ponds containing fish (MLM, pers. obs., P. Morin, pers. comm.,

2016), but larval survival and emergence is much higher if insectivorous fish, especially Lepo-
mis spp. [9] are absent [6, 10, 11, 12], and populations are known to have been extirpated

completely from breeding sites after introduction of fish [12] (D. M. Johnson, pers. comm.,

email, 2016; P. Morin, pers. comm., email, 2016).

Larvae may enter diapause (sensu Corbet) [13] and overwinter in these habitats except, per-

haps, at the northern fringes of their range [14] and in the far south, where development is

probably continuous. Alternatively, many undergo direct development and the adults may

migrate in the fall many hundreds of kilometers south from their natal ponds before reproduc-

ing [15, 16]. Extensive annual migrations by A. junius in eastern North America have been

documented repeatedly [16, 17, 18, 19]. A similar pattern has been noted in the West, espe-

cially the Pacific coastal states [8, 20] and across the southern plains [21, 22]. Russell, et al.[18]

compiled a list of these accounts, summarizing the results as follows: “Records of large dragon-

fly migrations show several distinct patterns: (1) all reports fell between late July and mid-

October, with a peak in September; (2) most of the large flights occurred along topographic

leading lines such as coastlines and lakeshores; (3) massive swarm migrations generally fol-

lowed the passage of synoptic-scale cold fronts; and (4) the common green darner (Anax
junius) was the principal species involved in the majority of these flights.” Spring migration is

less well documented, but ample evidence indicates that it also is an annual event [18, 19].

Of roughly 30 species of Anax (including Hemianax) worldwide, Corbet [13] listed 9 as

known migrants. Most of these are primarily tropical and probably migrate with the Intertrop-

ical Convergence Zone (ITCZ), assuring that they track the associated latitudinal band of rains

and thus find suitable habitat for oviposition and larval survival (a pattern which has been

observed in greater detail in the libellulid Pantala flavescens, [23]). Whether or not most Anax
exhibit larval diapause is unknown but is unlikely in strictly tropical/subtropical species. In

these habitats temperatures typically permit adult activity and larval feeding year round, and

in seasonal environments the dry season is usually passed as an adult or egg by species that

reproduce in lentic environments, although some breeding in permanent waters might be

exceptions [13, 24].

Anax imperator, one of the few other species that regularly breeds as far north as A. junius,
ranges from northern Europe to southern Africa and has a larval diapause in its European

range, but those populations do not migrate; populations in sub-Saharan Africa may migrate

[13], but their diapause status is unknown. Anax p. parthenope (Selys, 1839) is a migrant and

breeder in northern Eurasia, that is known to be semivoltine in northern portions of its range

and bivoltine in the south, indicating that larval diapause has evolved in northern populations

of this species. It is likely that the propensity of Anax junius to migrate is, in part, a legacy from

ancestors that were tropical migrants, but only in A. junius and A. parthenope is there evidence

of both facultative larval diapause and adult migration [16].
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Quantitative studies of emergence and migration in Anax junius began with the work of

Robert Trottier [14, 25] in Canada. He found that in southern Ontario (~43.5˚N), two clear-

cut cohorts of larvae existed, corresponding to adults with very different behaviors. Combined

with observations of adults ovipositing in April, long before local emergence [6, 26], these data

led Trottier to infer [14] that the first group of larvae represented “residents” that overwintered

as mid- to late-instar larvae, grew to full size as waters warmed in spring to early summer, and

emerged in midsummer. The adults matured, oviposited in or near their natal pond, and died

by mid-August; their offspring hatched and grew to middle instar larvae before entering dia-

pause for the winter. The second cohort were the offspring of adults that migrated into the

area in early spring and had been seen ovipositing as early as April, sometimes with snow still

on the ground [26]. These larvae grew rapidly in warm water in summer and matured by late

summer, when they emerged as adults. Most of the latter left the vicinity while still sexually

immature and migrated southward; presumably some of their offspring returned northward

the next spring, and the “migrant” cycle began again.

Wissinger [27] reported a similar pattern of emergence from a population of A. junius in

Indiana, although a few adults emerged very early, in April. He interpreted these as individuals

from the previous year’s migrant cohort that had not completed development in time to

emerge the previous fall and had diapaused over the winter in a late instar. This observation

suggests that larval diapause is facultative, and it raises the possibility that a few early adults in

northern localities may emerge locally (and see [28]). Kime [20] also reported migrant and res-

ident cohorts of Anax junius larvae in Washington State, based on larval size distribution.

Trottier’s model suggested that migrants and residents are behaviorally and physiologically

distinct. The two cohorts seemed reproductively isolated because the mating and oviposition

periods of their respective adults did not overlap. The likelihood of genetic divergence and

even incipient speciation of migrants and residents had to be considered.

More recent data, however, calls this scenario into question. Freeland, et al. [29] and Mat-

thews [15, 30] found no genetic distinction between supposed resident and migrant popula-

tions. Matthews [31] (see also [19]) also revisited Trottier’s original study area in 2003–04 and

found that, although two peaks of activity were apparent, adult flight periods overlapped and

would allow for genetic exchange between early and late emergers. Thus, although migration

appears to be a regular part of the life cycle of a sizable fraction of individuals of A. junius, it

apparently is not based on genetic differences among populations.

In any event, migration clearly requires not only specific adult behaviors but also adapta-

tions of development and emergence of the aquatic larvae. Here we examine the phenology of

this cycle of development over a longer period and greater geographic range than heretofore.

Its implications for genetic interchange between early and late emerging adults, and the light it

sheds on the evolution of migration in A. junius are the foci of this paper.

Materials and methods

The following describes four separate studies of the emergence patterns of Anax junius in the

eastern half of the United States. Each was performed independently using somewhat different

techniques, but together they provide both temporal and spatial detail and present data from a

wide enough geographic area to consider how variation in climate and habitat at a continental

scale can influence the evolution of migration in A. junius. In each study, exuviae were col-

lected by careful inspection of potential emergence sites around the periphery of one or more

ponds during the emergence season. In two of them, larvae were also collected from approxi-

mately April to October, using standard collection techniques for aquatic insects. Living drag-

onfly larvae were returned to the sites from which they were collected. No vertebrate animals
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or human subjects were involved in these studies, nor were any organisms that are protected

or listed as warranting protection by any organization or government body.

Work at Patuxent National Research Refuge was conducted under permit NSR-CT-0303

(Migration Behavior of the Common Green Darner Dragonfly) to M. L. May. Studies at

KHMO were carried out by J. and S. Gregoire on their own private property. Annual Rhode

Island Department of Environmental Management permits for sampling at State Parks, For-

ests, Wildlife Management Areas were obtained by M. Aliberti Lubertazzi for work in Rhode

Island; she received verbal approval to sample at other sites, including a variety of publicly-

owned, privately-owned, and NGO-owned sites. Work by J. H. Matthews at the study pond at

Austin, TX, which was located on the Brackenridge Field Laboratory campus of the University

of Texas, was conducted with the permission of the University.

Patuxent National Research Refuge (PNRR), Laurel, MD, USA

The study was conducted at PNRR, (ca. 39.04˚N, 70.08˚E), primarily at a pond complex

known locally as Patuxent Marsh, an abandoned borrow pit divided by an incomplete dike

into two sections. At its maximum the NE section (hereafter PM1) was roughly 2500 m2 and

little more than 1 m deep, the SW section (PM2) about 3000 m2 and probably about 2 m deep;

at high water the sections were broadly confluent at the S end of the dike but often became

completely separated at low water in late summer. The pond was in young, mixed hardwood

forest with a gravel road on the east side. Emergent vegetation in the NE section was a mixture

of grasses, sedges, and a few woody shrubs while the SW section also had extensive Typha. The

only fish noted before 2004 were Eastern Mudminnow (Umbria pygmaea), which are mostly

bottom feeders on small Crustacea and Diptera larvae [32] but will feed on dragonfly larvae in

aquarium experiments [33]. A few very small Lepomis sp. were found in 2004. Adult A. junius,
including ovipositing females, were present in variable numbers throughout each year of the

study from at least early May through September. This pond also supported a population of

Anax longipes.
Larvae were sampled at irregular intervals between April and November from 1999–2004

using a dip-net with ~ 4x4 mm mesh. Efforts were focused on areas with submerged or emer-

gent vegetation, since Anax larvae spend much of their time clambering in this habitat [34,

35]. For each larva maximum head width across the eyes was measured to 0.1 mm using a ver-

nier caliper and body length (anterior margin of labrum to tip of epiproct) to 0.5 mm using a

millimeter ruler; larvae were then returned to near their collection location. Head width was

less subject to error and was used in plots of larval size vs. time. Exuviae were collected at 2–3

week intervals in 2004 and 2005 by examining all accessible emergent vegetation as well sticks,

logs and tree branches that extended into the water around the margins of both pond sections.

