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Abstract

The use of environmental DNA (eDNA) to assess the presence-absence of rare, cryptic or

invasive species is hindered by a poor understanding of the factors that can remove DNA

from the system. In aquatic systems, eDNA can be transported out either horizontally in

water flows or vertically by incorporation into the sediment. Equally, eDNA may be broken

down by various biotic and abiotic processes if the target organism leaves the system. We

use occupancy modelling and a replicated mesocosm experiment to examine how detection

probability of eDNA changes once the target species is no longer present. We hypothesise

that detection probability falls faster with a sediment which has a large number of DNA bind-

ing sites such as topsoil or clay, over lower DNA binding capacity substrates such as sand.

Water removed from ponds containing the target species (the great crested newt) initially

showed high detection probabilities, but these fell to between 40% and 60% over the first 10

days and to between 10% and 22% by day 15: eDNA remained detectable at very low levels

until day 22. Very little difference in detection was observed between the control group (no

substrate) and the sand substrate. A small reduction in detection probability was observed

between the control and clay substrates, but this was not significant. However, a highly sig-

nificant reduction in detection probability was observed with a topsoil substrate. This result

is likely to have stemmed from increased levels of PCR inhibition, suggesting that incorpo-

ration of DNA into the sentiment is of only limited importance. Surveys of aquatic species

using eDNA clearly need to take account of substrate type as well as other environmental

factors when collecting samples, analysing data and interpreting the results.

1. Introduction

Environmental DNA (eDNA) is a rapidly expanding method for the detection and survey of

aquatic organisms. Targeted species detection from samples of water using qPCR is increas-

ingly being used in local and regional assessments of invasive[1], rare[2] or protected species

[3]. The method is also being used to assess changes in site occupancy over time[3,4], where

the use of traditional methodologies would be logistically onerous. For both national assess-

ments and localised presence-absence surveys of target species it is important that limitations

surrounding the technique and sampling strategy are understood. Indeed, where eDNA fails
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to detect a species that is known to have been recently present, understanding the persistence

of eDNA is crucial for reliable interpretation of results.

Three processes contribute to the removal of eDNA from the aquatic environment, influ-

encing the length of time a target organism can be detected. Firstly, transport in water flows in

lotic systems[5] or currents in the marine environment[6]. However, this is unlikely in small

lentic waterbodies such as ponds. Secondly, eDNA becomes unavailable for survey as the DNA

is degraded through a wide variety of processes [7–11]. Thirdly, eDNA can be transported ver-

tically out of suspension by binding to particulate matter, settling and becoming incorporated

into substrates such as clay[8]. The number of binding sites and binding mechanisms within

the substrate play a role in its capacity to bind with DNA, with sand having a lower capacity

than clay due to particle size[12]. This difference in capacity means that substrate type can

potentially alter the amount of DNA available in eDNA surveys. The persistence of aquatic

eDNA is highly variable, with reports suggesting anything from a few hours[6] to two months

[11] depending on environmental conditions. However, when incorporated into soil sedi-

ments, eDNA persistence may be in excess of months[13] or even thousands of years[14,15].

Where decreases in eDNA concentration are observed following the removal of the target

organism, a pattern similar to a negative exponential decline has been documented[16–18]. In

mesocosm experiments with Idaho giant salamanders (Dicamptodon aterimus), Pilliod et al.
[17], show eDNA degradation of between 94% and 98% over the first two days, with the last

positive samples found after 11 days. Also using mesocosms, Thomsen et al.[16] monitored

eDNA persistence of the common spadefoot toad (Pelobates fuscus) and the great crested newt

(Triturus cristatus), with detection persisting between 2 and 9 days. Neither study attempted to

look at qPCR limits of detection or quantification[19]. It is therefore unclear whether the nega-

tive exponential decline is real or the studies merely reached their limits of quantification at

the point where concentration decline appeared to slow.

Simply using the length of time during which eDNA remains detectable after the target spe-

cies is removed does not show how the probability of detecting the species declines over time.

Imperfect detection is commonplace within ecological studies causing errors within monitor-

ing programs[20–26], and this is true for eDNA as well as conventional monitoring methods.

Errors may arise during collection of the water sample, extraction of the DNA or amplification

of the DNA. A false negative result (i.e., not detecting a species when in fact it is present) could

result from non-uniform eDNA distribution within a waterbody, low concentration within the

water body, degradation during sample transport and storage, PCR inhibition or poor affinity

of the genetic assay with the target DNA[27,28].

