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Abstract

The spread of multidrug resistance among bacterial pathogens poses a serious threat to

public health worldwide. Recent approaches towards combating antimicrobial resistance

include repurposing old compounds with known safety and development pathways as new

antibacterial classes with novel mechanisms of action. Here we show that an analog of the

anticoccidial drug robenidine (4,6-bis(2-((E)-4-methylbenzylidene)hydrazinyl)pyrimidin-2-

amine; NCL195) displays potent bactericidal activity against Streptococcus pneumoniae

and Staphylococcus aureus by disrupting the cell membrane potential. NCL195 was less

cytotoxic to mammalian cell lines than the parent compound, showed low metabolic de-

gradation rates by human and mouse liver microsomes, and exhibited high plasma con-

centration and low plasma clearance rates in mice. NCL195 was bactericidal against

Acinetobacter spp and Neisseria meningitidis and also demonstrated potent activity against

A. baumannii, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae and

Enterobacter spp. in the presence of sub-inhibitory concentrations of ethylenediaminetetra-

acetic acid (EDTA) and polymyxin B. These findings demonstrate that NCL195 represents a

new chemical lead for further medicinal chemistry and pharmaceutical development to

enhance potency, solubility and selectivity against serious bacterial pathogens.
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Introduction

Infectious diseases particularly lower respiratory infections caused by bacterial and viral patho-

gens are the third leading cause of death [1] and the second leading cause of disability-adjusted

life years, worldwide [2]. Streptococcus pneumoniae (the pneumococcus) and Staphylococcus
aureus (‘golden staph’) are two such bacterial pathogens. The pneumococcus accounts for an

estimated one million deaths annually in developing countries, and causes a broad spectrum

of diseases including pneumonia, meningitis, bacteremia and otitis media (OM), particularly

in children under five years of age, the elderly and immunocompromised individuals [3].

Although the current capsular-based pneumococcal vaccines have been effective in preventing

pneumococcal sepsis and meningitis in developed countries, the vaccines induce strictly sero-

type-specific protection against a limited subset of pneumococcal types and furthermore are

generally not affordable in developing countries. In addition, there is evident replacement of

carriage and disease burden by non-vaccine serotypes following immunization [4, 5]. In devel-

oped countries, where effective antimicrobial therapy is readily accessible, deaths from pneu-

mococcal disease occur primarily among people over 60 years of age, with case fatality rates of

10–20% for pneumonia and up to 40% for bacteremia [3]. In contrast, S. aureus is the second

most clinically important antibiotic-resistant bacterial pathogen in developed countries behind

E. coli, and a major public health concern due to the increasing prevalence of methicillin-resis-

tant S. aureus (MRSA) in hospitals, among hospital workers and within the community [6–9].

Median direct medical costs associated with MRSA sepsis have been estimated at $12,078 US

per patient and are approximately1.3 times higher than costs associated with susceptible S.

aureus infection [10].

Effective treatment of Gram-positive bacterial infections remains hampered by the alarm-

ing increase in prevalence of antibiotic-resistant bacteria, as well as accelerated global spread

of bacterial clones resistant to multiple antimicrobial agents [11, 12]. For pneumococcal

disease, the problem is compounded by the highly transformable nature of this organism,

enhancing genetic exchanges through horizontal gene transfer [13]. Moreover, pneumococcal

OM accounts for more antibiotic prescriptions than any other infection [14, 15], driving selec-

tion for resistance amongst diverse bacteria, significantly affecting health-care costs in devel-

oped countries [$2.88 billion p.a. for USA] [16]. Recently, novel antimicrobials such as third-

generation fluoroquinolones (e.g. moxifloxacin) and cyclic lipopeptides (e.g. daptomycin)

have been shown to be effective against S. pneumoniae in vitro and in mouse models of infec-

tion [17–19]. However, there are reports of increasing frequency of S. pneumoniae resistance

to the fluoroquinolones [20]. For MRSA, resistance or reduced susceptibility to multiple agents

including vancomycin and daptomycin, is frequently reported in hospital-associated MRSA

(HA-MRSA) [21]. Although community-associated MRSA (CA-MRSA) are generally suscep-

tible to most drug classes over time they have acquired additional antimicrobial resistance

genes. Furthermore, CA-MRSA are generally more virulent with higher mortality rates com-

pared to HA-MRSA [22, 23]. Certain MRSA clones have recently become host-adapted in

animals, furthering the spread of the staphylococcal cassette chromosome mec (SCCmec)

within the environment [24]. In some countries, up to 54% of K. pneumoniae cases have been

reported as carbapenem-resistant, the current last resort treatment for severe Gram-negative

infections [25, 26]. Adding to this dire situation, the transferable colistin resistance determi-

nant (MCR-1) is now widely distributed amongst both animal and human Gram-negative

pathogens and commensals, resulting in some Gram-negative pathogens developing pan-resis-

tance to all registered compounds [27, 28]. Therefore, the discovery and development of new

broad-spectrum antimicrobials with activity against pan-resistant Enterobacteriaceae causing

sepsis is one of the highest global priorities [29–31].
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In 2010, the Infectious Diseases Society of America has called for 10 new antimicrobial

agents to be registered by 2020 [32]. Since that call, all new registered agents except one (fidaxo-

micin) have been developed from existing drug classes, against Gram-positive organisms

(telavancin, dalbavancin, tedizolid, oritavancin) or Gram-negative organisms (ceftolozane-tazo-

bactam, ceftazidime-avibactam) [33–36]. Robenidine (2,2’-bis[(4-chlorophenyl)methylene] car-

bonimidic dihydrazide hydrochloride) is an anticoccidial agent which has been used worldwide

since the early 1970s to prevent coccidian infections of poultry and rabbits [37]. However, there

have been no in-depth in vivo evaluations of this compound or its chemical class as potential

antibacterial agents. This presents an attractive prospect for testing the antibacterial activity of

robenidine, an agent with known safety and long history of oral use in avian species and an oral

LD50 of 150 mg/kg in mice [38], by expanding its chemical space with further medicinal chemis-

try for potential development as a parenteral or topically administered drug [39–41].

Materials and methods

Antimicrobial agents and medicinal chemistry

Analytical grade aminoguanidine robenidine (NCL812) [42] and two of its analogs (NCL195

and NCL219) were synthesized in house at The University of Newcastle and stored in a sealed

sample container out of direct light at 4˚C at the study site at the Infectious Diseases Laboratory,

Roseworthy campus, The University of Adelaide. Ampicillin (β-lactam broad-spectrum antibi-

otic) was purchased from Sigma-Aldrich (Australia), while daptomycin (in pharmaceutically

active form) was purchased from Cubist. Stock solutions (containing 25.6 mg/ml of each com-

pound in DMSO) were prepared and stored in 1 ml aliquots at -80˚C and defrosted immedi-

ately prior to use. Ethylenediaminetetraacetic acid (EDTA, Disodium salt, CAS Number: 6381-

92-6) was purchased from Chem-Supply Pty Ltd, South Australia and was dissolved in water to

200 mM. Polymyxin B sulfate (CAS Number: 1405-20-5) was purchased from Sigma-Aldrich.

