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Abstract

A warming climate increases thermal inputs to lakes with potential implications for water

quality and aquatic ecosystems. In a previous study, we used a dynamic water column

temperature and mixing simulation model to simulate chronic (7-day average) maximum

temperatures under a range of potential future climate projections at selected sites repre-

sentative of different U.S. regions. Here, to extend results to lakes where dynamic models

have not been developed, we apply a novel machine learning approach that uses Gaussian

Process regression to describe the model response surface as a function of simplified lake

characteristics (depth, surface area, water clarity) and climate forcing (winter and summer

air temperatures and potential evapotranspiration). We use this approach to extrapolate pre-

dictions from the simulation model to the statistical sample of U.S. lakes in the National

Lakes Assessment (NLA) database. Results provide a national-scale scoping assessment

of the potential thermal risk to lake water quality and ecosystems across the U.S. We sug-

gest a small fraction of lakes will experience less risk of summer thermal stress events due

to changes in stratification and mixing dynamics, but most will experience increases. The

percentage of lakes in the NLA with simulated 7-day average maximum water temperatures

in excess of 30˚C is projected to increase from less than 2% to approximately 22% by the

end of the 21st century, which could significantly reduce the number of lakes that can sup-

port cold water fisheries. Site-specific analysis of the full range of factors that influence ther-

mal profiles in individual lakes is needed to develop appropriate adaptation strategies.

Introduction

A warming climate is expected to result in increased lake water temperatures, presenting a

threat to lake water quality and ecosystem health [1]. Surface water temperatures are closely

tied to atmospheric forcing due to ready exchanges between the water surface and air. In a

recent review, [2] found an average global rate of warming of lake surface waters of 0.34˚C per
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decade between 1985 and 2009. Surface warming rates are highly heterogeneous, and depend

on interactions among climatic and lake morphometric factors. The greatest increases

occurred in seasonally ice-covered lakes in areas where temperature and solar radiation are

increasing while cloud cover is decreasing (0.72˚C per decade [2]).

Warming of surface waters also increases the strength of thermal stratification [3], leading

to reduced mixing and, in some deeper lakes, a decrease in summer temperatures at depth [4,

5]. Such changes have direct implications for lake ecology. A review by [6] suggests that cli-

mate change has already altered abundance, growth, and recruitment of some North American

inland fish populations, with particularly strong effects noted on cold water species. Changes

in phenology and range are noted, resulting in altered structure and function of fish assem-

blages. The physiological basis of climate change effects on fish is reviewed by [7], who note

the importance of aerobic scope (the difference between maximum and standard metabolic

rate) in determining a species functional thermal tolerance. Risk to species survival thus

depends on exposure to annual maximum water temperature for a critical duration. Hypoxia

can interact with high temperatures to reduce the functional thermal tolerance window [8, 9].

In a stratified lake, the epilimnion is mixed by wind, yielding low vertical gradients,

although a secondary thermocline often develops during the afternoon when wind mixing is

low, resulting in less extreme temperature maxima near the thermocline. Trends in the tem-

perature regime of lake mid-level and bottom waters are less well documented than changes at

the surface. In deeper waters, temperature also depends strongly on mixing and stratification

processes, which can also be expected to change under an altered climate. A more complete

understanding of potential changes in lake thermal dynamics, including deeper waters, has

important implications for anticipating and managing the effects of climate change on water

quality and aquatic ecosystems.

The hypolimnion of a stratified lake generally maintains cooler temperatures; however,

the hypolimnion may not be available as a refuge from thermal stress if dissolved oxygen is

depleted, as is often the case in eutrophic lakes. We therefore focus on changes in maximum

water temperature just above the thermocline, which approximates the interface between

waters above with adequate dissolved oxygen replenishment (by reaeration and mixing) and

waters below with cooler temperatures that provides a refuge in which sensitive species are

more likely to survive extreme thermal events.