PCR inhibition is common in environmental samples, with high concentrations of eDNA

often being undetectable due to inhibitors[28]. There are many sources of PCR inhibition

[29,30], and the cause of inhibition is not always apparent. However, humic substances from

the breakdown of organic material[28] or derived from soils[29,31], are known to be PCR

inhibitors Humic acids cause uncompetitive inhibition, binding to the polymerase active sites

preventing the PCR reaction from occurring[29], reducing the efficiency of the PCR process

and increasing the chance for false negative results.

The potential for false negative results therefore needs to be understood when using eDNA

as a survey tool. Consequently, detection probability of eDNA–and how it changes over time–

are important considerations. A number of studies report naïve detection rates based on the

number of positives identified from a range of independent samples. In one well-studied spe-

cies, the great crested newt, these naïve detection rates have been shown to vary widely from

60% to up to 99% [3,4,16,32], and this can lead to inconsistent–or even misleading–interpreta-

tion of the results.

eDNA detection, persistence and substrate
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Site occupancy detection models account for occasions when the sampling method may

‘miss’ the species (detectability) so that the proportion of sites in which the target species

occurs (occupancy) can be reliably estimated [20,22,33]. When replicated samples are taken,

the same principle can be applied to estimating the actual ‘occupancy’ of eDNA at a site.

Indeed, occupancy models have been utilised for eDNA with a variety of taxa with the proba-

bility of detection ranging from 0.74 to 0.95[34–41].

In this study we utilise great crested newts, a semi-aquatic amphibian protected under UK

and European legislation, as our study species. The species has been the subject of several

eDNA studies[3,4,16,32,42], and eDNA surveys are now accepted practice in surveys of the

species carried out as part of commercial development mitigation [43]. Using a mesocosm

experiment with different pond substrates, we show how detection probability falls following

the removal of the target species. We hypothesize that detection probability will reduce over

time as eDNA becomes unavailable for the survey. We further predict this drop in detection

probability will occur faster in water containing organic sediments or small particle size sedi-

ments than in water where no sediment is present or with large particle size inorganic sedi-

ments. Although changes in eDNA concentration and the proportion of amplifying replicates

have been previously studied under semi-natural conditions [5,16], we believe that this is the

first time occupancy models have been utilised in relation to mesocosm experiments to reliably

determine changes in detection over time. Equally, we show for the first time how eDNA

detectability varies in relation to sediment type.

2. Methods

2.1 Experimental set up

Twenty opaque PVC plastic boxes with a maximum volume of 20 L (width 36 cm x depth 28

cm x height 20 cm) were set up in a 5 x 4 grid in an outdoor field, with tanks separated from

one another by approximately 30 cm. Each tank was randomly assigned one of four treat-

ments, with five replicates of each treatment.

The four treatment groups comprised clay, sand, topsoil and a no substrate control group.

Smooth terracotta potter’s clay was chosen to represent a substrate commonly used for pond

lining, the substrate is 100% clay with impurities removed. Commercially available children’s

play sand was used to emulate ponds with a sandy inorganic substrate. Commercially available

garden centre topsoil was used to represent ponds with a high organic input. The topsoil con-

sisted of 40% sand, 33.3% silt and 26.7% clay, identified using LaMottle Company soil texture

test kit (following the manufacturer’s instructions)[44]. This is a similar composition to that

found in ponds with a high leaf litter content (unpublished data). No substrate was added to

the control treatment groups.

The commercially available substrates were tested for great crested newt DNA using a mod-

ified QIAamp Stool DNA Mini Kit (Qiagen1) extraction protocol and qPCR conditions

described later (n = 8 replicates). Each of the plastic treatment boxes (except the control

group) had 2.5 kg of the substrate added to it. Thirty litres of water were collected from each of

eight high density great crested newt ponds[42], at the end of the breeding season on the 23rd

of May 2016 and mixed together in a large fiberglass tank to ensure a homogenous starting

concentration. Five eDNA samples were collected at this stage to represent a baseline starting

detectability and concentration. Ten litres of water were then transferred from the large fiber-

glass tank to each of the 20 treatment tanks. Opaque plastic lids were added to each treatment

tank to prevent rainfall having a dilution effect or the effect of UV on eDNA breakdown. This

was considered appropriate in the case of these mesocosms, because of the shallow nature

of the water in each tank, UV would have penetrated the majority of the water and had a
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disproportionate influence compared to a natural pond. eDNA samples were collected from

each of the 20 tanks 1, 2, 3, 4, 7, 9, 11, 14, 18 and 22 days after the water had been removed

from the ponds.