Aliberti Lubertazzi and Ginsberg [36] found that 50–60% of odonate exuviae are lost from

plant stems within 3 weeks of emergence. Logistical considerations prevented more frequent

collection at PNRR (and in Rhode Island, see below), so we clearly counted only a fraction of

the A. junius that emerged, but since collections were at fairly uniform intervals, and the tim-

ing of emergence was consistent with larval development, the basic pattern of emergence

should be reflected in our data, albeit with less detail than at KHMO (see below).

A much larger (ca. 24 ha) pond at PNRR, Millrace Pond, was also investigated, although

sampling was less frequent. In 2004 only, exuviae were sampled on each day that sampling was

conducted at Patuxent Marsh, along an irregular transect including about 50 m of the immedi-

ate shoreline and also areas of emergent vegetation and snags up to 20 m from shore. This

pond had extensive beaver workings, with many floating and submerged snags and areas of

dense herbaceous and woody vegetation, forming a physically very complex subsurface
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environment. Small sunfish (Lepomis spp.) were abundant, as were adult A. junius flying over

the pond.

Kestrel Haven Avian Migration Observatory (KHMO), Burdett, NY, USA

The study pond (42.4438˚N, 76.7578˚W), constructed in 1999, is fed via a drain tile from an

artesian spring, has a maximum depth of ca. 5.5 m, a surface area of roughly 1400 m2 and is

relatively steep sided; it is normally stratified in summer. Marginal emergent vegetation con-

sists of Typha and sedges, with extensive submerged Chara covering most of the bottom. The

surroundings are mixed forest, old field, and hedgerow with a short length of turf. Fathead

Minnows (Pimephales promelas), which are primarily omnivorous benthic filter feeders that

also take zooplankton and very small insect larvae [37] are the only fish present; they are

unlikely to be important predators of A. junius larvae.

Larvae were collected using a standard bottom trawl net in 2004 only, and head width was

measured as above. Exuviae were collected daily from 2004–2013. Each morning during emer-

gence season we conducted a thorough search of all possible emergence structures by wading

along the entire pond edge and closely examining cattail (the preferred substrate), reed, rush,

grasses and the dock. We removed all exuviae and also looked for floating exuviae that had

fallen off the emergence substrate and incompletely emerged individuals.

For each year of emergence data we made a rough test of bimodality by fitting a fourth-

order polynomial to the number of exuviae found as a function of day of year. If the fourth

order term was significant, the pattern was considered to be bimodal.

Rhode Island, USA

The study area, which included ponds throughout the state of Rhode Island (RI), lay between

approximately 41.2–42.0˚N and 71.1–71.8˚W. Anax junius exuviae were counted at a subset

of the ponds surveyed each year. Three were sampled in 2004–2006, 15 were sampled in

2004–2005 only, and 11 were sampled only in 2006. The 29 ponds where A. junius exuviae

were collected in at least one year were 0.05–1.78 ha in area; (mean = 0.36 ha, SE = 0.09 ha;

median = 0.14 ha), most held water throughout the study (5 were dry or nearly dry during part

of Aug.-Sept. 2005), and 13/29 lacked fish populations. Their locations ranged from 37.51 m to

29.41 km from the maritime coast (mean = 8389.13 m, SE = 1487.66 m; median = 7570.06 m).

Sampling usually occurred at intervals of 2–4 weeks at each pond [38]. Because sampling

around the entire perimeter of some ponds was not possible, results are given as exuviae per

hour of effort rather than as exuviae per pond.

Austin, TX, USA

Emergence in the field was measured quantitatively by making exhaustive collections of exuviae

left on emergence supports at a small semi-permanent pond on the campus of the University of

Texas during portions of the years 2003–2005. The study pond was one of several built at the

Brackenridge Field Laboratory, all of which can be filled via pumped groundwater but during

the study period were filled by precipitation and runoff. As a result, the pond had shifted to an

ephemeral state. The study pond is shallow (nor more than 0.5 m maximum depth), square,

with a smooth and uniform clay bottom, about 1 hectare in area; no resident fish species were

observed. Matthews had observed the pond to become completely dry during summer in years

before and after the study period. Dense mats of submerged aquatic plants formed when the

pond was full, including Najas guadalupensis and Elodea canadensis. Following Trottier’s collec-

tion guidance, some 10 m of 1.5 m high 4x4 mm netting ringed the edges of the pond, about

0.75 m from the shore, and supported by posts every three meters. Inspection of the netting
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occurred every one to three days during emergence season and about once weekly during the

non-emergence season. Collections over the three years encompassed January to December,

although the maximum period in any one year (2004) was March–December.

Analysis of public records

In order to construct a broad picture of adult activity as a rough proxy for emergence phenol-

ogy throughout the United States, we acquired data from Odonata Central (OC) [39], the Flor-

ida State Collection of Arthropods (FSCA), and records supplied by D. R. Paulson (DRP) on

confirmed sightings and collections of adult Anax junius from states in which the combined

number of records exceeded 50, except that the states along the northern Gulf of Mexico (AL,

MS, LA), which had very similar patterns of occurrence, were combined to obtain a full sam-

ple. The number of records each month and the sex of each specimen was noted. Data from

OC and DRP usually also included GPS location, but from FSCA only the county where col-

lected was recorded. We assume that these records represent a random sample of occurrence,

although bias could occur due, e.g., to spatial or temporal restrictions of especially prolific col-

lectors. Because each state total originates from records accumulated over a number of years

and a large area, including migrants from other regions as well as individuals that emerged

locally, they give an imprecise picture of phenological events. Nevertheless, such data are cur-

rently the only source of information at a country-wide scale.

Results

Patuxent Research Refuge

Development of larvae at PNRR, although inferred from data taken at varying intervals from

1999 to 2004, appears to have followed a reasonably stable pattern. Most larvae were collected

in the shallower NE pond sections, but no difference in size distribution were evident between

the two sections; mean head widths did not differ between PM1 and PM2 during the periods

when both sections were sampled, July-September 2004 and May 2005 (t-test, p>0.2 in both

cases). At least two and possibly three trajectories of growth (Fig 1) can be discerned. One

group of larvae (I in Fig 1), which must have overwintered, was half- to fully grown by mid-

April and emerged for the most part by the end of May. From early June through mid-August

smaller larvae were also collected; larvae with head width<3 mm were rarely collected,

although the first six instars are smaller than this [40], probably because of low netting effi-

ciency and detectability. The earlier individuals of this size develop rapidly and emerge from

July (probably overlapping with late-emerging individuals from the group i until mid-October

(II in Fig 1); the later small larvae seem to have developed more slowly (III in Fig 1). These

probably represent the offspring of adults that emerged in May and that, like their parents,

would overwinter at the Patuxent Marsh ponds. Note that the size distribution of the larvae

collected in late October and early November is very similar to that of larvae collected in April

(ca. 5.5–8 mm head width), suggesting that the former would overwinter without further

growth until spring.

Emergence was quantified only in 2004 and part of 2005, from May to October. During the

first part of 2004, collecting was confined to PM1, and collections were made by searching the

entire perimeter as well as emergent stems throughout the pond. By late July, however, that

portion of the pond became quite shallow and warm, with red-brown flocculence developing

in the southeastern ~1/3, and both larvae and exuviae became very scarce. Probably because of

its greater depth, PM2 was slightly cooler and lacked flocculence. Initially, exuviae were few in

that section as well, but thereafter both exuviae and larvae were more readily collected, and

from early September onward, 25 of 29 larvae were collected in the PM2, again around the
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entire perimeter and on as much emergent vegetation as was accessible. Concentrated collect-

ing in PM2 began in early July when signs of deterioration were first noted in PM1; during

July and August, 13 of 41 larvae were taken in the latter (for the difference between July and

Aug. vs. Sept. and later, χ2 = 10.9, p< 0.05). Although larvae were not collected in 2005 and

exuviae could not be collected after 18 July, it is apparent that a severe population decline

occurred in PM1, but not in PM2, of the pond in midsummer of 2004, and this may have been

reflected in low emergence in early 2005.