Our previous work [10] evaluated lake thermal and mixing response to changing climate in

the mid-21st century using the one-dimensional (vertical) Lake, Ice, Snow, and Sediment Sim-

ulator (LISSS) model [11]. LISSS simulations use lake geometry (e.g., surface area, depth) and

climate forcing including air temperature, pressure, precipitation, humidity, wind, shortwave

radiation, and downward longwave radiation to predict time series of temperature and mixing

dynamics throughout the water column, including the temporal evolution and position of the

thermocline. The study did not simulate actual lakes. Rather, [10] evaluated the response of 27

lake “archetypes” (a 3 x 3 x 3 matrix of depth, surface area, and water clarity characteristics) in

11 baseline hydroclimatic settings (representative of different geographic locations in the U.S.)

to a range of mid-21st century climate change scenarios. The analysis was informative as to

how the physical characteristics of lakes affect temperature sensitivity to climate change, but

did not inform upon how climate change effects could potentially be distributed in actual lakes

throughout the contiguous U.S. (CONUS).

This study demonstrates a method to extrapolate from detailed physics-based models to a

national scale screening assessment using only simplified and readily available inputs (e.g.,

monthly air temperature projections). We accomplish this through use of a surrogate model

that approximates the response surface based on a “training” set of dynamic simulation model

output. We combine the methods of [10] with the surrogate model to develop a sensitivity
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analysis of the potential risk of climate change-induced water temperature extremes for lakes of

the CONUS included in the National Lakes Assessment (NLA) database [12]). Surrogate models

have been developed and widely used in information theory [e.g., 13, 14]. Recent applications in

water resources are summarized in [15]. Most applications in the water sector have been for

model calibration purposes; however, the method is equally applicable to extension of modeling

results to a broader population for which the original, detailed model has not been run.

Methods and data

National lakes assessment database

The 2007 NLA database is a statistical sample of lakes throughout the U.S. The NLA is part of

EPA’s National Aquatic Resource Surveys program, which aims to provide statistically valid

data describing water resource quality conditions across the country. The NLA provides infor-

mation on over 1,000 lakes in the CONUS, collected using consistent methodology, as a means

to summarize the state of the nearly 50,000 natural and man-made lakes that are greater than

10 acres (0.04 km2) in area and over one meter deep. As such, the NLA provides an ideal basis

for broad-scale inference about the future status of U.S. lakes as potentially affected by climate

change. Specifically, we use the NLA coupled with the surrogate model to extend the results of

LISSS simulations to actual lakes across the CONUS. In this analysis, we removed lakes with

incomplete morphometric data and filtered the sample to include lakes with 0.1 to 100 km2

surface area and 2 to 30 m depth (consistent with the training data set described below), result-

ing in a total of 898 lakes.

Surrogate model

Training data set. Developing a surrogate model of the response surface suitable for

application to the NLA dataset requires a broad sampling of the model domain. To accomplish

this, we used a training data set of 1,701 LISSS model simulations using climate forcing series

developed previously by Butcher et al. 2015 (simulations for 9 climate time series locations x 7

climate scenarios x 27 versions of morphometric and water quality conditions).

Meteorological forcing required for LISSS consists of hourly series of air temperature, pres-

sure, precipitation, humidity, wind speed, shortwave radiation, and downward longwave radi-

ation. Baseline hydroclimatic conditions in the training data set include nine first-order

weather stations located in different U.S. regions ranging from humid sub-tropical Tampa, FL

(mean temperature 22.3˚C) to cold, high-elevation Sugarloaf Reservoir, CO (mean tempera-

ture 4.6˚C). See S1 Text, S1 Fig, S2 Fig, and S1 Table in the supporting information for addi-

tional details. The meteorological time series (one historic and six future climate series at each

location) used by [10] in the training data set are a subset of those developed for a U.S. EPA

study of potential climate effects on hydrology and water quality in large U.S. watersheds [16,

17]. Historical time series cover the period 1971–2000. Climate change scenarios are derived

from six high-resolution simulations archived by the North American Regional Climate