Synthesis of NCL195 (4,6-bis(2-((E)-4-methylbenzylidene)hydrazinyl)pyrimidin-

2-amine). A suspension of 2-amino-4,6-dihydrazinopyrimidine (58.9 mg, 0.380 mmol) and

4-methylbenzaldehyde (0.10 ml, 100 mg, 0.832 mmol, 2.19 eq.) in EtOH (4 ml) was heated at

reflux for 16 h. The reaction mixture was cooled to ambient temperature before collecting the

pellet-like precipitate, washing with diethyl ether (20 ml). The ‘pellets’ were then crushed and

the solid further washed with diethyl ether (10 ml) to afford the pyrimidine (85.8 mg, 63%) as

a white ‘fluffy’ powder. 1H NMR ((CD3)2SO, 400 MHz) δ 10.51 (s, 2H), 8.00 (s, 2H), 7.54 (d,

J = 8.1 Hz, 4H), .26 (d, J = 8.0 Hz, 4H), 6.27 (s, 1H), 5.78 (s, 2H), 2.34 (s,6H); 13C NMR

((CD3)2SO, 101 MHz) δ 162.8 (2C), 162.6 (2C), 140.1 (2C), 138.4 (2C), 132.5 (2C), 129.4 (4C),

126.0 (4C), 73.3, 21.0 (6C).

Synthesis of NCL219. (E)-N’-((E)-1-(4-(tert-butyl)phenyl)ethylidene)-2-(1-(4-(tert-butyl)

phenyl)ethylidene)hydrazine-1-carboximidhydrazide). A suspension of N,N-diaminogua-

nidine hydrochloride (47.7 mg, 0.380 mmol) and 40-(tert-butyl)acetophenone (134 mg, 0.760

mmol, 2 eq.) and in EtOH was heated at reflux for 16 h. The mixture was cooled and diluted

with Et2O to effect crystallization. The resulting precipitate was collected and washed with

Et2O 920 ml) to afford the carbonimidic dihydrazide (134 mg, 84%) as a yellow crystalline

solid. 1H NMR ((CD3)2SO, 400 MHz) δ 11.74 (s, 1H), 8.60 (s, 1H), 7.95 (d, J = 8.6 Hz, 2H),

7.45 (d, J = 8.6 Hz, 2H), 2.42 (s, 3H), 1.31 (s, 9H). 13C NMR ((CD3)2SO, 101 MHz) δ 154.1,

153.3, 152.6, 134.0, 126.8, 125.0, 34.5, 30.9, 14.9.

Bacterial strains and growth conditions

The S. pneumoniae, S. aureus and VRE isolates used in this study are listed in S1, S2 and S3

Tables in Supporting information. Isolates were cultured on Horse Blood Agar (HBA) plates
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and incubated at 37˚C, for 18 h. The pneumococci isolates were incubated in 5% CO2. The

NCL812, NCL195 and NCL219 minimum inhibitory concentration (MIC) was performed on

all isolates.

Pneumococcal serotype-specific capsule production was confirmed on all pneumococcal

isolates by the Quellung reaction [43]. The minimum bactericidal concentration (MBC),

kill kinetics, TEM and efficacy testing experiments was performed on S. pneumoniae D39

(NCTC7466), a well-documented laboratory strain with well-defined and predictable in vitro
characteristics and in vivo pathogenicity profiles [44, 45]. MBCs, kill kinetics and point of

resistance assays were performed on S. aureus Xen29 (luminescent ATCC 12600 S. aureus
strain).

MIC determination

MICs for NCL812 and its analogs (serial two-fold dilutions commencing at 128 μg/ml) were

determined (in duplicate) in round bottom 96-well microtitre trays (Sarstedt 82.1582.001),

using the broth micro-dilution method recommended by the Clinical and Laboratory Stan-

dards Institute (CLSI) [46]. Luria Bertani (LB) broth (Oxoid, Australia) [supplemented with

3% lysed horse blood and 5% horse serum for S pneumoniae experiments] was used instead of

cation-adjusted Mueller-Hinton broth (CAMHB) as it was shown previously that NCL812 can

chelate calcium ions [47]. In addition, serial two-fold dilutions of the NCL compounds were

performed in 100% DMSO, with 1 μl added to each well, as the compounds are hydrophobic

[42]. The MIC for ampicillin or daptomycin against each S. pneumoniae, S. aureus or VRE iso-

late was determined for each test run as an internal quality control. MIC50, MIC90 and MIC

range for NCL812, NCL195 and NCL219 were calculated against each S. pneumoniae, S. aureus
or VRE isolate. To assess the potential activity of NCL195 against Gram-negative bacteria,

MICs against Acinetobacter spp, E. coli, K. pneumoniae, P. aeruginosa, Proteus spp and Neis-
seria meningitidis were performed in the presence or absence of 0.08 mM-20 mM EDTA in a

standard checkerboard assay [48].

Kill kinetics

Kill kinetic assays on S. pneumoniae D39 were performed (in duplicate) essentially as described

for MIC determination, with the exception that the starting concentration of each NCL com-

pound was 64 μg/ml, and the assay was performed using 200 μl volumes in a round bottom

96-well microtitre tray (Sarstedt 82.1582.001). The tray was covered with Breathe-Easy sealing

membrane (Z380059, Sigma-Aldrich) and incubated for 16 h overnight at 35˚C in an EnSpire

Multimode Plate Reader 2300 (PerkinElmer), with data collected every 20 min and 2 sec agita-

tion at 60 rpm between data (A600 nm) acquisitions. The experiment was repeated using the

luminescent D39LUX strain on a Cytation 5 Cell Imaging Multi-Mode Reader (BioTek) using

IsoplateTM-96 F tray PerkinElmer, 6005020). Kill kinetic assays on S. aureus Xen29 was car-

ried out essentially as described for MIC determination on Cytation 5 Cell Imaging Multi-

Mode Reader.

Minimum bactericidal concentration (MBC) determination

In order to determine the MBC of each compound against S. pneumoniae D39 or S. aureus
Xen29, 10 μl aliquots from each duplicate well from the MIC assays (starting from the MIC for

each compound) was inoculated onto a HBA plate and incubated at 37˚C (+ 5% CO2 for S.

pneumoniae D39). Plates were examined at 24 and 48 h and the MBC was recorded as the low-

est concentration of each test compound at which a 99.9% colony count reduction was

observed on the plate [46].
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Time-dependent killing assays

Time kill assays were performed (in duplicate) essentially as described previously [42, 49] with

slight modifications. Briefly, a few colonies of luminescent S. pneumoniae strain D39LUX or

luminescent S. aureus ATCC 12600 (Xen29) from an overnight HBA were emulsified in nor-

mal saline and adjusted to A600 nm = 0.10 (equivalent to approx. 5 × 107 c.f.u. per ml) and the

bacterial suspension further diluted 1:20 in saline. NCL195 was prepared in 10 ml volumes at

2× and 4× MIC (using 4× MIC of ampicillin and normal saline as controls) in either LB broth

(for Xen29) or LB supplemented with 3% lysed horse blood and 5% horse serum (for D39).