2.2 Environmental covariates

Various environmental covariates were collected during the course of the study. pH, total dis-

solved solids and electro-conductivity were measured in each tank at the end of the study

using electronic “pen type” meters (Hanna1 Instruments HI-98312 and AZ1 Instrument,

8685 pH Pen) following manufacturer’s instructions[45,46]. It was believed that these would

not change considerably over the course of the study and the benefit of monitoring these daily

was outweighed by the risk of contamination of target DNA between tanks. Air temperature

was logged hourly at the site using Tinitag1 Plus2 –TGP-4017 (Gemini Data Loggers, Chich-

ester, UK).

2.3 eDNA sample collection protocol

eDNA samples were collected using the precipitation in ethanol approach as developed by

Biggs (et al.) [3]. Six 50 mL centrifuge tubes (Corning, Centristar™ Cap, 430828) containing 33

mL of absolute ethanol and 1.5 mL of 3M sodium acetate solutions, made up one sample.

Using a sterilised disposable plastic pipette, each of the six centrifuge tubes was filled to the 50

mL gradation with water directly from the middle of the water column of the tank without stir-

ring. This provided a total sample volume of approximately 90 mL. Samples were immediately

stored at -20˚C until extraction, this both aided sample preservation as well as the precipitation

of DNA out of solution.

2.4 Laboratory protocol

eDNA sample extraction was undertaken using a modified Qiagen1 DNeasy1 Blood and Tis-

sue kit protocol. A sample was removed from the freezer and centrifuged at 11000 RPM

(14069g) for 30 minutes at 6˚C. The supernatant was poured off leaving a pellet containing

DNA and other matter that had precipitated out of solution on the side of each tube. The pellet

from the first tube was suspended in 360 μL ATL buffer from the Qiagen1 DNeasy1 Blood

and Tissue kit by vortexing for several minutes, the buffer solution containing the re-sus-

pended pellet was then transferred to the second tube and the process repeated until each tube

had been sequentially vortexed, and all six pellets suspended in the same solution. The ATL

buffer solution was then transferred to a 2 mL microcentrifuge tube, 25 μL of ProK added and

samples incubated at 56˚C overnight. Extraction continued as per extraction kit manufactur-

er’s protocol, with spin columns eluted twice with 100 μL of warm AE buffer. Periodic extrac-

tion negative control samples were run through the course of the project.

Each sample was tested for PCR inhibition using TaqMan1 Exogenous Internal Positive

Control (IPC) Reagents (Applied Biosystems™), following manufacturer’s instructions, with

TaqMan1 Environmental Master Mix 2.0 (Applied Biosystems™). Samples were identified as

inhibited if the IPC failed to amplify or late amplification (amplification outside 1 qPCR cycle

from the qPCR negative control samples) was observed within the internal positive control.

qPCR was undertaken on all samples whether inhibited or not following the assay and

conditions from Biggs (et al.)[3], using Triturus cristatus PCR primers TCCBL, TCCBR and

hydrolysis probe TCCB developed by Thomsen et al.[16]. qPCR was conducted using a

BioRad Laboratories, CFX Connect™ Real-Time PCR Detection System. qPCR was repeated

on each sample eight times[42]. Each qPCR plate contained three standards for quantifica-

tion, each repeated three times, as acting as positive controls, and three PCR negative

eDNA detection, persistence and substrate
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controls. qPCR standards were made up of a dilution from great crested newt tissue extract

and were quantified using a Qubit1 2.0 with the Qubit1 dsDNA high sensitivity assay (Life

Technologies™) at concentrations of 12.500 ngμL-1, 1.140 ngμL-1 and 0.120 ngμL-1, qPCR R-

squared values ranged between 0.994 and 0.999, with a mean efficiency of 85.5%. A replicate

was deemed to be positive if an exponential growth phase was observed during qPCR. The

median concentration of the eight qPCR replicates was utilized as the concentration for a

sample in analysis. During qPCR all negative control samples showed no deviation from the

baseline, and were therefore clear negatives. Limits of detection and quantification were gen-

erated as per Buxton et al. [42].