Change Assessment Program (NARCCAP; [18]) for 2041–2070. The NARCCAP simulations

use regional climate models (RCMs) to dynamically downscale output from Global Climate

Models (GCMs) used in the Intergovernmental Panel on Climate Change (IPCC) 4th Assess-

ment Report [19] to a 50x50 km2 grid over North America and provide a full suite of physically

consistent meteorological variables. The climate change scenarios used by [10] in the training

data set, while not comprehensive of all potential climate futures, represent a plausible range of

potential mid-century changes appropriate for training the surrogate model.

Each meteorological forcing scenario (one historic and six future climate series at each

hydroclimatic location) was combined in 27 replicates with a quasi-random sampling
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realization of three key lake characteristics: maximum depth, surface area (or average fetch),

and water transparency (extinction coefficient). The lake characteristics are spread out to max-

imize coverage of the potential range of interest, but are not truly randomized because true

random sampling paradoxically results in inefficient clumping of scenario conditions; rather

they are based on a quasi-random scheme. Specifically, we use the quasi-random space-filling

sequence of 0–1 variables proposed by [20] and refined by [21; see also 22] to derive the lake

characteristics distribution for training. In a Sobol sequence, successive sample points are

located to fill gaps in the previously generated distribution, maximizing coverage of the

response surface sample space (see S3 Fig). Model code and results of the training runs are

available in an online repository (DOI 10.17605/OSF.IO/4r44z).

All future climate change scenarios for all hydroclimatic locations in the training data set

show an increase in average annual and seasonal air temperatures. Not surprisingly, this results

in an increase in the predicted average summer surface water temperature and total heat con-

tent of the water column of the simulated lakes. LISSS model results for maximum tempera-

tures above the thermocline (operationally defined for each simulation day as the layer of the

water column deeper than 1 m and immediately above the point of maximum change in the

vertical temperature profile during stratification or the bottom water layer during mixed con-

ditions) are more complex, particularly as regards annual maxima.

Many lacustrine species are constrained by thermal tolerances during episodic high temper-

ature events. Increases in temperature are a particular concern for fish. Since the 1970s [23,

24], U.S. EPA has recommended evaluating chronic risks to fish from elevated temperature in

terms of MWAT–the maximum weekly average temperature, calculated as the highest annual

average of seven consecutive daily maxima (also referred to as the 7DADMax temperature).

MWAT tolerances have been developed for both streams and lakes (e.g., [25]). The majority of

lake simulations in the training data set have a projected increase in MWAT above the thermo-

cline; however, there are also a number of cases (slightly under 9%) that have a projected

decrease under future climate conditions due to changes in timing and depth of stratification.

In this study, we use MWAT as a summary index of thermal conditions in lakes, and use this

index to suggest potential risk to sensitive fish species.

Response surface surrogate model development. The surrogate model for MWAT is

based on Gaussian Process regression. In Gaussian Process regression, the response surface is

simulated as the sum of a potentially infinite set of Gaussian (i.e., normally distributed) vari-

ables subject to a covariance structure that can be specified based on a regression against exter-

nal variables (e.g., lake morphometry and climate conditions). Once established, the response

surface surrogate model can be applied to any set of lake characteristics and climate projec-

tions that are reasonably encompassed by the domain of the training data set.

Gaussian Processes have seen extensive recent development for supervised machine learn-

ing problems, where a surrogate is required for an intrinsically complex process and the prob-

lem is one of learning input-output mappings from empirical data [26]. Gaussian Processes

take advantage of the fact that the sum of normally distributed (Gaussian) random variables is

also Gaussian and even an infinite set is tractable. If the variable of interest is normalized so

that it has a mean of zero, the resulting distribution also has a mean of zero and the prediction

of individual points depends only on the covariance structure. The covariance structure that

provides the best fit across all training points is the posterior distribution that combines model

and observations. The Gaussian Processes approach is shown to be consistent with a one-level