Results from Millrace Pond (Fig 2) are not precisely comparable to those from Patuxent

Marsh because only a small fraction of the former was surveyed, and movement, dip-netting,

and detection of exuviae were more difficult. No signs of habitat deterioration were noted, but

observed emergence was scant, with a distinct but small burst of emergence in late July. Adult

males were commonly seen patrolling throughout the summer.

Kestrel Haven

The pattern of larval development at KHMO in 2004 (Fig 3) was quite similar to that observed

at PNRR. Larvae with head widths of ca. 9.5 mm or more in early June were probably very

close to emergence and contributed to the sharp first peak of emergence in mid- to late June.

Smaller numbers of last instar larvae continued until at least mid-September and evidently

contributed to the extended emergence until October. The absence of larvae with head

width> 6 mm by October contrasts with PNRR and is unexpected given that data from April

at both sites suggest that larvae passed the previous winter in larger instars.

Full emergence results from KHMO represent the most complete data set for any odonate

species known to us, with 10 consecutive years of almost daily collections of A. junius exuviae

from a single pond (Fig 4). Variability in the temporal pattern and the magnitude of emer-

gence are striking. In 2005 no clear emergence peaks were evident, and only 159 exuviae were

collected in total. In 2006, 989 emerged, with very large peak in early June (ca. day 150), a dis-

tinct but much smaller peak in early September (ca. day 250), but very low numbers around

the July-Aug boundary. In 2008 the pattern was similar to 2006 but the peaks were less distinct

and were both slightly earlier, with total annual emergence only 179; in 2011 two clear peaks

occurred again, but both were earlier still and the later peak (ca. day 210, early Aug) was clearly

larger, with 725 emerging overall. Other years show similar variation, always with some suc-

cessful emergence, but annual totals ranged from 87 (2007) to 1004 (2004). Thus, even in this

relatively stable pond, annual emergence varied over more than an order of magnitude. Peak

emergence met our criterion for bimodality except in 2005 and 2013, but there was never a

complete hiatus in emergence of longer than 12 days, and the major peak of emergence varied

from ca. day 170 (2004) to almost day 250 (2009, 2013). This is consistent with the patterns of

larval size both at PNRR (Fig 1) and in 2004 at KHMO (Fig 3).

We investigated whether local climatic conditions might have affected emergence success or

timing at this site (Table 1). Surprisingly, mean air temperature had no effect. Total emergence

Fig 1. Larval growth and emergence of Anax junius at the “Patuxent Marsh” ponds 1 (PM1) and 2 (PM2) at PNRR, Laurel, MD. The

lower graph shows the number of larvae (shown by the width of each bar) of a given head width on the collection day (y-axis); different colors

indicate data for different years, 2001–2005 (underlying data in S1 Table). Black dots and curved lines represent the size, averaged for each

calendar month, of groups of larvae (separated by eye) thought to comprise primarily individuals that: (I) had overwintered in Patuxent Marsh;

(II) were offspring of migrants, from eggs deposited in spring; and (III) were offspring of adults from group I and perhaps some late group II

larvae. The upper graphs show the number of exuviae collected on each indicated date in 2004 and 2005 (underlying data in S2 Table); darker

colors indicate exuviae collected from PM1, lighter colors those from PM2; zeros along the x-axis indicate sampling days when exuviae were

sought but none were found. To facilitate comparison of patterns of emergence, bars representing the maximum number of exuviae collected

on a single day of each year are set to the same height; consequently, the scale on the y-axis varies markedly between years.

https://doi.org/10.1371/journal.pone.0183508.g001
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and the numbers emerging during the first peak (where applicable) were positively correlated

with rainfall during the months of emergence (April-October) of the current year. Neither pre-

cipitation nor temperature had significant effects on the relative timing of the peaks, the size of

the second peak (with one exception), or the ratio of the sizes of the early and late emerging

groups. It is possible that conditions during the previous year may have affected emergence,

especially in overwintering larvae, but this could not be analyzed independently because of the

relatively small year to year changes in weather and the large overlap of the range of years (i.e.,

2003–2012 vs 2004–2013).

Fig 2. Larval growth and emergence of Anax junius at Millrace Pond at PNRR. Plots as in Fig 1 (underlying data in S1

Table) except that collection periods are shown in shades of grey, with 2001–2003 data lumped. Hypothesized larval growth

trajectories as in Fig 1; note that very few larvae apparently overwintered successfully. Exuviae (upper graph; underlying

data in S2 Table) were collected only in 2004; the bar representing the maximum collected on a single day is set to the same

height as the maximum in Fig 1.

https://doi.org/10.1371/journal.pone.0183508.g002
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Fig 3. Larval growth and emergence of Anax junius at the study pond at KHMO in 2004. Larvae were collected weekly. Lower plot as in Fig 1,

upper plot as in Fig 1 except that the number of exuviae collected are summed and plotted over one week intervals. The bar representing the maximum

collected during one week is set to the same height as the maxima in Fig 1. Underlying data in S3 Table.

https://doi.org/10.1371/journal.pone.0183508.g003
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Fig 4. Number of Anax junius exuviae collected throughout the entire emergence periods of 2004–2013

at the study pond at KHMO, Burdett, NY. Exuviae are plotted by day of year; each vertical line indicates one
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Rhode Island

Our third extensive emergence dataset was temporally less fine-grained that that from KHMO,

but it included emergence sites spread over about 3000 km2. Despite relatively infrequent sam-

pling, apparent unimodal and bimodal emergence patterns occurred (Figs 5, 6 and S1); sam-

ples at any one pond, however, were too few to permit a statistical test of bimodality or to

clearly identify times of maximum emergence. From Fig 5 it is evident that all three ponds that

were sampled for three consecutive years showed substantial variation in total numbers emerg-

ing in different years, as well as in seasonal patterns of emergence, although we did not for-

mally test the latter owing to relatively sparse and inconstant intersample intervals. Similar

patterns occurred in many of the ponds sampled for two years (S1 Fig). Fig 6 shows emergence

patterns in each of the three study years from all ponds sampled; the x-axis is a rough measure

of location, the displacement due southeastward from a SW–NE line running through the NW

corner of the state. Overall emergence success was significantly lower in 2005 (2004–5.56±1.21

SE, 2005–4.28±1.16, 2006–6.091.52) than in 2004 and 2006, and 2005 was also the year with

the lowest summer rainfall at the nearby Theo Francis Green Airport in Providence, RI (2004–

68.7 cm; 2005–48.3 cm; 2006–72.8 cm). Five of the ponds were dry or nearly dry during part of

August and September of 2005, although it is evident from Fig 6 that emergence was reduced

even earlier. Effects of year were significant (p = 0.001), as was pond identity (p<0.0001), but

not day of year, (p = 0.637). Location had a significant effect overall (p<0.0001 controlling for

day, p<0.0002 irrespective of day) and in each year individually (p<0.05 in 2004. P<0.0001 in

day’s collection. The bars representing the maximum collected on a single day in each year is set to the same

height as the maxima in Fig 1, so that the vertical scale of the graphs varies among years. Downward pointing

arrows indicate the estimated minimum between early and late seasonal peaks for years in which a bimodal

pattern of emergence was confirmed; total number of exuviae for the year (N) is at upper right, beneath year,

totals for early and late episodes of emergence appear above the corresponding peak; narrow curved line and

asterisks on plot for 2011 shows an example of fitted 4th order polynomial. Underlying data in S4 Table.

https://doi.org/10.1371/journal.pone.0183508.g004

Table 1. Correlation of emergence characteristics with rainfall during various periods of the year at KHMO.