Due to high levels of inhibition within the topsoil treatment group (see Results), all topsoil

samples were treated as potentially inhibited. A 1 in 10 dilution using ddH2O was then

undertaken on inhibited samples, to attempt to remove inhibitors and improve detection

[27–29,47–50]. The diluted samples were then re-run using the internal positive control and

qPCR protocol outlined above[4,51,52]. Trials using Bovine Serum Albumin (BSA) and

lower dilution levels were undertaken but failed to remove inhibitors sufficiently (data not

presented).

2.5 Analysis

As eDNA concentrations often fall below the limit of quantification achieved by qPCR, the use

of eDNA concentration within the analysis would only be of limited value. However, occu-

pancy modelling can be used to generate the probability of detection, independently of the

concentration within a sample. Single season occupancy models were constructed based on

single eDNA samples (representing ‘sites’ in traditional occupancy modelling) and repeated

qPCR runs (representing observations). Models were constructed using R version 3.3.2[53]

(with package Unmarked version 0.11–0[54], to observe the influences on detection probabil-

ity across the study. Models were constructed using the occu function, with variable detection

but constant occupancy. Site covariates, included in the analysis were substrate type, days

since removal of target species and tank pH. Model selection was undertaken utilising the

inbuilt model selection option within the Unmarked package. Models were ranked using the

Akaike Information Criterion (AIC) and were weighted to indicate relative support of a

model. Models with ΔAIC< 2 had strong support while models with a ΔAIC of>2 were con-

sidered to have less support[55]. Detection probabilities were then generated, using the predict

function within the unmarked package and the model containing day and substrate variable

detection.

We observed the rate at which the detection probability changed each day (Δp/day) by tak-

ing the difference between predicted detection probabilities from one day to the next, for each

of the sediment types. We examined whether maximum, minimum and mean external tem-

perature influenced detection probability or Δp/day, with generalised linear models (GLM)

using R version 3.3.2[53].

2.6 Ethical assessment

The experimental procedure was approved by the University of Kent, School of Anthropology

and Conservation, Research and Ethics committee. All sampling was undertaken from water

and no animals were used as part of this work. Positive control samples within PCR were set

up from DNA extracts from a long deceased great crested newt held under licence from Natu-

ral England licence number 2015-7591-SCI-SCI-1.
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3. Results

3.1 Degradation

The commercially available sediments all tested negative for great crested newt DNA. In the

clay, sand and control treatments eDNA concentration fell from 0.00108 ngμL-1, the mean

concentration found on day 0, to the limit of quantification of 0.00005 ngμL-1 by day 4, a

decrease of over 95%. In the topsoil treatment, eDNA concentration fell faster, reaching the

limit of quantification between days 2 and 3. Beyond day 4 most samples fell below the limit of

quantification for qPCR and so no accurate analysis can be undertaken with regard to eDNA

concentrations. Samples were first observed as negative in the topsoil treatment group on day

7, in clay on day 14, and in sand and the control on day 18.

3.2 Detection probability

Models were included to predict what was influencing detection probability. The model

with most support included detection based on number of days since the species was present

(estimate = -0.320; z = -20.56; SE = 0.0155; p<0.0001), pH (estimate = -0.171; z = -1.66;

SE = 0.1030; p = 0.0974) and substrate type with constant occupancy (Table 1). Although pH

was included in the top model, it was not found to be significant. There was a significant

reduction in detection in the topsoil treatment (estimate = -0.850; z = -3.85; SE = 0.2207;

p = 0.000116), compared to the control group. However, no significant difference in detect-

ability was found between the control group and both the clay treatment (estimate = -0.374;

z = -1.83; SE = 0.2045; p = 0.0673) and the sand treatment (estimate = -0.003; z = -0.014;

SE = 0.2053; p = 0.989). All covariates included within all models with a ΔAIC of<2 with the

exception of substrate type and day were found not to be significant.

The model with the second highest support included constant occupancy, but variable

detection based on substrate type and day was used to predict detection probability in the dif-

ferent substrate types and across the study (Fig 1). The model with the most support was not

used because the pH covariate was insignificant and would therefore have only confused the

predictions. Detection probability (p), based on replicated PCR runs, was initially very high

with sand and control treatment groups with p>0.96, and the clay treatment group p = 0.94.