ANN model, kriging approaches, and a Bayesian interpretation [26]. The Bayesian perspective

leads directly to a description of the conditional probability distribution of a prediction at any

point conditioned on the training data. For regression problems, if the dispersion about the

regression line is assumed to be Gaussian (regardless of the complexity of the regression
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relationship itself) the analytical problem is tractable and efficient, being governed by inver-

sion of an n x n matrix for a problem with n training data points. In this paper, we implement

Gaussian Process regression using the pyGPs Python package [27] using MWAT above the

thermocline as the response variable. Code and output are provided in the online data reposi-

tory (DOI 10.17605/OSF.IO/4r44z).

The relationship between simulated MWAT and summer air temperature in the training

data set is complex and dependent on site-specific climatic conditions. The likelihood of strong

stratification in a lake corresponds to a low lake geometry ratio (Area0.25/Hmax; units L-0.5),

where Hmax is the maximum depth [28]. Sites with larger relative changes in MWAT tend to

be exhibit lower historic summer air temperatures and higher geometry ratios, representing

lakes with weaker stratification (Fig 1). The smaller response at higher summer air tempera-

tures is likely due in part to increased evaporative cooling. Lakes in which LISSS projects a

reduction in future MWAT tend to be both small and deep with a geometry ratio less than 10.

To fit the surrogate model, we first normalized the training data set to a zero mean process,

as Yi = (Xi—�X/σ), where Xi represents the MWAT estimate from a model run, �X is the mean

value of all Xi (25.65˚C) and σ is the standard deviation of the training Xi (3.265). The Gaussian

Fig 1. Change in MWAT above the thermocline as a function of July-August air temperature and lake

geometry ratio in the training data (with quadratic smoother applied).

https://doi.org/10.1371/journal.pone.0183499.g001
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Process regression analysis of the model response surface was conducted in a number of

parametric forms (linear and non-linear) informed by exploratory sensitivity analyses con-

ducted on the training data set. The final surrogate model representation was selected based

on Akaike Information Criterion (AIC; [29]) scores relative to the detailed model results. We

evaluated reliability of the surrogate model through bootstrap cross-validation and compari-

son to an independent machine learning approach (Random Forest regression).

Climate change scenarios–NLA lakes

The climate change scenarios used in our assessment of the potential climate change effects on

NLA lakes are different from those of the training dataset. In the NLA assessment, we consider

a larger ensemble range of scenarios based on modeling results from the Coupled Model Inter-

comparison Project Phase 5 (CMIP5) associated with the fifth assessment report of the IPCC

[30], and include results through the end of the 20th century. Scenarios are based on the Multi-

variate Adaptive Constructed Analogs (MACA) statistically downscaled data (to a 4 km x 4 km

scale). MACA includes output from a large number of CMIP5 experiments (30+ GCMs under

multiple representative concentration pathways (RCPs) of greenhouse gas emissions). The

MACA method [31] has two advantages that make it preferable to other statistical downscaling

methods for simulating local waterbody responses: (1) it provides simultaneous downscaling

of precipitation, temperature, humidity, wind, and radiation (rather than just precipitation

and temperature), providing physical consistency in the energy balance, and (2) the method

uses a historical library of observations (analogs) to construct the downscaling such that future

climate projections are distributed from the monthly to the daily scale in comparison to

months that exhibit similar characteristics in the historical record. MACA data were accessed

through a THREDDS server (http://maca.northwestknowledge.net/) that allowed results to be

extracted for each lake location.