TIME

INTERVAL

Jan- Mar Mar-May May-Jul Jun-Aug Jul-Sept May-Sept Apr-Oct Annual

EXVa -0.226 +0.561 +0.718 +0.555 +0.856 +0.926 +0.902 +0.678

0.558 0.116 0.0290 0.121 0.0033 0.0003 0.0009 0.0447

PK1b -0.018 +0.017 +0.900 +0.887 +0.907 +0.926 +0.843 +0.727

0.967 0.967 0.0023 0.0033 0.0019 0.0010 0.0085 0.0412

PK2c -0.245 +0.817 +0.017 +0.207 +0.338 +0.397 +0.439 +0.266

0.559 0.0134 0.910 0.623 0.412 0.329 0.277 0.524

DIVd +0.324 -0.501 +0.497 +0.670 +0.232 +0.266 +0.296 +0.294

0.483 0.206 0.210 0.0692 0.550 0.525 0.477 0.480

RPKe -0.397 -0.346 +0.496 +0.597 +0.329 +0.370 +0.442 +0.0741

0.330 0.401 0.211 0.118 0.428 0.368 0.273 0.862

Upper number in each cell is Pearson correlation coefficient, lower number is probability of obtaining a higher correlation by chance; significant correlations

(p<0.05) are in bold font. Underlying data in S11 Table
aTotal exuviae for the year.
bExuviae in 1st emergence peak.
cExuviae in 2nd emergence peak.
dDay at which peak 1 was divided from peak 2.
eRatio of number of exuviae in peak 1 to number in peak 2. Note that b-e do not include years for which no 2nd peak was apparent (2005, 2013).

https://doi.org/10.1371/journal.pone.0183508.t001
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2005 and 2006); nevertheless, the actual locations with greatest emergence success varied

markedly across years (Fig 6). For the entire study, 9.86 exuviae were collected per hour in

fish-free ponds vs. 3.24 in ponds with fish; emergence was marginally lower in ponds with

fish than in those without in 2004 (p = 0.083) and highly significantly so in 2005 and 2006

(p = 0.0035 and 0.0028, respectively). In some years a marginally significant (p< = 0.10) nega-

tive relationship was found between exuviae collected per unit effort and pH and a positive

relationship with forest cover adjacent (within 100 m) to the pond [38].

Southern United States

To our knowledge comprehensive data on larval growth or emergence are not available from

the southern portion of the range of A. junius, south of about 39o N. Observations by JHM at

Austin, TX, with somewhat irregular sampling (Fig 7), shows a clear peak in early to mid-May

in 2003 and 2005; collecting ended in late summer and fall (associated with extended dry peri-

ods, causing the pond to become completely desiccated). In 2004, most emergence was in early

May to mid-June. Drought in July led to low water, high water temperature, and O2 depletion,

and no emergence occurred in July or August; the pond was completely dry for an uncertain

Fig 5. Numbers of Anax junius exuviae collected per hour of effort vs year and day of year at three

Rhode Island ponds where collections were made for three years. Only Bristol Skating Pond supported

fish; Bristol Skating Pond and Carol Big Pond were dry in August and September 2005, respectively, and

Strathmore may have dried in September of that year. Underlying data in S5 Table.

https://doi.org/10.1371/journal.pone.0183508.g005
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period ending near the beginning of August. Pantala flavescens, a migratory libellulid dragon-

fly known for its very rapid larval development, emerged by early September and a few Anax
emerged from October to early December, presumably having hatched after the pond refilled,

since A. junius larvae are not known to be drought resistant.

In the early 1960’s in southern Florida Paulson [41] collected adults and exuviae as part of a

general survey of south Florida Odonata at ca. 24.5–27.5˚N. He recorded a sharp emergence

peak, based on exuviae, in March but collected relatively few adults; the major peak of adult

activity occurred from August to October and comprised mostly fully mature individuals, with

a small emergence peak in October. In 2011, we examined all adult A. junius in the Florida

State Collection of Arthropods that were collected in Florida south of ca. Daytona Beach

(~29˚N) (Fig 8). Assuming uniform collecting effort, this confirms two very distinct peaks of

adult activity at about the times observed by Paulson, although the spring vs. fall disparity is

not as great. Moreover, the great majority of individuals in the early peak were sexually imma-

ture (based on color and cuticle stiffness) when collected, while nearly all in the late peak were

mature. Data from OC and FSCA for the entire state showed a generally similar pattern, with a

smaller adult peak in spring, a larger one in late summer and fall, and almost no adults from

May-July.

Fig 6. Numbers of Anax junius exuviae collected vs day of year and location (see text) for all 29 Rhode

Island ponds surveyed in each of three years. In addition to those listed in Fig 5 and S2 Fig, two ponds,

Amtrak and Nbground, at locations 9 and 6 respectively on the 2006 plot, were fish free (open circles).

Underlying data in S5, S6 and S7 Tables.

https://doi.org/10.1371/journal.pone.0183508.g006
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Discussion

The genus Anax is probably of tropical origin [13], but A. junius and several other species have

adapted to permanent occupation of temperate habitats by passing the winter in larval dia-

pause. In this they resemble many other North Temperate Zone species that exhibit obligate or

facultative larval diapause [13] and are thus able to overwinter in cold regions. Unlike most

odonate species, however, many adult Anax migrate long distances southward in autumn and

lay at least some of their eggs in regions where diapause is probably not required (average tem-

perature is mild even in winter, > = 15 oC, on much of peninsula Florida and the south Texas

and Mexican Gulf Coast), although the effects of photoperiod at these latitudes are unknown.

The question then arises, why employ this dual strategy, which seemingly complicates life his-

tory adaptations and entails multiple sources of risk?

Results from both PNRR and KHMO show that early- and late-emerging adults at these lat-

itudes do not form clear-cut cohorts and in most years must certainly have the opportunity to

interbreed. Thus the difference between “residents” and “migrants” is unlikely to be under-

pinned primarily by genetic differences, as previously suggested [29, 30]. Based on those popu-

lation genetic studies and on evidence from stable isotope composition [15], May and

Matthews [16] and May [19] suggested that an important advantage of long-distance migra-

tion to A. junius is that it allows migrants to spread reproductive risk across multiple, widely

scattered water bodies, ameliorating threats from predation, intra- and inter-specific competi-

tion, and drought. Schenk, et al. [42] directly observed risk-spreading by oviposition in

Fig 7. Numbers of Anax junius exuviae collected throughout the varying portions of the emergence

periods in 2003–2005 at a single pond in Austin, TX; each vertical line indicates one day’s collection.

Note that the scale of the y-axis varies among plots. During 2003 and 2005, collections were ended at about

day 200 and day 250, respectively. Downward pointing arrow indicates the date on which the pond became

almost completely dry and anoxic in 2004; upward pointing arrow indicates emergence, after partial refilling, of

Pantala flavescens. Underlying data in S8 Table.

https://doi.org/10.1371/journal.pone.0183508.g007
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multiple ponds by the migratory dragonflies, P. flavescens and Sympetum fonscolombii, albeit

on a smaller spatial scale than we suggest here.

Choice of oviposition sites

Our results from Millrace Pond at PNRR make clear that A. junius will oviposit freely in waters

inhabited by insectivorous centrarchid fish. Some larvae can survive in their presence if habitat

structure is sufficiently complex [43], but such populations probably suffer substantial mortal-

ity and at Millrace Pond appear to have had very poor overwintering success. MLM has

observed numerous ovipositing A. junius at Helmetta Pond in NJ (40.378 N, 74.427 W) in veg-

etation adjacent to multiple nests of Lepomis spp. Over many years of intermittent collecting

of larvae at this locality, only one final instar A. junius larva was recovered. On the other hand,

A. junius will also oviposit in very ephemeral pools that may persist only for weeks or at most

2–3 months, as long as some emergent vegetation for oviposition develops (May, pers. obs.).

These incidental observations suggest to us that, like Enallagma spp. [44], A. junius cannot reli-

ably detect the presences of predaceous fish in potential reproduction sites and also have lim-

ited ability to discriminate among sites on the basis of habitat stability, both of which must add

to the uncertainty of successful reproduction at any given site.

Variation in emergence success

Typical larval habitats commonly persist long enough to develop sufficient aquatic vegetation

for oviposition but are usually ephemeral enough and/or isolated enough to be free of preda-

ceous fish. Such habitats often are sufficiently stable to produce annual generations for several

successive years, but most eventually become unsuitable through drought and its attendant

Fig 8. Number of adult specimens of Anax junius in the Florida State Collection of Arthropods

collected from Jan. to Dec. in peninsula Florida south of 29˚N. Vertical bars represent the total number

per two week interval. Underlying data in S9 Table.

https://doi.org/10.1371/journal.pone.0183508.g008
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abiotic stressors or by introduction of fish. Even in the absence of identified sources of mortal-

ity, emergence success can fluctuate sharply, as at KHMO. Emerging adults, therefore, have to

balance risks of reproducing in their natal pond or region vs. those of undertaking long dis-

tance migration. Here we have tried to demonstrate the extent and nature of some of these

risks by documenting variation in emergence success at several spatial and temporal scales.

We observed two instances in which study ponds or major portions of them became almost

wholly unsuitable for development of A. junius larvae despite having supported substantial

populations earlier the same summer: 1) at PNRR in 2004 the larval population of PM1

crashed during August, although water was still present, and it had not fully recovered as of

July 2005; 2) the pond at Austin dried completely in 2004 but did produce some adult Anax in

late fall after refilling. Clearly, from the second example, rapid recolonization and emergence

is possible in the fall in warm regions. Recolonization during the same year must be much less

likely further north because adult activity is prevented by cold, and larvae must reach a mini-

mum critical size to enter diapause [13, 45].