The compounds were serially diluted in 100% DMSO at 100× the final desired concentration

and 100 μl of appropriate concentrations added to each 10 ml preparation. Duplicate cultures

were incubated at 37˚C (+ 5% CO2 for S. pneumoniae D39), with samples withdrawn at 0, 0.5,

1, 2, 4, 6, 8 and 24 h, serially diluted 10-fold and plated on HBA overnight at 37˚C (+ 5% CO2

for S. pneumoniae D39) for bacterial enumeration.

Point of resistance assay

To determine if S. aureus develops resistance to the NCL195, we performed 24 daily sequential

culturing of S. aureus Xen29 in 2 ml LB broth the presence of 0.5×MIC, 0.75×MIC, 1×MIC,

1.5×MIC, 2×MIC, and 4×MIC of NCL195, using 1×MIC, 4×MIC and 8×MIC of daptomycin

as control (in triplicates), essentially as described by Ling et al.[50]. After the 24th passage, sam-

ples were centrifuged at 4,000 × g for 10 min and washed in 50 ml of phosphate buffered saline

(PBS) twice to remove any residual antimicrobial, and/or bacterial end products and media.

Washed bacteria were resuspended in PBS to A600 nm = 0.1 and MICs were performed as

described above.

Effect of NCL812 on S. pneumoniae D39 and S. aureus ATCC29213 cell

membrane

Morphological appearance and morphometric analysis of the cell membrane of S. pneumoniae
D39 after exposure to either 1 μg/ml, 4 μg/ml or 16 μg/ml of NCL812 was determined using

TEM, as described in S1 File (Supplementary Methods). For S. aureus ATCC 29213, macro-

molecular (DNA, RNA, protein, cell wall, and lipid) synthesis inhibition studies were per-

formed using concentrations of NCL812 that were equivalent to 0, 0.25, 0.5, 1, 2, 4 or 8-fold

the MIC value (4 μg/ml), as detailed in S1 File (Supplementary Methods).

Mechanism of action studies

To further examine the mechanism underlying the perturbation of the cell membrane of S.

pneumoniae or S. aureus by the NCL compounds, the membrane potential of the cells was

measured by fluorescence spectrometry using (DiOC2(3), essentially as described previously

[51, 52]. Briefly, D39 cells from an overnight HBA plate were grown in Todd-Hewitt broth

supplemented with 1% yeast extract (THY) at 37˚C, 5% CO2 until A600 nm = 0.5. The cells

were centrifuged at 4,000 × g for 10 min at room temperature, washed twice in one culture vol-

ume of 50 mM potassium phosphate buffer (pH 7.0) and resuspended in the same buffer to

A600 nm = 10. For the fluorescence assay, 0.2 ml of this suspension was added to 1.8 ml of the

same buffer in a quartz cuvette, the mixture was stirred gently for 5 min (with or without addi-

tion of 16 μg/ml of test compounds, using 16 μg/ml ampicillin as control). This concentration

corresponds to 2×MIC of NCL812 and NCL195, and 4×MIC of NCL219 for S. pneumoniae.

The cuvette was then placed in a LS 55 Fluorescence Spectrometer (PerkinElmer) set at Ex.

488 nm/Em. 620 nm, with excitation and emission slit widths at 5 nm and 7 nm, respectively).
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The background fluorescence of each suspension was followed for 1 min after which DiOC2(3)

was added to a final concentration of 10 μM and the fluorescence monitored until it plateaued.

Cells were then re-energized with 0.5% glucose and fluorescence further monitored until it

plateaued, after which 10 μM of the proton ionophore carbonyl cyanide m-chlorophenyl

hydrazone (CCCP) was added and fluorescence followed again until plateaued. A similar pro-

cedure was followed using S. aureus cells resuspended in 50 mM potassium phosphate buffer

(pH 7.0) to A600 nm = 5, using 16 μg/ml of test compounds, corresponding to 4×MIC of

NCL812, 8×MIC NCL195, and 1×MIC of NCL219 for S. aureus. All assays were performed at

least twice.

Microsomal stability of NCL812, NCL195 and NCL219

The metabolic stability assay was performed by incubating 0.4 μg/ml of each test compound

with human and mouse liver microsomes (Xenotech, Lot# 1210057 and 1310211, respectively)

suspended in 0.1 M pH 7.4 phosphate buffer at 37˚C and 0.4 mg/ml protein concentration.

The metabolic reaction was initiated by the addition of an NADPH-regenerating system (i.e.

NADPH is the cofactor required for CYP450-mediated metabolism) and quenched at various

time points over a 60 min incubation period by the addition of acetonitrile containing diaze-

pam as internal standard. Control samples (containing no NADPH) were included (and

quenched at 2, 30 and 60 min) to monitor for potential degradation in the absence of cofactor.

Test compound concentration vs time data were fitted to an exponential decay function to

determine the first-order rate constant for substrate depletion. This was used to calculate a

degradation half-life (T1/2), in vitro intrinsic clearance (CLINT), microsome-predicted blood

clearance (CLblood) and a microsome-predicted hepatic extraction ratio (EH) according to the

in vitro half-life method of Obach[53].

Ethics statements

For determination of pharmacokinetic (PK) parameters for NCL812 and NCL195 in mice fol-

lowing systemic exposure, 5-9-week-old male outbred Swiss mice, weighing 21 to 32 g,

obtained from Monash Animal Research Platform (MARP), were used. Mice had access to

food and water ad libitum throughout the pre- and post-dose sampling period. The Animal

Ethics Committee of the Monash Institute of Pharmaceutical Sciences reviewed and approved

all animal PK experiments (approval number MIPS.2013.33). The PK studies were conducted

in compliance with the Australian Code of Practice for the Care and Use of Animals for Scien-

tific Purposes (7th Edition 2004).

Determination of PK parameters for NCL812 and NCL195 after systemic

exposure

Plasma concentration vs time profiles were determined for NCL812 and NCL195 after intrave-

nous (IV) administration at a dose of 5 mg/kg, and for NCL195 after IP administration at a

dose of 43 mg/kg. For the IV exposure, each compound was administered via a bolus injection

into the tail vein (vehicle 20% (v/v) DMSO in PEG400, 1 ml/kg dose volume, n = 8 mice per

compound, resulting in average measured concentration of 5.25 and 4.31 mg/ml for NCL812

and NCL195, respectively). The compounds were administered to mice within 2.5 h of prepa-

ration. Following administration, blood samples were collected at 5, 15, 30, 120, 240 and 480

min post- dose (n = 2 mice per time point for each compound). For IP administration of

NCL195, the formulation was prepared by dissolving solid NCL195 in DMSO (to 20% (v/v) of

the final volume) before addition of PEG400, yielding a clear yellow solution that was dosed to

mice within 30 min of preparation. The measured concentration of NCL195 in the final

NCL195 as an antibacterial drug
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formulation was 21.9 mg/ml, resulting in a mean administered dose of 43 mg/kg, and blood

samples were collected up to 24 h post-dose.