To characterize the range of climate risk we screened available MACA scenarios for output

of six GCMs under the RCP 8.5 pathway preferring candidates that (1) are evaluated as having

good skill on prediction of warm-dry conditions (i.e., conditions under which maximum lake

thermal increase is expected) in temperate latitudes [32], (2) have high spatial resolution [33],

and (3) exhibit a range of projected increases in annual mean maximum air temperatures

across the Continental U.S. based on the USGS National Climate Change Viewer (NCCV;

[34]). The six selected model runs under RCP 8.5 are CNRM-CM5, HadGEM2-CC365,

IPSL-CM5A-MR, BCC-CSM1-1, GFDL-ESM2M, and MRI-CGCM3. The NCCV shows a

range of increase in annual mean maximum temperature (2075–2099 vs. 1950–2005) across

the CONUS of 3.1˚C (MRI-CGCM3) to 7.1˚C (HadGEM2-CC365) for these GCM runs.

The MACA daily output was downloaded for each NLA location for maximum and mini-

mum air temperature, specific humidity, precipitation, downward shortwave radiation, and

near surface wind. The energy variables were used to calculate potential evapotranspiration

(PET) using the FAO56 implementation of the Penman-Monteith energy balance method

[35].

Results

Surrogate model performance

The surrogate model uses as input only readily available climate variables such as monthly

average air temperature. Analysis of simulations in the training data set in [10] suggested that

MWAT above the thermocline was correlated with the average July-August air temperature,

the January air temperature (indicative of the ice regime), PET, light extinction/water clarity,

and lake geometry (depth, surface area) (see S3 Table). Exploratory multivariate regression
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models provided reasonable results for specific depth ranges, but appeared to depend on depth

in a non-linear fashion, suggesting the need for a more sophisticated analysis. For surrogate

model development, water clarity is represented by the light extinction coefficient (m-1) that

controls the depth of light penetration. Lake geometry is summarized by the geometry ratio

[28], which [36] found to be a useful discriminator of potential lake mixing behavior. Evapora-

tion affects lake temperature directly, but PET is likely also important as a surrogate for

changes in wind and incident solar radiation.

We investigated surrogate model fit across the selected set of explanatory variables and a

range of covariance kernels provided by pyGPs [27]. Best fit based on AIC was provided by the

squared exponential plus rational quadratic kernel using all explanatory variables. Further

details of the Gaussian Process model fit are provided in the supporting information (S2 Text,

S4 Table, and S5 Table). Bootstrap cross-validation and comparison to Random Forest regres-

sion (S2 Text) confirm the reliability of the surrogate model representation of LISSS simulation

results. In the bootstrap tests, average error (for untransformed predictions) was -0.0042˚C

and average absolute error was 0.588˚C–suggesting that the model fit is unbiased but some-

what imprecise.

The supplemental information provided with this article provides additional details on the

surrogate model fit. Predictions using Gaussian Process regression are a linear combination of

the points in the training data set with weights specified by the maximum likelihood estimate

of the covariance matrix that are based on distances in each predictor metric. The surrogate

model does not predict point estimates directly from the independent variables, only the

covariance structure.

The surrogate model omits, by design, many factors that could influence lake responses to

climate change to reduce the predictive variables to a set that is commonly available for lakes

in the NLA. This simplified model is still a credible predictor, explaining 97% of the variability

in the training data set with a root mean squared error of 0.54˚C on de-normalized results and

an average absolute error of 0.41˚C (Fig 2).

To establish the credibility of the approach, surrogate model performance for MWAT was

evaluated against publicly available, long-term monitoring data for five lakes (Castle Lake, CA

[37]; Lake Mendota, WI [38]; Crystal Lake, WI [38]; Sparkling Lake, WI [38], and Lake Laca-

wac, PA [39]). Over a combined total of 116 observation years, the surrogate model had an

Fig 2. Surrogate model fit to LISSS model runs for MWAT above the thermocline.

https://doi.org/10.1371/journal.pone.0183499.g002
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average relative error on MWAT of 1.82% (0.28˚C) and an average relative absolute error of

7.23% (1.59˚C), both well within the 95% confidence limits of the Gaussian Processes surro-

gate model (approximately ±20%). It did appear, however, that the Gaussian Processes model

was biased high for Lake Mendota (+12%) and biased low for Lake Lacawac (-8%), emphasiz-

ing the need for site-specific studies to account for conditions applicable to individual lakes.