Perhaps more surprising, however, is the extreme variability in emergence success in the

relatively stable pond at KHMO. This pond never dried out, nor did its depth drop below the

level at which marginal vegetation was readily available for oviposition and emergence, and

water volume was clearly sufficient to prevent either complete freezing or warming to lethal

levels The cause of the large fluctuations in emergence is not clear. Variation in numbers of lar-

vae emerging could result from variation in recruitment via oviposition, but each year adults

visited the pond in moderate numbers, and several nearby ponds also had substantial adult

and emergent populations. Possibly the absence of small larvae in Fall 2004 indicates slow

development and/or poor survival of the offspring of the early peak of adults and thus could

provide a proximate explanation for the absence of a distinct early peak of emergence and for

poor emergence overall in 2005. Larval sampling ended earlier at KHMO than at PNRR, how-

ever, so further growth might have occurred than we recorded. Moreover, the greater depth at

KHMO may have buffered temperature change [46] so that development was slightly retarded

during summer and yet may have continued later in the fall. From 2004–2007, high and low

emergence numbers occurred in alternate years, suggesting a density dependent oscillation,

but thereafter this pattern was no longer apparent. Nevertheless, one aspect of the data stands

out clearly–even at ponds that lack fish, retain ample water throughout the year, and are appar-

ently readily accessible to numerous adult Anax from April to September, emergence may fluc-

tuate markedly from year to year. This alone might unpredictably push the selective advantage

toward migration during years of poor success or toward overwintering in years of high

success.

These data also clearly demonstrate another important variable that may affect the success

of alternative life history strategies, i.e., the variation in relative success of early vs. late emerg-

ing larvae. Although the correlation of early emergence with subsequent production of over-

wintering larvae and, conversely, late emergence with southward migration of the emerged

adults is probably much less rigid that Trottier [14] supposed, comparison of the timing of

emergence and of southward migration strongly suggests that migratory individuals are pri-

marily the imagos of late-emerging larvae; e.g., in most years the emergence minimum

occurred in late July at KHMO (although in June in 2004 and not until mid-August in 2006),

so migrants, most typically seen in late Aug. to Sept., probably emerged with the second peak.

It is very likely that, when two clear peaks occurred, the early peak consisted primarily of larvae

that had overwintered, while the later one included mainly larvae that had hatched in spring or

early summer, many of which would migrate as adults. Thus a large early emergence peak

probably indicates successful reproduction by the previous year’s early-emerging adults and

also tends to bias emerging adults to lay eggs locally and produce larvae that overwinter and
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thus are exposed to unfavorable local or regional conditions, if any, in late summer through

fall and winter; a larger late peak would have the opposite effects.

The influence of spring and summer rainfall on emergence success was marked (Table 1),

despite the apparently small effect on conditions of the study pond. The additional water vol-

ume may buffer temperature and oxygen fluctuations, although this pond was probably less

affected by these factors that many Anax breeding ponds. It may be that more successful emer-

gence during wet years in nearby ponds increased recruitment of larvae to the study pond,

although in that case we would expect greater effects later in the summer, rather than during

early summer (peak 1) as was observed. Whatever the mechanism, however, seasonal rainfall

clearly affected the number of adults emerging. On a geographic scale, of course, the amount

and timing of rainfall is crucially important to reproductive success, as discussed below.

Data from RI also reveal striking variation in emergence timing and success, both within

ponds between years and among ponds. Distances between ponds ranged up to about 60 km,

which is within the daily flight range of adult A. junius [47], so a female could possibly oviposit

in ponds spread over much of the entire study area in a few days. Smaller libellulid dragonflies

evidently disperse, as a rule, no more than about 1–8 km from pond to pond [48, 49, 50], but

some larger libellulids and macromiids in arid regions evidently may disperse over hundreds

of km [51]. Only 7 pairs of RI ponds were located within 10 km of each other. Of these, both

ponds of 6 pairs declined by 45–80% in exuviae per hour from 2004 to 2005 and both of the

seventh pair increased slightly over the same years. Although obviously sparse, these data sug-

gest that nearby ponds are likely to change in the same direction from year to year, thus reduc-

ing the value of bet-hedging within a small contiguous area.

Within the entire state, each annual sample included at least 14 sites (3 were identical in all

3 years [Fig 5] and 10 in addition were identical in 2004 and 2005 [S1 Fig]). Emergence success

varied among years, with the overall emergence rate in 2005 about 35% less (20.1 exuviae per

hour per pond) than in 2004 (31.6) and 2006 (30.2). Thus, on a regional scale, there should be

stronger selection for long distance dispersal in some years than in others, although some buff-

ering of this effect presumably occurs except under extreme conditions if oviposition is spread

over several hundreds or thousands of km2. Also, despite the general year-to-year patterns,

annual variation in emergence success was heterogeneous among ponds (Figs 5 and 6, S1 Fig).

This suggests that even during years when regional emergence success is relatively high, female

A. junius might benefit by ovipositing at multiple sites throughout the area, although this

advantage may sometimes be less than it appears from the mean emergence numbers; in 2006

the rate of collection of exuviae from a single pond, Strathmore, was equivalent to the summed

rates at all other ponds combined. Moreover, to the extent that a larger emergence peak is

early at certain ponds in some years, and predominantly late in the same ponds in other years,

the success of overwintering larvae vs. those that will become migrants as adults may fluctuate

on a very local scale, independently of regional trends.

Adaptation to hydroperiod

To a large extent, successful emergence of A. junius is constrained by hydroperiod. In most of

the northeastern US and southeastern Canada, including the study sites discussed above

(except Austin, TX), precipitation is more-or-less evenly distributed throughout the year (S2

Fig; this and most other information on U.S. precipitation and hydrology are from NOAA

[52], USGS [53], U.S. Climate Data [54], and for Veracruz, MX, from ClimaTemps.com [55].

As result of snow melt and/or low levels of evapotranspiration, lentic water bodies are usually

at their highest levels in late spring; low water levels occur in late summer and fall, although in

years of near-normal rainfall and temperature, most perennial ponds support development of
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dragonfly larvae throughout this period. These circumstances ordinarily afford adequate time

for overwintering larvae to emerge well before any serious deterioration of the environment.

Many more of the offspring of adults that oviposit after migrating northward, typically arriving

in April-June, will be unable to emerge until the late summer low-water period; pond condi-

tion is liable to deteriorate further as they mature, and some might, as adults, risk exposure to

deleteriously cold weather before reproducing. For these, migration is likely to be a viable

strategy, but the benefit of migration is certainly enhanced by the existence of predictably suit-

able destinations, i.e., fish-free with ample water and vegetation in warmer regions to the

south of their natal area.

Precipitation regimes along the southern Atlantic Coast and throughout peninsula Florida

provide such conditions. In most of this region rainfall, and consequently also the level of

most lentic waters, is highest during summer, often with a distinct peak in July-September [56]

(S2 Fig). This pattern is also present but less marked in the interior Southeast and along the

northern Gulf Coast, where winter rains are more frequent (S2 Fig). Some females oviposit in

near-coastal areas en route to their ultimate destination (May & Matthews, 2008); behavior at

inland sites is probably similar but is poorly known.

In the eastern U.S., August and September are the times of greatest southward movement

of adult A. junius, [18] and these months plus October correspond to the period of greatest

abundance of mature adults in Florida (Fig 8) [41]. Data for NC and AL, MS, and LA (com-

bined data) from Odonata Central [39] and FSCA are similar (Fig 9), although spring and fall

peaks and midsummer minimum are less pronounced in those states, perhaps at least in part

because they extend further inland where winter temperatures are colder and the preponder-

ance of summer rainfall is less. Large migratory swarms have been observed along the Gulf

Coast in fall in the panhandle of Florida [57] and Alabama (K. Langin, pers. comm., 2006),

and they almost certainly occur in Louisiana [58]. Relatively high levels of activity, including

reproduction, occur also mainly in fall and winter in Veracruz and Yucatan, Mexico ([59]; JM,

pers. obs. 2005; MLM, pers. obs. 2011). Most of Mexico has a summer wet season, so ponds

and fresh marshes have high water in early autumn, with a low period typically in Feb.-May

[55] (S2 Fig).

Final instar larvae are present in southern Florida at least from June until early April (N.