The topsoil treatment group showed a reduced starting detection probability at p = 0.91 (Fig

1). Detection fell slowly for the first few days, and by day five detection probability had fallen

to p = 0.87 in the control and sand treatments, p = 0.83 for clay and p = 0.75 for topsoil treat-

ment. Detection rate then fell more sharply from p = 0.58 for the control and sand treatments

by day 10 and p = 0.22 by day 15: this was more pronounced in the clay and topsoil treatments

where detection fell more rapidly to p = 0.49 and p = 0.37 respectively by day 10 and p = 0.16

and p = 0.10 respectively by day 15. By day 20 detection probability had fallen to 0.05 or below

in all treatments (Fig 1).

Table 1. The models with most support based on AIC criterion and AIC model selection. Top three models and all models with a ΔAIC of <2 presented.

All models contain variable detection rates but constant occupancy. Days since the target species was in contact with the water, pH within each mesocosm

and substrate treatment group were the only covariates found to be in the three models with most AIC support. nPars represents the number of parameters in

the model.

Model nPars AIC ΔAIC AIC weight Cumulative weight

Constant occupancy, detection variable by day, substrate and pH 7 1244.73 0.00 0.59 0.59

Constant occupancy, detection variable by day and substrate 6 1245.48 0.75 0.41 1.00

Constant occupancy, detection variable by day 3 1259.15 14.43 <0.01 1.00

https://doi.org/10.1371/journal.pone.0183371.t001
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Samples collected from tanks with a topsoil substrate were more likely to contain PCR

inhibitors with 70% (35/50) of the samples showing signs of inhibition, compared to 2% (1/50)

in the clay treatment group and no samples from the sand or control groups. Samples treated

for the removal of inhibitors were found to all be free from inhibitors; however, a drastic

reduction in detection probability was observed, from p = 0.91 in the original samples to

p = 0.39 in the same samples when diluted to remove inhibitors. As a result the diluted data

were discarded and analysis undertaken on the inhibited but undiluted data.

The change in detection probability per day (Δp/day) (Fig 2), is initially low for all treatment

groups, increasing towards the middle of the study before reducing in the latter stages. No dif-

ference was observed between sand and the control treatment groups, initially at approxi-

mately 0.015 Δp/day, increasing to a peak of 0.08 Δp/day by day 11, before falling again until

the end of the study. Rate of detection initially decreased more in the clay and topsoil treat-

ments (0.02 and 0.03 Δp/day respectively) than in the control treatment group. Both reached a

peak rate of change of 0.08 Δp/day on days 9 (sand) and 8 (topsoil). The rate of change for

sand and topsoil then started to reduce earlier in the study than the control or clay treatment

groups, and continued to reduce through the rest of the experiment.

A general linear model was used to assess whether the external temperature influenced the

rate of changed in detection. A negative relationship between maximum air temperature and

Fig 1. Decline in eDNA detection probability (p) over time, using eight qPCR runs per sampling

occasion, following the removal of the target species from the water, with different substrate types.

Light grey lines show 95% confidence limits.

https://doi.org/10.1371/journal.pone.0183371.g001
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change in detection probability was identified, with greater rate of change at lower tempera-

tures (S1 Fig). This was found to be significant for all four sediment types (control: estimate =

-0.0024, SE = 0.0007, t-value = -3.325, p-value = 0.0038; sand: estimate = -0.0024, SE = 0.0007,

t-value = -3.309, p-value = 0.0039; clay: estimate = -0.0023, SE = 0.0007, t-value = -3.433, p-

value = 0.0030; topsoil: estimate = -0.0018, SE = 0.0006, t-value = -3.862, p-value = 0.0104).

Mean daily temperature was not found to be significant for any of the treatment groups, and

minimum temperature was only found to have a significant (positive) influence on the topsoil

treatment group (estimate = 0.0049, SE = 0.0020, t-value = 2.411, p-value = 0.0268). This is sur-

prising given that increases in temperature are linked with increases in DNA degradation rate

and this is likely to be a coincidental artefact of the weather during the course of the experi-

ment rather than an overriding influence on the change in detection probability.