Application of surrogate model to NLA lakes

The NLA is a statistical sample, not an exhaustive catalog of lakes in the CONUS. As such, it

provides a good basis for evaluating the broad scale range of climate change effects on lake

thermal structure and mixing in different regions of the CONUS. Results for individual lakes

may differ based on local conditions. Importantly, it should also be noted that results are only

a benchmark of potential climate change effects and do not include other potential effects that

may be associated with future changes such as increased pollutant loading and changes in

water clarity.

Variability among NLA lakes. We first present results obtained from application of the

surrogate model using the median monthly air temperature and PET series across the six cli-

mate change scenarios, which suggest a range of potential future changes. We later evaluate

and discuss the range of potential outcomes across the ensemble of climate change scenarios

(e.g., different GCMs).

Changes in summer MWAT, by lake, across all climate scenarios, are summarized geo-

graphically in Fig 3, for the 30-year time slice centered on 2065, and Fig 4, for the 30-year time

slice centered on 2085. The average summer MWAT across all NLA lakes increases from 24 to

26.2˚C by mid-century (ca. 2065) and to 27.5˚C by late-century (ca. 2085). Towards the end of

the century the maximum projected change for individual lakes is as great as 9.5˚C, while the

average projected change is an increase of 3.5˚C. Lakes with the greatest absolute changes in

MWAT tend to have low geometry ratios associated with small surface area and relatively cold

historic baseline temperatures. Consistent with the training data set, a small percentage of the

lakes (3% mid-century, 2% late-century) have a projected decline in the MWAT. These are pri-

marily (but not exclusively) lakes with low geometry ratios at higher elevations in the Rockies

Fig 3. Simulated changes in summer MWATs above the thermocline for NLA lakes, ca. 2065 (median

across climate scenarios).

https://doi.org/10.1371/journal.pone.0183499.g003

Future temperature maxima in U.S. lakes

PLOS ONE | https://doi.org/10.1371/journal.pone.0183499 November 9, 2017 8 / 16

https://doi.org/10.1371/journal.pone.0183499.g003
https://doi.org/10.1371/journal.pone.0183499


or near the Canadian border. The overall geographic patterns are complex, reflecting the inter-

action of the heat budget and strength and timing of stratification in individual lakes.

The cumulative frequency distribution of MWATs predicted by the surrogate model for the

898 NLA lakes included in the study is shown in Fig 5. The percentage of lakes with MWAT

exceeding 30˚C (an approximate threshold for adverse effects on cold water fisheries) increases

from 1.7% under recent historical climate to 11.1% by mid-century and 22.6% by late-century.

The surrogate model estimates are a statistical approximation of the LISSS model results

and thus subject to uncertainties associated with specific physical characteristics resolved by

LISSS simulations. The 95% confidence limits on the mean projections from the surrogate

model (Fig 6) show a relatively wide range of uncertainty associated with the surrogate model

projections for many lakes, even independent of the additional variability associated with indi-

vidual climate scenarios. It does appear, however, that there is a risk of greater temperature

increases in lakes that currently have colder MWATs. The causes underlying this relationship

are many and complex; however, at the colder end of the spectrum reductions in the extent of

ice cover facilitate greater total warming, while at the warmer end of the spectrum increases in

thermal stability and earlier onset of stratification can preserve cooler temperatures below the

depth of light penetration.