Dorn, pers. comm., 2009; J. Trexler & R. Urgeles, pers. comm., 2008), which tends to corrobo-

rate the hypothesis that larval diapause does not occur there. The hiatus in May might reflect

the difficulty of collecting larvae during this low water period when most aquatic fauna retreat

to refugia that often are difficult to access, although these refugia often harbor high densities of

fish [60], reducing their suitability for A. junius larvae (N. Dorn, pers. comm., 2009, 2016). As

water rises in late summer, however, adult Anax can recolonize newly inundated ponds and

other wetlands more rapidly than fish [61]. Thus, offspring of the influx of migrants in August

might initially enjoy enhanced survival. Late spring and early summer may be periods of

greater larval mortality from drought or predators, partly avoided by emergence in March and

April.

Migration in the West

The biology of A. junius in western North America is much less well documented than in the

East, although southward mass migration flights have been observed in late summer and

autumn near the coast and offshore [62, 63], as well as inland in California (Paulson, pers.

comm., 2016), and in large swarms at the tip of Baja California Sur, MX, in November [64].

There is at least one report of a northward spring flight near Death Valley, east of the Sierras

[65]. Kime [20] found what appeared to be a spring and a late summer cohort of larvae in lakes
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in eastern Washington, and Paulson noted that small numbers overwinter as larvae and

emerge in spring each year in western Washington [8].

The ability of A. junius to thrive in western lakes contrasts with the usual situation in the

East, where the most important predators of large Odonata larvae are probably centrarchid

fish [9]. With one exception, the native range of centrarchids was east of the Rocky Mountains,

and only in historic times have they become widespread in the western U.S. [66]. Probably as a

consequence, A. junius in the West are evidently adapted to reproduce in permanent lakes [20,

67] as well as small ponds (D. Paulson, pers comm., 2000, 2016; S. Valley, pers. comm., 2016).

Throughout most of the Pacific and Intermountain States, summers are extremely dry and in

many places very hot, with many saline and hypersaline water bodies, which may often pre-

clude successful development of a migratory generation in any but permanent or nearly per-

manent waters during most years, so reproductive success and selection for migration may

differ somewhat in this region.

Likewise, the Central states, here including Minnesota and South Dakota through Texas

(Fig 9), are characterized by a different range of climates and hydroperiod–obviously with a

very strong north-south temperature gradient but all with roughly similar patterns of rainfall,

with a peak in late spring and early summer followed by steady diminution in late summer

and fall (S1 Table) [50, 52]. Observations in the northern areas suggest that adult activity is

Fig 9. Monthly pattern of occurrence of adult Anax junius in various states of the United States. The percentage of the total number of records for each

state is plotted against month. Only states for which at least 50 records were available are included, except that summed data for AL, LA, and MS are plotted

on a single graph, labeled “Gulf States”, in order to include a sample size >50; patterns of occurrence were quite similar in each of the 3 states. Data are from

Odonata Central [39], D. R. Paulson (pers. comm., 2016; DRP), and specimens in the Florida State Collection of Arthropods (FSCA). Histograms are

arranged to indicate very roughly the geographic position of the corresponding U.S. state. Underlying data in S10 Table.

https://doi.org/10.1371/journal.pone.0183508.g009
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primarily concentrated in midsummer. In Oklahoma and Texas, however, although adults are

present throughout the year, the great preponderance seem to occur from midsummer to

October (Fig 9) [68], although Fig 7 shows that emergence in Texas can begin as early as late

January and February. Some of the early observations of adults might represent residual

migrants from the previous fall that overwintered in the south. The large numbers of adults

later in the season may represent locally emerged individuals that escaped or avoided drying

ponds as well as migrants from further north. Migration through the Central States is known

to occur, e.g., [18, 22] but, again, has not been studied in depth. In Veracruz, MX, both adult

migrants and larvae have been observed in September (JHM, MLM, pers. obs.).

Conclusions

Several synergistic factors probably played a part in the evolution and maintenance of both

overwintering diapause and migration in the life cycle Anax junius. Susceptibility of larvae to

predation by fish means that successful reproduction must generally occur in fish-free water

bodies (although adults may not be able to detect predaceous fish directly). Most such sites are

relatively small and susceptible to drying. On the other hand, the necessity for floating or

emergent vegetation for oviposition and as larval habitat requires that water be continuously

present long enough, often for several years, for development of appropriate plants. This in

turn means that, in any given year, there is a reasonable probability that larvae from eggs laid

in a water body one year can emerge successfully, either in late summer of that year from eggs

laid in spring or in the following year from eggs laid in summer. Our data, however, show that

emergence success varies widely from year to year and site to site during both the spring to

early summer and mid-summer to early fall periods, even in the absence of obvious cata-

strophic habitat collapse, so ovipositing adults must often place their offspring in habitats of

unpredictable suitability. This may select for bet-hedging by females throughout the flight

period by ovipositing in multiple ponds to spread the risk that any one pond might become

unsuitable for larval development, although to our knowledge this behavior has not been docu-

mented. Migrating females, however, often have mature ovaries with many eggs and have been

observed mating and ovipositing en route (JM, pers. obs.; May & Matthews, 2008; May, 2013).

Moreover, widespread genetic homogenization across much of their range [15, 29] is highly

suggestive that they distribute eggs widely at least during migration. These observations also

strongly indicates that, unlike many other migratory insects [69] reproductive diapause is not

part of the migration strategy of A. junius, despite its occurrence in many tropical non-migra-

tory and short-distance migrant Odonata [13].

If a pond does dry up or become excessively warm and/or hypoxic, it is likely to be the lar-

vae from eggs laid in summer that fail to emerge, because these events are most likely in late

summer or early fall in the northern and western U.S. Adults that emerge in late summer may

be faced with fewer fish-free oviposition sites, and individuals emerging very late in autumn

(e.g., Fig 1) may have insufficient time to mature gametes and reproduce before the onset of

cold weather, although active adults have been seen, on rare occasions, as late as November in

VT (Fig 9) and December in NJ ([70]; MLM, pers. obs., 2001]). Larvae may also need to reach

some minimum size for successful diapause [45]. In addition to the multiple circumstances

that make successful reproduction in their natal region more problematic for late-emerging A.

junius, the pattern of summer rainfall, particularly along the southern Atlantic Coast, Florida,

and the Gulf Coast, normally assures fall migrants of abundant breeding sites in early fall. In

addition, as fall progresses, prevailing northwesterly winds, especially associated with or fol-

lowing cold fronts, tend to assist southeastward flight [18, 47]. Thus while the potential detri-

ment to newly emerged adults of remaining in the natal area increases later in the summer, the
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difficulty and uncertainty of locating a suitable place for reproduction at the endpoint of

migration should be reduced at this time.

Direct quantification of egg and larval mortality and recruitment or of survival and fecun-

dity of migrant adults currently is not practically obtainable. Nevertheless, based on the data

available and the plausible assumption that, averaged over time and space, the fitness associ-

ated with “resident” and “migrant” behaviors is equal, a qualitative understanding is possible.

The key feature of the selection regime leading to facultative migration in the system seems to

be, as initially proposed, an intermediate level of uncertainty of larval survival, which may shift

unpredictably among years and breeding sites to favor either overwintering by diapausing lar-

vae or migration by late emerging adults. This maintains both strategies in the population,

probably by virtue of phenotypic plasticity [71], since there is no evidence of genetic differenti-

ation [15, 29, 30].

Supporting information

S1 Fig. Plots of Anax junius exuviae collected vs day of year for nine Rhode Island ponds

surveyed in 2004 and 2005 only. Kittbig, Sailadump, and Skit were fish free, the remainder

had fish; none were dry during the study. Underlying data in S6 Table.

(PDF)

S2 Fig. Precipitation and temperature at cites representative of regions discussed in the

text. Mean monthly precipitation (cm) is indicated by histograms, temperature (oC) by broken

lines.

(PDF)

S1 Table. Size distribution of larval Anax junius at PNRR during 2001–2005. Cf. Figs 1 and

2. Data are transcribed from field data sheets and refer to live larvae. Data are arranged chro-

nologically but those from Patuxent Marsh (PM1, PM2) and Millrace Pond are listed sepa-

rately. “Size” is maximum head width of each larva (mm), “Group” designates a group of

larvae of the same head with collected on the same day, “Number” gives the size of the group

(each larva is plotted separately in Figs 1 and 2). The “Comments” column primarily lists wing

pad length (wp) and total body length (bl), measurements that were recorded but not used in

plots because of the difficulty of measurement and/or variability owing to abdominal retrac-

tion and extension.