For both the IV and IP administration, a maximum of two samples were obtained from

each mouse, with samples being taken either via submandibular bleed (approximately 120 μl;

conscious sampling) or terminal cardiac puncture (0.6 ml; under inhaled Isoflurane anesthe-

sia). No urine samples were collected as mice were housed in bedded cages during the study.

In all experiments, mice were observed continuously for the first hour after dosing, then

hourly until up to 6–8 hours after dosing. All animals showed normal behaviour (including

grooming, eating, drinking, sleeping, alertness) over the post-dose period. Mice were hu-

manely sacrificed by cervical dislocation while under anaesthesia (using gaseous isoflurane) at

the end of experiments. Blood was collected directly into polypropylene Eppendorf tubes con-

taining heparin as anti-coagulant, and stabilization cocktail (containing Complete (a protease

inhibitor cocktail with EDTA) and potassium fluoride) to minimize the potential for ex vivo
degradation of the test compounds in blood/plasma samples. Once collected, blood samples

were centrifuged immediately, supernatant plasma was removed, and stored at either -80˚C

(for the IV exposure) or at -20˚C (for the IP exposure) until analysis by liquid chromatogra-

phy-mass spectrometry (LC-MS). Following protein precipitation with acetonitrile, thawed

plasma samples were analyzed by LC-MS (Waters Micromass Quattro Premier coupled to a

Waters Acquity UPLC) using positive electrospray ionization operating in MRM mode. PK

parameters (apparent half-life, plasma clearance, volume of distribution and area-under-the

curve (AUC)) were determined for NCL812 and NCL195 after IV administration using non-

compartmental methods (WinNonlin Version 6.3.0.395).

Haemolysis assay

This was performed using fresh donor human red blood cells (RBCs), essentially as described

previously [50]. Fresh RBCs were washed in PBS three times at 500 × g for 5 min, and then

resuspended 1% (w/v) in PBS. Two microliters of serial 2-fold dilutions of each compound was

added into the respective wells, in quadruplicates, in a round bottom 96-well microtitre tray

(Sarstedt 82.1582.001), starting at 128 μg/ml for each compound using ampicillin as a control.

Thereafter, 198 μL of the 1% RBC solution was added into each well, and the mixture incu-

bated for 1 h at 37˚C, with shaking at 100 rpm. Quadruplicate wells containing either 1% Tri-

ton X100, or PBS only, served as controls. After incubation, the trays were centrifuged at 1,000

× g for 3 min and 100 μl of supernatant from each well transferred into a new 96-well tray.

Absorbance was measured at A450 nm on a Multiskan Ascent 354 Spectrophotometer (Labsys-

tems) and plotted against each dilution. Haemolytic titer was determined as the reciprocal of

the dilution at which 50% of erythrocytes were lysed at A450 nm. The experiment was per-

formed twice.

In vitro cytotoxicity assays

In order to ensure minimal off target mammalian cell cytotoxicity, we assayed NCL812,

NCL195 and NCL219 for in vitro cytotoxicity using a panel of adherent mammalian cell lines:

Caco-2 (human colorectal adenocarcinoma cell line), HEL 299 (non-cancerous human lung

fibroblast cell line), Hep G2 (human hepatocellular carcinoma cell line), MDBK (normal

bovine kidney cell line) and MCF7 (human mammary gland adenocarcinoma cell line). Cell

lines were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco Cat No:

12430) supplemented with 10% (vol/vol) FBS and 1% PenStrep (100 U/ml Penicillin and

100 μg/ml Streptomycin) at 37˚C, 5% CO2 and passaged ~ every 3 days. Assays were per-

formed in duplicates in flat bottom 96 well tissue culture trays (Sarstedt 83.3924) seeded with
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either ~2.5 × 104 cells or 5 × 104 cells per well. After 24 h incubation, media was removed,

washed once with medium without antibiotics and fresh medium supplemented with 10%

(vol/vol) FBS was added. After 2 h, the NCL compounds were diluted in DMSO and added to

each well at a concentration of 1% in doubling dilutions starting at the same concentrations

used for MIC testing, using wells containing 1% DMSO only as control. Following exposure

for 24 h, WST-1 reagent was added to each well at a final concentration of 10%. Absorbance at

A450 nm on a Multiskan Ascent 354 Spectrophotometer (Labsystems) was recorded after 1 h of

incubation. The IC50 value for each compound against each cell line was determined via non-

linear regression (three parameters) using GraphPad Prism v6 software. The robustness of

assays was confirmed with selected cell lines (Hep G2 and MDBK) seeded onto a 96–well

Microwell Nunclon Delta Surface plate (Thermo Scientific Nunc; Cat No: 136101) at 5 × 104

cells per well. Viability of each cell line in the presence of 2 or 8 μg/ml of each compound was

assessed at 1 h intervals for 20 h at 37˚C and 5% CO2 on a Cytation 5 Cell Imaging Multi-

Mode Reader (BioTek) using the RealTime-Glo MT Cell Viability Assay reagent (Promega).

Viability of each cell line in the presence of 2.5, 5, 10 or 20 mM EDTA was also assessed using

the same reagent.

Results

In this study, building on our previous exploration of the key structure activity relationship of

early stage robenidine (NCL812) analogs against S. aureus and Enterococcus spp.,[42] we evalu-

ated the in vitro and in vivo antibacterial activities of two new analogs in comparison to the

parent NCL812 as potential antibacterial agents for both S. pneumoniae and S. aureus infec-

tion. We developed a series of analogs through condensation of a range of aldehydes and phe-

nones with diaminoguanidine hydrochloride [42]. Subsequent screening for antibacterial

activity led to the identification of two contrasting analogs, NCL219 ((E)-N’-((E)-1-(4-(tert-
butyl)phenyl)ethylidene)-2-(1-(4-(tert-butyl)phenyl)ethylidene)hydrazine-1-carboximidhy-

drazide) and NCL195 (4,6-bis(2-((E)-4-methylbenzylidene)hydrazinyl)pyrimidin-2-amine)

with the latter resulting from installation of a 2,4,6-triaminopyrimidine as a guanidyl moiety

bioisostere (Fig 1).