Variability among climate scenarios

Simulations for each NLA lake show a range of potential changes across the ensemble of cli-

mate change scenarios (GCMs) evaluated, with average predicted gains in MWAT above the

thermocline by GCM ranging from 2.6 to 4.5˚C. For the six sampled GCMs, the rank order

from smallest to largest average gain for mid-century is

GFDL-ESM2M < MRI-CGCM3 < CNRM-CM5 < BCC-CSM1-

1< IPSL-CM5A-MR < HadGEM2-CC365, and for late century,

MRI-CGCM3 < GFDL-ESM2M < CNRM-CM5 < BCC-CSM1-

1< IPSL-CM5A-MR < HadGEM2-CC365, consistent with the GCM-predicted changes in

average annual air temperature across the CONUS. One-way ANOVA on GCM confirms that

the means are significantly heterogeneous (F5, 5, 382 = 147.4, p< 0.001 for late century), with

Fig 4. Simulated changes in summer MWATs above the thermocline for NLA lakes, ca. 2085 (median

across climate scenarios).

https://doi.org/10.1371/journal.pone.0183499.g004
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HADGEM2-CC365 and IPSL-CM5A-MR predicting significantly larger increases than the

other GCMs. 88% of the variance late-century is associated with GCM.

The magnitude of predicted change also varies spatially. By EPA region, the projected late-

century increases are significantly greater (Tukey-Kramer test, p<0.05) for Regions 1, 2, 3, 4,

9, and 10 (predominantly coastal) compared to Regions 5, 6, 7, 8 (predominantly continental).

This spatial variability likely reflects a variety of competing factors in the complex response of

MWAT, which involves the interaction of heat exchanges, stratification depth and stability,

and ice regime. In general, smaller changes in MWAT appear to be associated with higher ele-

vation, higher existing MWAT, lower geometry ratio, and lower water clarity.

Discussion and conclusions

A warming climate will increase thermal inputs to lakes, increasing average water tempera-

tures. Lake thermal response to climate change is complex because it involves alteration to

both total heat content and stratification regime. Stratification responses to changing climate

have been observed worldwide and are primarily controlled by lake morphometry and existing

temperature baseline [40], consistent with our finding. These changes have a wide range of

implications for lake water quality and ecosystems.

This study demonstrates use of a Gaussian Process surrogate model to extend results of

dynamic simulation to a national population of lakes based only on readily available inputs.

The method performs well, although it is limited by the assumptions underlying the 1-D

Fig 5. Cumulative frequency distribution of MWAT.

https://doi.org/10.1371/journal.pone.0183499.g005
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dynamic model and the uncertainty associated with prediction from a simplified set of explan-

atory variables. We apply the surrogate model to develop a national-scale sensitivity analysis of

the risk of climate change-induced responses of water temperature in lakes across the CONUS

that are included in the NLA. Results suggest the range of effects that may be encountered,

their regional distribution, and their dependence on lake physical characteristics and climate

forcing–but are not intended as quantitative predictions for individual lakes.

The national sensitivity analysis focuses on one aspect of lake temperature–thermal stress

within the epilimnion as indexed by MWAT above the thermocline. This metric is a significant

factor for determining the functional thermal tolerance window for fish, especially for cold

water species such as trout and salmon. During periods of high thermal stress in stratified

lakes fish survive in cooler waters at the bottom of the mixed zone that is in contact with the

atmosphere [41], which provides a refuge of last resort where both thermal/metabolic and aer-

obic requirements can be met. It has been argued [42] that rising temperatures will likely

“tighten a metabolic constraint” on marine ecosystems. The results of our analysis suggest

there is a similar risk of reduction in the extent of zones favorable to survival of many fish spe-

cies in freshwater lakes, consistent with the review by [9].

Analysis of temperate freshwater lakes is complicated by seasonal stratification and the

presence of winter ice cover, both of which affect the seasonal position and extent of zones in

which species can survive periods of high thermal stress. Lake ecosystems are particularly vul-

nerable to climate change because many species within these ecosystems have limited abilities

to disperse to lakes with more favorable conditions [43]. Success of a species in a stratified lake

is potentially constrained by the frequency of occurrence of events of high thermal stress in the

epilimnion, especially if oxygen is depleted below the thermocline.