(XLSX)

S2 Table. Number of Anax junius exuviae collected at PNRR during 2004–2005. Cf. Figs 1

and 2. Exuviae were collected as described in the text; an entry of “0” indicates that exuviae

were sought but not found, “—”indicates that exuviae were not sought at the designated site

on that date.

(XLSX)

S3 Table. Size distribution of larval Anax junius at KHMO study pond during 2004. Cf. Fig

3. Data arranged as in S1 Table except that the “Comments” column is omitted.

(XLSX)

S4 Table. Number of Anax junius exuviae collected daily at Kestrel Haven study pond dur-

ing 2004–2013. Cf. Figs 3 and 4. Data are arranged by year (columns) and date (rows). At the

end of each calendar month the total number for that month and the cumulative number to

that point in the year is shown.

(XLSX)
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S5 Table. Number of Anax junius exuviae collected per person-hour as a function of day of

year (DOY) and pond identity in Rhode Island in 2004. Cf. Figs 5 and 6. Abbreviated names

of ponds appear in the first row. Dots indicate days when no collecting was attempted at a

given pond, zeros indicate days when exuviae were sought but none were found.

(XLSX)

S6 Table. Number of Anax junius exuviae collected per person-hour as a function of day of

year (DOY) and pond identity in Rhode Island in 2005. Cf. Fig 6 and S1 Fig. Pond identifica-

tion and data symbols as in S5 Table.

(XLSX)

S7 Table. Number of Anax junius exuviae collected per person-hour as a function of day of

year (DOY) and pond identity in Rhode Island in 2006. Cf. Fig 6. Pond identification and

data symbols as in S5 Table.

(XLSX)

S8 Table. Number of Anax junius exuviae collected in 2003–2005 at Austin, TX, pond, by

day of year. Cf. Fig 7.

(XLSX)

S9 Table. Number of adult Anax junius specimens in the Florida State Collection of

Arthropods (FSCA) collected in Florida south of 29 N, by month. Cf. Fig 8. Data are ordered

alphabetically by county; Volusia Co. is about 50% south of 29˚N, all others listed are 90% or

more south of that latitude.

(XLSX)

S10 Table. List of Anax junius specimens from FSCA, Odonata Central (2016) and per-

sonal records and notes from D. R Paulson (pers. comm, 2016) for selected states in the

United States. Cf. Fig 9. Data are ordered alphabetically by state, then by month within states.

Note that most FSCA specimens are not georeferenced.

(XLSX)

S11 Table. Rainfall for years of 2004–2013 and for selected months within those years, and

numbers of exuviae collected at KHMO. Cf. Table 1. Total Exv–total number of exuviae col-

lected for the year; Exv Pk1 –exuviae collected during the first peak of emergence; Exv Pk2 –

exuviae collected during the second peak of emergence; Min Day–day selected as defining the

boundary between emergence peaks 1 and 2.

(XLSX)
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University Press; 2008. pp. 63–77.

17. Shannon HJ. Insect migrations as related to those of birds. Scientific Monthly. 1916; 3:227–240.

18. Russell RW, May ML, Soltesz KL, Fitzpatrick JW. Massive swarm migrations of dragonflies (Odonata)

in eastern North America. American Midland Naturalist. 1998; 140:325–342.

19. May ML. A critical overview of progress in studies of migration of dragonflies (Odonata: Anisoptera),

with emphasis on North America. Journal of Insect Conservation. 2013; 17: 1–15. https://doi.org/10.

1007/s10841-012-9540-x

20. Kime JB. Ecological relationships among three species of aeshnid dragonfly larvae (Odonata: Aeshni-

dae). Ph.D. Dissertation, University of Washington. 1974.

21. Daigle JJ. A late summer collecting trip to Texas. Argia 1991; 3(4): 8.

22. Fincke O. 2010 Aug 24. Mass flight on south central Oregon coast, [cited 6 June 2016]. In: Odonata-l

Archives [Internet]. Available at https://mailweb.pugetsound.edu/pipermail/odonata-l/2010-August/

007050.html.

23. Anderson RC. Do dragonflies migrate across the western Indian Ocean? Journal of Tropical Ecology

2009; 25: 347–358.

24. Corbet PS, Suhling F, Soendgerath D. Voltinism of Odonata: a review. International Journal of Odona-

tology. 2006; 9, 1–44.

25. Trottier R. The emergence and sex ratio of Anax junius Drury (Odonata: Aeshnidae) in Canada. Cana-

dian Entomologist.1966; 98: 795–798.

26. Butler T., Peterson JE, Corbet PS. An exceptionally early and informative arrival of adult Anax junius in

Ontario (Odonata, Aeshnidae). Canadian Entomologist. 1975; 107: 1253–1254.

27. Wissinger SA. Life history and size structure of larval dragonfly populations. Journal of the North Ameri-

can Benthological Society. 1988; 7:13–28.

28. White HB, Raff RA. Early spring emergence of Anax junius (Odonata: Aeshnidae) in central Pennsylva-

nia. Canadian Entomologist. 1970; 102, 498–499.

29. Freeland JR., May M. Lodge R, Conrad KF. Genetic diversity and widespread haplotypes in a migratory

dragonfly, the common green darner Anax junius. Ecological Entomology. 2003; 28:413–421.

30. Matthews JH. Large-scale dragonfly migration by Anax junius (Odonata: Aeshnidae) results in genetic

homogeneity despite temporally and spatially discrete populations. In: Research in Motion: Patterns of

Large-scale Migration in Dragonflies and Birds. PhD Dissertation, University of Texas. 2007b; pp. 33–

61.

31. Matthews JH. Report on Anax junius emergence in Caledon, Ontario, in 2003. Ontario Odonata. 2004;

5: 12–14.

32. Panek FM, Weis JS. Diet of the Eastern Mudminnow (Umbra pygmaea DeKay) from two geographically

distinct populations within the North American native range. Northeastern Naturalist 2013; 20:37–48.

http://dx.doi.org/10.1656/045.020.0103

33. McCauley SJ. The role of local and regional processes in structuring larval dragonfly distributions

across habitat gradients. Oikos. 2007; 116: 121–133.

34. Corbet PS. The life-history of the Emperor Dragonfly Anax imperator Leach (Odonata: Aeshnidae).

Journal of Animimal Ecology. 1957; 26:1–69.

35. Needham JG, Hart CA. The dragonflies (Odonata) of Illinois, with descriptions of the immature stages.

Part 1. Petaluridae, Aeschnidae, and Gomphidae. Bulletin of the Illinois State Laboratory of Natural His-

tory. 1901; 6(1): 1–94.

36. Aliberti Lubertazzi MA, Ginsberg HS. Persistence of dragonfly exuviae on vegetation and rock sub-

strates. Northeastern Naturalist 2009; 16: 141–147.

37. Sommer A. 2011. Pimephales promelas [cited 26 May 2017]. In: Animal Diversity Web. [Internet]. Avail-

able at http://animaldiversity.org/accounts/Pimephales_promelas.

38. Aliberti Lubertazzi MA. Natal habitat use by dragonflies along habitat gradients in Rhode Island. Ph.D.

Dissertation, University of Rhode Island, Kingston, RI. 2009.

39. Odonata Central. 2016 [cited 2016 March 6]. Available at http://odonatacentral.bfl.utexas.edu/index.

php/PageAction.get/name/HomePage.

40. Calvert PP. The rates of growth, larval development and seasonal distribution of dragonflies of the

genus Anax (Odonata: Aeshnidæ). Proceedings of the American Philosophical Society. 1934; 73: 1–

70.

Evolution of migratory behavior in the common green darner dragonfly, Anax junius

PLOS ONE | https://doi.org/10.1371/journal.pone.0183508 September 8, 2017 25 / 27

https://doi.org/10.1007/s10841-012-9540-x
https://doi.org/10.1007/s10841-012-9540-x
https://mailweb.pugetsound.edu/pipermail/odonata-l/2010-August/007050.html
https://mailweb.pugetsound.edu/pipermail/odonata-l/2010-August/007050.html
http://dx.doi.org/10.1656/045.020.0103
http://animaldiversity.org/accounts/Pimephales_promelas
http://odonatacentral.bfl.utexas.edu/index.php/PageAction.get/name/HomePage
http://odonatacentral.bfl.utexas.edu/index.php/PageAction.get/name/HomePage
https://doi.org/10.1371/journal.pone.0183508


41. Paulson DR. Dragonflies (Odonata: Anisoptera) of southern Florida. Occasional Papers of the Slater

Museum, 1999a; no. 57.