NCL compounds are bactericidal against S. pneumoniae, S. aureus and

vancomycin-resistant enterococci

To examine the antimicrobial activities of NCL195, NCL219 and NCL812, we carried out MIC

and MBC testing of the three compounds against 21 S. pneumoniae isolates representing a

broad range of serotypes, and 23 clinical S. aureus isolates of diverse multilocus sequence

types. MIC testing of the three compounds was also carried out on 20 vancomycin-resistant

enterococcal (VRE) isolates, using Enterococcus faecalis ATCC 29212 as a control strain. For S.

pneumoniae, the MIC range for NCL812 and NCL195 were the same (2–8 μg/ml), while the

MIC range for NCL219 was 1–8 μg/ml (Table 1). In the presence of 10% foetal bovine serum

(FBS), the MIC range for the three compounds remained the same (S1 Table). For S. aureus,
the MIC range was 2–8 μg/ml for NCL812 (consistent with previous observation with NCL812

[42]; 1–2 μg/ml for NCL195; and 8 ->64 μg/ml for NCL219 (Table 1). However, in the pres-

ence of 10% FBS, the MIC range increased 4-8-fold to 32 μg/ml for NCL812 (again consistent

with previous observation with NCL812 [42]; the MIC range increased 4-fold to 4–8 μg/ml for

NCL195, while the MIC range remained essentially the same at 4->64 μg/ml for NCL219 (S2

Table). For the VRE isolates, the MIC range for NCL812 and NCL195 were the same (2–4 μg/

ml), while the MIC range for NCL219 was 1–2 μg/ml. (Table 1). In the presence of 10% FBS,

the MIC range increased 8-16-fold to 32 μg/ml for NCL812, the MIC range increased 4-fold to
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16–32 μg/ml for NCL195, while the MIC range increased 8-fold to 8–16 μg/ml for NCL219 (S3

Table). When the MIC determination for NCL195 against S. pneumoniae D39 and S. aureus
49775 was carried out in the presence of human, horse or mouse serum, the MIC remained

the same against D39, but a 4-fold increase in MIC was observed against S. aureus 49775, again

as seen previously with NCL812 [42].

NCL195 kills S. aureus without detectable resistance

We next performed a kill kinetic assay for NCL812, NCL195 and NCL219 against S. pneumo-
niae D39 in a micro-dilution series, with a starting concentration at 64 μg/ml. Our results

show that the MBC for the three compounds against S. pneumoniae D39 was 8, 8 and 4 μg/ml,

respectively (equivalent to their respective MIC90), confirming that the three compounds are

bactericidal against S. pneumoniae. Similar MIC and MBC results were obtained using S. pneu-
moniae D39. For S. aureus Xen29, the MBC for NCL812, NCL195 and NCL219 was 4, 2 and

16 μg/ml, respectively, confirming their bactericidal activity against another clinically-relevant

Gram-positive pathogen. Finally, we interrogated the time-kill profile of NCL195 against

either S. pneumoniae D39 or S. aureus Xen29, using 2× and 4× MIC of NCL195, with 4× MIC

of ampicillin (or 4× MIC of daptomycin) and normal saline serving as controls. We found that

Fig 1. Structure activity relationship between NCL812, NCL195 and NCL219. Installation of a 4-tert-butyl and a C-methyl

imine moiety provided NCL219 with considerably enhanced hydrolytic stability while retaining the excellent antimicrobial activity

of NCL812, while guanidine to 2,4,6-triaminopyrimindine bioisosteric modification yielded NCL195, which allowed potency and

drug-like character enhancement.

https://doi.org/10.1371/journal.pone.0183457.g001

Table 1. MIC range values for NCL812, NCL195 and NCL219 compared to MIC90 values for daptomycin and ampicillin against S. pneumoniae, S.

aureus and vancomycin resistant enterococci (VRE).

Bacterial strain (No of isolates) MIC range or MIC90 (μg/ml)

NCL812 NCL195 NCL219 Daptomycin Ampicillin

S. pneumoniae (21) 2–8 2–8 1–8 0.5 0.5

S. aureus (23) 2–8 1–2 8- >64 0.5 >16

VRE (20) a 2–4 2–4 1–2 2 2

a University of South Australia strain collection.

https://doi.org/10.1371/journal.pone.0183457.t001
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it took 6 h to reduce the test population of D39 below the limit of detection at 2× MIC of

NCL195; the time-to-clear was reduced to 4 h using 4× MIC of NCL195. Ampicillin at 4× MIC

required 8 h to effect clearance of D39 bacteria below the limit of detection (Fig 2A). For S.

aureus Xen29, it took 6 h to clear all Xen29 at 2× and 4× MIC of NCL195, and at 4× MIC of

ampicillin (Fig 2B), while it took only 1 h to clear all Xen29 at 4× MIC of daptomycin (Fig

2C). After 24 h, some S. aureus regrowth was observed for NCL195 and ampicillin at the con-

centrations tested. We confirmed that the rebound growth was neither due to chemical insta-

bility of NCL195 or emergence of a resistant population by adding 105 or 103 c.f.u. of S. aureus
Xen29 in LB broth containing 1×MIC, 2×MIC and 4×MIC of NCL195 over 24–72 h, using

daptomycin at either 1×MIC or 4×MIC as control. In this assay, no regrowth was observed in

any of the samples upon plating on antibiotic-free plates after 24 h. However, after 72 h incu-

bation in the presence of antibiotic, a few colonies were obtained from broth containing 105 c.

f.u. of Xen29 to which 1×MIC, 2×MIC and 4×MIC of NCL195 was added. We subjected the

colonies that grew after 72 h to MIC testing and these returned 1× MIC for NCL195.

We then explored the possibility of antimicrobial resistance to NLC195 by performing 24

daily sequential cultures of S. aureus in the presence of 0.5×MIC, 0.75×MIC, 1×MIC, 1.5×MIC,

2×MIC, and 4×MIC of NCL195, using 1×MIC, 4×MIC and 8×MIC of daptomycin as control.

We could not find any resistant mutant above 1× MIC for NCL195 over the 24 passages,

although resistance to daptomycin increased up to 8×MIC by day 12 of the serial passage (Fig

2D). This was confirmed by MIC testing of the bacteria that grew at the respective MICs.

NCL195 is bactericidal against Gram-negative bacteria

Our recent studies whereby NCL812 was co-administered with a sub-inhibitory concentration

of polymyxin B nonapeptide (a compound known to disrupt the outer membrane of Gram-

negative bacteria but with negligible antimicrobial activity) demonstrated Gram-negative

activity comparable with clofazimine [42]. We also explored the potential activity of NCL195

against Gram-negative bacteria in the presence or absence of EDTA or polymyxin B, agents

also known to disrupt the outer membrane of Gram-negative bacteria [54]. Interestingly,

NCL195 in the absence of EDTA was bactericidal against 8 A. calcoaceticus isolates (MIC

range from 4–32 μg/ml) and one A. anitratus isolate (MIC = 4 μg/ml) (S4 Table) and was also

bactericidal against A. baumannii, E. coli, K. pneumoniae and P. aeruginosa (MICs of 0.25–

8 μg/ml) in the presence of sub-inhibitory concentrations of EDTA and MICs of 0.25–1 μg/ml

in the presence of sub-inhibitory concentrations of polymyxin B (Table 2).