Fig 6. 95% confidence limits on change in MWAT above the thermocline for NLA lakes, ca. 2085 (confidence limits and 25-point moving average

on mean).

https://doi.org/10.1371/journal.pone.0183499.g006
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Critical thermal maxima for cold water fish species such as salmonids are typically cited as

in the range of 29–32˚C (e.g., [25]). The MWAT above the thermocline results from the inter-

action of factors that control heating of the water column, strength of stratification, and the

depth of the thermocline in lakes. More turbid lakes can have lower thermocline MWATs

because light energy does not penetrate as deeply. In clearer lakes, the critical temperature at

the bottom of the mixed zone depends on the interaction between light penetration and the

depth of the thermocline during thermal maximum events.

Our analysis suggests that lakes in the CONUS may, on average, experience an increase in

MWAT of about 3.5˚C by the end of the century, which is sufficient to increase the average

annual maximum from well below 30˚C to values in the 31–32˚C range for many lakes. If real-

ized, this presents a risk of substantial reductions in the number of lakes in which populations

of cold water species will be viable if hypolimnetic hypoxia occurs. This conclusion does not

apply to stratified lakes in which the cooler hypolimnion remains oxygenated during extreme

thermal events. Presence of an oxic hypolimnion is correlated to chlorophyll a concentration,

strength of stratification, elevation, Secchi depth, and lake geometry [44].

The model-based findings presented here are in general consistent with a recent summary

analysis of lake temperature and stratification trends in northeastern North America [45],

which, for the first time, assembles available observations on thermal profiles throughout a

region with many intensively studied lakes. The authors confirm that surface temperatures

and thermal stratification strength have generally increased over the last 40 years, while deeper

water temperatures show more complex responses. For deeper water, some lakes exhibited

warming and others cooling. Secchi depth and the interaction of Secchi depth with lake depth

were important explanatory variables for response of individual lakes, as were weather condi-

tions during spring mixing. Geographic patterns reported in [45] are complex, although lakes

nearer to the coast were more likely to exhibit cooling of deep waters.

Our study is based on a 1-D lake model that does not incorporate multi-dimensional pro-

cesses such as internal waves and mixing induced by lateral inflows; it also does not address the

many other changes in lake conditions and watershed forcing that may occur in response to cli-

mate change. The direct thermal response of lakes to altered climate can be affected by many

factors, including changes in amount, timing, and temperature of surface and groundwater

inflows, reductions in summer lake levels, and potential changes in water clarity that affect the

vertical distribution of heat. For some lakes, climate change may also result in increased water-

shed loads of nutrients and sediment [16]. Increases in strength of stratification and thermal sta-

bility of the water column may increase rates of hypolimnetic oxygen depletion, which in turn

could facilitate recycling of nutrients from lake sediments, while altered timing of fall overturn

could change how and when hypolimnetic nutrients are mixed into the epilimnion. The plank-

tonic and benthic communities at the base of the aquatic food web may also change in ways that

affect fish populations as well as other ecosystem services provided by lakes. For instance,

increased water temperature accompanied by potential changes in ice out timing and mixing

regimes may result in shifts toward more turbid, plankton dominated systems [46, 47, 48]. Of

particular concern, higher temperatures in combination with nutrient enrichment are shown to

increase the risk of harmful algal blooms and the proliferation of toxin producing cyanobacteria

[49, 50], which could impair both biotic and human uses of lakes.

The results we present are obtained with a simplified surrogate model that is appropriate

for national scoping, but is not sufficient to fully describe responses in real, three-dimensional

lakes. Additional investigations using process-based (rather than surrogate) models would

help elucidate apparent spatial patterns that may reflect ecoregional characteristics.

Development of strategies for responding to climate change will need to take account of the

full range of climate-related stressors and site-specific studies will be needed for individual
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lakes where valued resources appear to be at risk. Responding to thermal aspects of climate

change may require development of interventions, such as manipulation of the vertical distri-

bution of lake outflows that alter the mixing regime. Adaptation to the full range of climate-

associated stressors in lakes will require holistic management of lakes and their watersheds.
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