42. Schenk K, Suhling F, Martens A. Egg distribution, mate-guarding intensity and offspring characteristics

in dragonflies (Odonata). Animal Behaviour, 2004, 68, 599–606. https://doi.org/10.1016/j.anbehav.

2003.12.010

43. Crowder LB, Cooper WE. Habitat structural complexity and the interaction between bluegills and their

prey. Ecology, 1982; 63, 1802–1813. https://doi.org/10.2307/1940122

44. McPeek MA. Differential dispersal tendencies among Enallagma damselflies (Odonata) inhabiting dif-

ferent habitats. Oikos. 1989; 56:187–195.

45. Nation JL. Insect Physiology and Biochemistry, 3rd ed. Boca Raton, FL. CRC Press. 2016.

46. Matthews JH. Anthropogenic climate change impacts on ponds: a thermal mass perspective. In: Ott J.,

editor, Odonate Conservation: Climate Change Impacts and Monitoring Strategies. Sofia: Pensoft

Publishers. 2007b; pp. 183–207.

47. Wikelski M., Moskowitz D., Adelman JS, Cochran J, Wilcove DS, May ML. Simple rules guide dragonfly

migration. Biology Letters. 2006; 2, 325–329. https://doi.org/10.1098/rsbl.2006.0487 PMID: 17148394

48. Koenig WD, Albano SS. Breeding site fidelity in Plathemis lydia (Anisoptera: Libellulidae). Odonatolo-

gica. 1987; 16: 249–259.

49. McCauley SJ. The effects of dispersal and recruitment limitation on community structure of odonates in

artificial ponds. Ecography, 2006; 29: 585–595.

50. Michiels NK, Dhondt AA. Characteristics of dispersal in sexually mature dragonflies. Ecological Ento-

mology. 1991; 16: 449–460.

51. Suhling F, Martens A, Suhling I. Long-distance dispersal in Odonata: Examples from arid Namibia. Aus-

tral Ecology. Published online 2016 29 Nov.; https://doi.org/10.1111/aec.12472

52. NOAA. National Climatic Data Center, Climate Data Online. 2016 [cited 2016 March 6]. Available at

http://www.ncdc.noaa.gov/cdo-web.

53. USGS. 2016 [cited 2016 Nov 3]. National Water Information Systems: Web Interface. Available at

http://waterdata.usgs.gov/nwis,

54. U.S. Climate Data. 2016 [cited 2016 March 6]. Available at http://www.usclimatedata.com.

55. ClimaTemps. 2016 [cited 2016 March 6]. Available at http://www.veracruz.climatemps.com/

56. Abtew W, Huebner RS, Ciuca V. Chapter 5: Hydrology of the South Florida environment, South Florida

Environmental Report. 2006; Vol I: pp 5–1–5–85. (cited 12 November 2016). Available at http://my.

sfwmd.gov/portal/page/portal/pg_grp_sfwmd_sfer/portlet_prevreport/2006_sfer/volume1/chapters/v1_

ch_5.pdf.

57. Sprandel GL. Fall dragonfly (Odonata) and butterfly (Lepidoptera) migration at St. Joseph Peninsula,

Gulf County, Florida. Florida Entomologist. 2001; 84:234–238.

58. Russell RW. Interactions between migrating birds and offshore oil and gas platforms in the northern

Gulf of Mexico: Final Report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico

OCS Region, New Orleans, LA. OCS Study MMS 2005–009. 2005; 348 pp.

59. Paulson DR. 1999b Oct 20 [cited 2011 June 25]. Notes on Mexican odonates. In: Odonata-l Archives

[Internet]. Available at https://mailweb.ups.edu/pipermail/odonata-l/1999-October/001280.html.

60. Parkos JJ, Ruetz CR, Trexler JC. Disturbance regime and limits on benefits of refuge use for fishes in a

fluctuating hydroscape. Oikos 2011; 120: 1519–1530.

61. Dorn NJ, Colonization and reproduction of large macroinvertebrates are enhanced by drought-related

fish reductions. Hydrobiologia 2008; 605:209–218.

62. Jaramillo A. 2016. Good movement of odonates and butterflies in Half Moon Bay, CA [cited 5 Nov

2016]. In: CalOdes [Internet]. Available at https://groups.yahoo.com/neo/groups/CalOdes/

conversations/messages/6462.

63. Paulson D. R. 2010 June 20. [cited 2016 June 20]. More about migration. In: CalOdes [Internet]. Avail-

able at https://groups.yahoo.com/neo/groups/CalOdes/conversations/messages/4017.

64. Stacey BJ. 2013 Sep 12 [cited 2016 June 6]. Offshore darners. [Internet]. Available at https://groups.

yahoo.com/neo/groups/CalOdes/conversations/messages/5367.

65. Biggs K. Spring migration, 2012 May 21. [cited 6 June 2016]. In: Odonata-l Archives [Internet]. Available

at https://mailweb.pugetsound.edu/pipermail/odonata-l/2012-May/007729.html

66. Berra TM. Freshwater Fish Distribution. Chicago, Univ. of Chicago Press. 2007.

67. Paulson DR. The dragonflies of Washington. Bulletin of American Odonatology 1996; 4: 7–91.

Evolution of migratory behavior in the common green darner dragonfly, Anax junius

PLOS ONE | https://doi.org/10.1371/journal.pone.0183508 September 8, 2017 26 / 27

https://doi.org/10.1016/j.anbehav.2003.12.010
https://doi.org/10.1016/j.anbehav.2003.12.010
https://doi.org/10.2307/1940122
https://doi.org/10.1098/rsbl.2006.0487
http://www.ncbi.nlm.nih.gov/pubmed/17148394
https://doi.org/10.1111/aec.12472
http://www.ncdc.noaa.gov/cdo-web
http://waterdata.usgs.gov/nwis
http://www.usclimatedata.com
http://www.veracruz.climatemps.com/
http://my.sfwmd.gov/portal/page/portal/pg_grp_sfwmd_sfer/portlet_prevreport/2006_sfer/volume1/chapters/v1_ch_5.pdf
http://my.sfwmd.gov/portal/page/portal/pg_grp_sfwmd_sfer/portlet_prevreport/2006_sfer/volume1/chapters/v1_ch_5.pdf
http://my.sfwmd.gov/portal/page/portal/pg_grp_sfwmd_sfer/portlet_prevreport/2006_sfer/volume1/chapters/v1_ch_5.pdf
https://mailweb.ups.edu/pipermail/odonata-l/1999-October/001280.html
https://groups.yahoo.com/neo/groups/CalOdes/conversations/messages/6462
https://groups.yahoo.com/neo/groups/CalOdes/conversations/messages/6462
https://groups.yahoo.com/neo/groups/CalOdes/conversations/messages/4017
https://groups.yahoo.com/neo/groups/CalOdes/conversations/messages/5367
https://groups.yahoo.com/neo/groups/CalOdes/conversations/messages/5367
https://mailweb.pugetsound.edu/pipermail/odonata-l/2012-May/007729.html
https://doi.org/10.1371/journal.pone.0183508


68. Paulson DR, Kostecke R, Heindel M, Fazio V, Arbour D, Lasley G, et al. 28–30 September 2009. [cited

2016 December 16]. Questions about CGDs. In: TexOdes [Internet]. Available at https://groups.yahoo.

com/neo/groups/TexOdes/conversations/topics/2039.

69. Dingle H. Migration: the biology of life on the move. Oxford, UK, Oxford University Press, 1996.

70. NJOdes, the Dragonflies and Damselflies of New Jersey. 2014 [cited 25 August 2014]. Available at

http://www.njodes.com/Speciesaccts/darners/darn-comm.asp.

71. Matthews JH. Phenotypic plasticity determines migration strategy across large spatial scales. In:

Research in Motion: Patterns of Large-scale Migration in Dragonflies and Birds. PhD Dissertation, Uni-

versity of Texas. 2007c; pp. 62–91.

Evolution of migratory behavior in the common green darner dragonfly, Anax junius

PLOS ONE | https://doi.org/10.1371/journal.pone.0183508 September 8, 2017 27 / 27

https://groups.yahoo.com/neo/groups/TexOdes/conversations/topics/2039
https://groups.yahoo.com/neo/groups/TexOdes/conversations/topics/2039
http://www.njodes.com/Speciesaccts/darners/darn-comm.asp
https://doi.org/10.1371/journal.pone.0183508