NCL812 exerts its antibacterial action on the cell membrane of S.

pneumoniae and S. aureus

To gain further insight into how NCL compounds exert their antibacterial activity on Gram-

positive bacteria, we initially examined the effect on the overall cellular architecture and integ-

rity of S. pneumoniae D39 after 6 h exposure to 16 μg/ml NLC812. Morphometric analysis by

transmission electron microscopy (TEM) revealed significant changes to the cell membrane of

D39 compared to untreated controls. Treated samples possessed significantly thicker cell

membranes (6.43 ± 0.29 nm) compared to untreated samples (4.35 ± 0.24 nm) (p< 0.0001)

(Fig 3A; Panels A-D in S1 Fig). The periplasmic space (intracellular space between the cell

membrane and the cell wall) of D39 treated with 16 μg/ml NCL812 was also significantly wider

(4.54 ±0.096 nm) compared to untreated bacteria (3.91 ± 0.14 nm) (p< 0.001) (Fig 3B; Panels

E-H in S1 Fig). Macromolecular (DNA, RNA, protein, cell wall, and lipid) synthesis inhibition

studies on S. aureus ATCC 29213 exposed to NCL812 also suggested that NCL812 may interact

with the cell membrane (Fig 3C; S2 Fig), causing leakage of vital metabolites (Fig 3D).
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Fig 2. Time kill and point of resistance assays. NCL195 was prepared at 2× and 4×MIC (using 4×MIC of ampicillin (or 4×
MIC of daptomycin) and normal saline as controls) in either LB broth supplemented with 3% lysed horse blood and 5% horse

serum for S. pneumoniae D39 (A) or LB broth without supplementation for S. aureus Xen29 (B and C). Cultures were

incubated statically at 37˚C, 5% CO2 (for S. pneumoniae D39) or at 37˚C with agitation at 200 rpm (for S. aureus Xen29).

Samples withdrawn at indicated times and plated on HBA overnight at 37˚C, 5% CO2 (for S. pneumoniae D39) or at 37˚C with

aeration (for S. aureus Xen29) for bacterial enumeration. For (D), S. aureus Xen29 was grown in 2 ml LB broth the presence of

0.5×MIC, 0.75×MIC, 1×MIC, 1.5×MIC, 2×MIC, and 4×MIC of NCL195, using 1×MIC, 4×MIC and 8×MIC of daptomycin as

control.

https://doi.org/10.1371/journal.pone.0183457.g002
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To further investigate cell membrane perturbation by the NCL compounds, the ability of S.

pneumoniae and S. aureus cells to establish a membrane potential (Δψ) when challenged with

16 μg/ml NCL812, NCL195 or NCL219 was determined using the fluorescent membrane

potential probe 3,3-diethyloxacarbocyanine iodide (DiOC2 (3)). We have previously used this

probe to measure the magnitude and stability of Δψ in bacterial cells and proteoliposomes

[51]. Bacterial cells were energized by the addition of glucose to establish a proton motive

force (negative and basic inside the cell). This led to an increase in fluorescence associated

with aggregation of the DiOC2 (3). When S. pneumoniae and S. aureus were pre-incubated

with the NCL compounds, a large reduction in the magnitude of the generated membrane

potential compared to that of the untreated cells and cells in the presence of ampicillin was

observed (Fig 3E and 3F).

Stability of NCL compounds when incubated with liver microsomes

The metabolic stability of NCL812, NCL195 and NCL219 was evaluated in both human and

mouse liver microsomes. NCL812 and NCL195 showed low rates of degradation in both spe-

cies of liver microsomes (EH values <0.22), with degradation rates for each compound being

broadly comparable between species. We did not observe measurable degradation of any of

the compounds in control (non-cofactor) incubations in either species suggesting that there

was no major cofactor independent metabolism contributing to their overall rates of metabo-

lism. However, NCL219 displayed high rates of degradation in both species of liver micro-

somes (EH values 0.79 and 0.72, respectively; Table 3).

NCL compounds exhibit high plasma concentration and low plasma

clearance rates

To examine if NCL812 and NCL195 had appropriate pharmacokinetic (PK) profiles in vivo for

potential therapeutic use, we evaluated key PK parameters including maximum plasma con-

centration (Cmax) and apparent terminal elimination half-lives in the plasma of mice after

systemic exposure. Our analysis of the PK parameters for NCL812 and NCL195 after IV

administration at a dose of 5 mg/kg indicated both compounds exhibited high plasma concen-

trations (Fig 4A and 4B) and long apparent terminal elimination half-lives, with NCL812

showing a higher overall exposure [AUC0-inf 27.9 h�μM (S5 Table)]. Furthermore, the esti-

mated plasma clearance values for NCL812 and NCL195 were low (9.5 and 16.3 ml/min/kg,

Table 2. Antimicrobial activity of NCL195 against Gram-negative bacteria alone and in combination with EDTA or polymyxin B.

Bacterial strain Agent Combination

EDTA

(mM)

Polymyxin B

(μg/ml)

NCL195

(μg/ml)

EDTA

(mM)

NCL 195

(μg/ml)

Polymyxin B

(μg/ml)

NCL 195

(μg/ml)

A. baumannii ATCC 12457 0.5 0.5 >128 0.25 4 0.125 0.5

A. baumannii ATCC 19606 1 0.5 >128 0.5 2 0.125 0.5

E. coli ATCC 11229 2.5 0.25 >128 0.625 8 0.125 0.25

E. coli ATCC 25922 10 0.25 >128 2.5 4 0.125 0.25

K. pneumoniae ATCC

4352

>30 0.25 >128 10 4 0.125 0.5

K. pneumoniae ATCC

33495

>30 0.25 >128 10 4 0.125 0.25

P. aeruginosa ATCC

27853

10 0.5 >128 5 2 0.125 1

P. aeruginosa PA01 2.5 0.5 >128 1.25 0.25 0.125 1

https://doi.org/10.1371/journal.pone.0183457.t002
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Fig 3. NCL812 compounds exert their antibacterial action on the cell membrane of S. pneumoniae and

S. aureus. (A and B), S. pneumoniae strain D39 exposed to 16 μg/ml NCL812 for 6 h exhibited significantly

thicker cell membranes compared to untreated samples (A) (p < 0.0001; two-tailed unpaired t-test) and displayed

significantly wider periplasmic space compared to untreated samples (B) (p < 0.001; two-tailed unpaired t-test.

Data presented are an example from 12 different bacterial cells, each with at least 10 measurements per bacteria
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respectively), consistent with the in vitro metabolic stability in both human and mouse liver

microsomes, and with the microsome-predicted blood clearance values (assuming a blood-to-

plasma partitioning ratio close to 1). However, parenteral administration of NCL812 resulted

in adverse neurological signs requiring the mice to be anaesthetized for the remainder of the

experiment.

We then evaluated the PK parameters of NCL195 after intraperitoneal (IP) administration

to Swiss mice at a dose of 43 mg/kg. The plasma concentration-time profile (Fig 4C) indicated

NCL195 was rapidly absorbed after dosing, and plasma concentrations remained above

3–4 μg/ml for the initial 7.5 h post-dose period, falling to 0.2–0.5 μg/ml between 7.5 and 24 h

post-dose. No adverse reactions or compound-related side effects were observed in any of the

mice following IP administration of NCL195 at a dose of 43 mg/kg.

for both treated and untreated samples. (C and D) NCL812 affects macromolecular synthesis (c) and ATP

release (D) in S. aureus. (E and F), NCL Compounds dissipate the membrane potential of S. pneumoniae and S.

aureus. Membrane potential measurements of S. pneumoniae D39 (E) and S. aureus ATCC49775 (F). Bacterial

suspensions were exposed to 16 μg/ml NCL812, NCL195, NCL219, or ampicillin (control) for 5 min after which

DiOC2(3) was added and the fluorescence monitored until it plateaued. Cells were then re-energized with 0.5%

glucose and the establishment of a membrane potential was measured as an increase in fluorescence until it

plateaued. The membrane potential was then disrupted by the addition of the proton ionophore (CCCP). Data

presented is representative of two experiments. For full description, see Materials and Methods.

https://doi.org/10.1371/journal.pone.0183457.g003

Table 3. Physicochemical and metabolism parameters for NCL812, NCL195 and NCL219 in human and mouse liver microsomes.

Properties Compound

NCL812 NCL195 NCL219

Physicochemical

Parameters

Mol Wta 334.20 359.43 405.59

PSAa (Å2) 72.6 100.6 72.6

FRBa 4 6 6

H-Bond Donora HBD = 3 HBA = 6 HBD = 4 HBA = 7 HBD = 3 HBA = 5

pKaa 5.0; imine (italics) 1.2; amine

(bold)

4.9 / 4.3; amine

(italics)

2.2; pyrimidine

(bold)

5.2; imine (bold) 2.2 amine

(italics)

LogDpH 7. 4
b 4.5 4.5 >5.3d

Solubilityc (μg/ml) pH 2.0 = 6.3–

12.5

pH 6.5 = <1.6 pH 2.0 = 3.1–6.3 pH 6.5 = <1.6 pH 2.0 = 0.78–

1.6

pH 6.5 = 0.78–

1.6

Metabolism parameters

Species Human Mouse Human Mouse Human Mouse

T1/2 (min) >247 >247 >247 >247 18 14

CLINT (μl/min/mg protein) <7 <7 <7 <7 94 121

Predicted CLblood (ml/min/

kg)

<5 <16 <5 <16 16 87

Predicted EH <0.22 <0.13 <0.22 <0.13 0.79 0.72

a Calculated using ChemAxon (JChem for Excel).
b Estimated using a gradient HPLC chromatographic method.
c Kinetic solubility estimated via nephelometry.
d the retention times were greater than the most lipophilic standard compound, therefore LogD values are reported as > 5.3.

Mol Wt = molecular weight; PSA = polar surface area; HBD/HBA = hydrogen bond donor / acceptor; pKa is colour coded to the atoms highlighted in each

structure. Clint = in-vitro intrinsic clearance; EH = predicted in-vivo hepatic extraction ratio.

https://doi.org/10.1371/journal.pone.0183457.t003
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Fig 4. NCL812 and NCL195 exhibit high plasma concentration and low plasma clearance rates.

Pharmacokinetic parameters for NCL812 (A) and NCL195 (B) after IV administration at a dose of 5 mg/kg to

male CD1 mice (n = 8 per compound), indicating that both compounds exhibited high plasma concentrations

and long apparent terminal elimination half-lives. (C), Pharmacokinetic parameters for NCL195 after IP

administration at a dose of 43 mg/kg to male CD1 mice (n = 2 per time point), indicating that NCL195 was
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NCL195’s haemolytic activity and cytotoxicity to mammalian cell lines

We evaluated the toxicity profile of the three compounds in a panel of normal and carcinoma

mammalian cell lines representing different tissue types in order to assess the potential of off-

target or dose-limiting toxicity using the WST-1 Cell Proliferation Assay reagent (Roche). The

results of the in vitro toxicity measurements show IC50 values of>4 μg/ml for NCL812, IC50

values of>7 μg/ml for NCL219, while the cytotoxicity profile for NCL195 was the most favor-

able, with IC50 values of>10 μg/ml against all the cell lines tested (S6 Table). Real-time cell

viability measurements using Hep G2 and MDBK cell lines also show no measurable effect on

cell viability for NCL195 at either 2 or 8 μg/ml up to 20 h post-treatment (Fig 5). However,

NCL812 affected viability at 8 μg/ml, while NCL219 had a demonstrable effect on viability at

2 μg/ml.

rapidly absorbed after dosing, and plasma concentrations remained above 3–4 μg/ml for the initial 7.5 h post-

dose period.

https://doi.org/10.1371/journal.pone.0183457.g004

Fig 5. NCL195 demonstrates limited cytotoxicity to mammalian cell lines. Real-time cell viability measurements for Hep G2 (A, B, C) and MDBK

(D, E, F) cells after treatment with 2 or 8 μg/ml NCL812, NCL195 or NCL219. Cell viability was measured every 60 min for 20 h at 37˚C and 5% CO2 on

a Cytation 5 Cell Imaging Multi-Mode Reader (BioTek) using the RealTime-Glo MT Cell Viability Assay reagent (Promega). Data are means (± s.e.m.)

relative light units (RLU) for each treatment per time point (in duplicate).

https://doi.org/10.1371/journal.pone.0183457.g005
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Haemolytic activity of NCL812, NCL195 and NCL219 against human RBCs showed that

the 50% haemolysis titre (HC50) for NCL195 was >128 μg/ml (the highest concentration used)

and is comparable to that for ampicillin, indicating that NCL195 is well tolerated by RBCs. In

contrast, the HC50 for NCL812 and NCL219 were 24 and 6 μg/ml, respectively, showing some

level of toxicity to human RBCs.

Discussion

Bacterial pathogens have evolved numerous strategies to adapt to, and thrive in, different envi-

ronments that they encounter during infection. A major challenge to treatment and control of

bacterial pathogens is the emergence and rapid global spread of multidrug-resistant clones that

are refractory to last line antimicrobial therapy. To address this problem, we have examined the

anticoccidial agent robenidine (NCL812) as a parent scaffold for developing a new antimicro-

bial class with a potentially novel mechanism of action. Two analogs of NCL812, NCL219 and

NCL195, were viewed as promising candidates with the installation of a 4-tert-butyl and a C-

methyl imine moiety providing NCL219 with considerably enhanced hydrolytic stability while

retaining the excellent antimicrobial activity of NCL812. Guanidine to 2,4,6-triaminopyrimin-

dine bioisosteric modification to yield NCL195 allowed potency and drug-like character

enhancement. To evaluate their potential as antibacterial agents, we assessed their metabolic sta-

bility as well as their pharmacokinetic and safety profiles in a series of in vitro and in vivo analy-

ses. Furthermore, we assessed in vitro efficacy against a range of S. pneumoniae, S. aureus and

VRE isolates, and examined if activity was extended to Gram-negative bacteria with and with-

out the presence of sub-inhibitory concentrations of EDTA or polymyxin B.

Our preliminary in vitro and in vivo studies demonstrated NCL812 and NCL195 possess a

number of desirable antimicrobial characteristics such as high metabolic stability, prolonged

plasma concentration and low plasma clearance rates and fast-acting concentration-dependent

bactericidal activity that targets the cell membrane of S. pneumoniae and S. aureus. NCL195

showed the most favourable in vitro cell cytotoxicity data of the three NCL compounds tested

across a range of cell lines, including Caco-2 cells. NCL195’s in vitro toxicity data was better

across all cell lines to that of the parent compound robenidine (NCL812), an oral anticoccidial

drug already approved for veterinary use, and showed no haemolysis of human red blood cells

at the highest concentration tested (128 μg/ml). It is possible that in vitro cytotoxicity of the

NCL compounds is not predictive of in vivo toxicity, in agreement with reports by others who

note the importance of in vitro responses but conclude that the true profile of compound toxic-

ity can only be determined in vivo [55–58]. However, NCL812 did elicit adverse clinical signs

when administered intravenously to mice at a dose rate of 5mg/kg. Importantly, no compound

attributable adverse effects were noted in mice treated with NCL195 which has undergone a

major structural modification in the aminoguanidine core compared to NCL812, though fur-

ther investigation of in vivo safety and further medicinal chemistry development is considered

desirable and necessary before considering proof of concept in vivo efficacy trials in biolumi-

nescent sepsis models.

We previously obtained preliminary data supporting our hypothesis that the site of action

of robenidine analogs is present in the Gram-negative bacteria [42], and similar results were

obtained for NCL195 in the present study against N. meningitidis and Gram-negative ESKAPE

pathogens such as Acinetobacter spp. Importantly, NCL195 in the presence of sub-inhibitory

concentrations of EDTA or polymyxin B was active against a variety of additional ESKAPE

pathogens. Overall, these are desirable characteristics driving further exploration of robenidine

analogs as a novel antimicrobial class to treat acute bacterial infections. The finding that the

MICs of NCL195 against strains of S. aureus and VREs were increased 4-fold in the presence
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of serum suggests a high protein binding, which may be one of the factors allowing enhanced

stability and plasma lifetime without necessarily reducing its effectiveness in vivo [59]. As the

NCL compounds possess a mechanism of action that targets the cell membrane, they could be

more effective than other bactericidal concentration-dependent antimicrobials that have intra-

cellular targets, such as fluoroquinolones and aminoglycosides. Morphometric analysis of the

cell membrane and periplasmic space of D39 treated with NCL812 for 6 h showed the cell

membrane and periplasmic space was larger in treated samples, compared to control samples.

Previous findings with daptomycin [60, 61] and telavancin [62] have described disruption of

cell membrane integrity. Our fluorescence membrane potential measurements provide confir-

mation that the NCL compounds permeabilize the cytoplasmic membrane of S. pneumoniae
and S. aureus, thereby hindering the establishment and maintenance of essential energy source

for cell functioning.

In a comparative resistance selection study of NCL195 and daptomycin, no resistance to

NCL195 developed above the MIC for S. aureus over 24 daily serial passages, whereas resis-

tance to daptomycin developed by day 5, and increased up to 8×MIC by day 12 of the serial

passage. Together, these findings demonstrate that NCL195 has potential for further pharma-

ceutical and medicinal chemistry development to increase solubility, reduce plasma binding

and toxicity as well as enhance in vitro and in vivo potency against leading bacterial pathogens.

Supporting information

S1 Fig. NCL812 exerts its antibacterial action on the cell membrane of S. pneumoniae.

(A-D); Comparative visual differences between the cell membranes of treated (A and B) and

untreated (C and D) S. pneumoniae D39 samples. The cell membranes of D39 cells exposed to

16 μg/ml NCL812 (A and B) for 6 h were visually thicker compared to untreated D39 grown

for 6 h (C and D). Length markers represent the cell membrane thickness. (E-H); Comparative

visual differences in the periplasmic space of treated (E and F) and untreated (G and H) S.

pneumoniae D39 samples. The periplasmic space width of D39 cells exposed to 16 μg/ml

NCL812 for 6 h (E and F) was visually larger compared to untreated D39 grown for 6 h (G and

H). Length markers represent the thickness of the periplasmic space. Measurements are repre-

sentative of 12 bacterial cells for each treatment.

(DOC)

S2 Fig. Effect of NCL812 on Staphylococcus aureus macromolecular synthesis. NCL812

inhibited DNA (A), RNA (B), protein (C), cell wall (D), and lipid (E) pathways in exponen-

tially growing culture of S. aureus, suggesting that NCL812 may interact with the cell mem-

brane. Data are means ± s.e.m. values from triplicate samples for each treatment.

(DOC)

S1 Table. MIC values, MIC range, MIC50 and MIC90 (μg/ml) of NCL812, NCL195, and

NCL219 for Streptococcus pneumoniae isolates in the presence of either 5% or 10% foetal

bovine serum with added 3% washed red blood cells. Each MIC test was performed in

duplicate. ND = Not determined.

(DOCX)

S2 Table. MIC values, MIC range, MIC50 and MIC90 (μg/ml) of NCL812, NCL195, and

NCL219 for Staphylococcus aureus isolates in the absence (-) or presence (+) of 10% foetal

bovine serum. Each MIC test was performed in duplicate. MLST = Multi-locus Sequence

Type; CA = Community Acquired; HA = Healthcare-Associated; MRSA = Methicillin-Resis-

tant S. aureus; EMRSA = Epidemic Methicillin-Resistant S. aureus; MSSA = Methicillin-
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S3 Table. MIC values, MIC range, MIC50 and MIC90 (μg/ml) of NCL812, NCL195, and

NCL219 for porcine vancomycin-resistant enterococci (VRE) in the absence (-) or presence

(+) of 10% foetal bovine serum. Each MIC test was performed in duplicate. a Porcine VRE

isolates were obtained from The University of South Australia collection. b E. faecalis ATCC

29212 was used as a control. ND = Not determined.

(DOCX)

S4 Table. MIC values (μg/ml) of NCL195 for Acinetobacter spp.

(DOCX)

S5 Table. Pharmacokinetic parameters for NCL812 and NCL195 in male Swiss outbred

mice following IV administration a Terminal elimination phase was not well defined, value is

an approximation only. 8 mice were used per compound.

(DOCX)

S6 Table. IC50 data for NCL812, NCL195 and NCL219 against a variety of mammalian cell

lines. Data presented are mean IC50 values from duplicate samples from one experiment. Each

experiment was performed twice.
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