4. Discussion

If a species vacates a waterbody, detection of that species remains possible using eDNA. Detec-

tion when a waterbody is no longer occupied is a distinct advantage over traditional survey

methods. We have shown that the probability of detecting a species decreases with time, fol-

lowing its removal; however, the rate at which the probability of detecting the species decreases

is not constant. We have not only shown that detection probability of eDNA is dependent on

time since the organism was present, but we also show that the type of sediment influences

detectability and the rate at which detectability decreases.

The initial detection probability for eDNA was very high—between 91% and 95%—the

exception being where samples had been diluted to remove inhibitors. This high detection

probability may have been because the water was sourced from small ponds with a very high

target species density, and collected at the end of the breeding season when eDNA concen-

tration is high[42]. As a result, the amount of DNA within the water was likely to be higher

than that found in more typical, natural ponds or at other times of year[42]. There is a dis-

crepancy between the results of our study and those of Thomsen et al.[16] in which eDNA

Fig 2. The rate of change in eDNA detection probability (p) each day in mesocosms with four

sediment types.

https://doi.org/10.1371/journal.pone.0183371.g002
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was only detected for nine days—compared to 22 days in our study. Both studies targeted the

same sequence in the cytochrome b gene and used the same target species. This discrepancy

may be down to differences in both initial concentration of target DNA and collection meth-

ods used, with our study collecting a sample volume six times greater than Thomsen et al.
[16].

The reduction in detection over time is likely due to the removal of target DNA through

both degradation[9] and vertical transport and incorporation into the sediment[8]. The rate of

change in detection was initially slow, an increase in the middle part of the study was observed

peaking at approximately 0.08 Δp/day in all treatment groups, and a reduced rate at the end.

This pattern was observed in all sediment types. Reduced rate of change towards the end of the

study may represent a slowing in the rate of degradation at lower eDNA concentrations, as at

lower concentrations the chance of DNA molecules being broken down by DNase enzymes is

reduced[12].

Detectability and the rate of change in detectability varied between the sediment types. It is

likely that the type and quantity of PCR inhibitors released into the water differs between sedi-

ment types[30,31]. Soil structure may also influence the capacity for DNA to become incorpo-

rated into the different sediments[12]. No differences were observed in detectability or rate of

change in detectability between the sand and control groups. However, we observed both a

lower starting probability of detection and an increase in the initial rate of fall in detectability

within the topsoil compared to the control treatment group. There was a tendency for a reduc-

tion in probability of detection in the clay treatment group compared to the control and sand

treatment groups, although this was not significant.

PCR inhibitors interact either with DNA or DNA polymerase and can result in an

increase in the number of cycles required to observe amplification of the target DNA over

uninhibited samples; additionally reductions in the number of qPCR repeats which amplify,

inconsistent amplification of the qPCR repeats or complete failure to amplify any target

DNA may be observed[29,30]. PCR inhibitors are common within environmental samples

and strong seasonality in inhibition has been observed and linked with the accumulation

and degradation of leaf litter[28], consistent with high organic content of topsoil. PCR inhi-

bition led to a drop in detection probability for the topsoil treatment group over the other

sample groups, as well as lower extract concentration being observed in qPCR due to late

amplification.

Initially, total dissolved solids (TDS) within each tank was included in in the analysis.

However, TDS value was found to be significantly dependent on substrate type (S2 Fig) and

so the two factors are not independent. TDS may therefore increase in suspended solids

within the water column, rather than within the sediment itself. This may be responsible for

the difference in PCR inhibition seen between the treatment groups: 0% of samples inhibited

in control and sand, 2% of samples inhibited in the clay group and over 70% of samples

inhibited in the topsoil treatment group. TDS within the topsoil treatment group was by far

the highest and it is likely that PCR inhibitors within the dissolved solids such as humic acid

[29,30,56] were the cause of the reduction in detection probability over the other treatment

groups.

The dilution of the topsoil samples to remove inhibitors led to a 52% reduction in detection

probability and therefore an increase in false negative results, as the DNA was diluted to unde-

tectable levels[28,29,57]. We therefore argue that dilution approaches for the removal of inhib-

itors from eDNA samples compromises detection probability: other methods which do not

result in a dilution of target DNA should therefore be explored.

In addition to inhibition, the rate at which DNA is incorporated into the sediment may

cause the availability of eDNA within the water column to vary[8]. eDNA can become
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incorporated into substrates and absorbed onto minerals, binding to both humic compounds

and soil minerals[12]. Little difference was identified in detection between the control group

and the sand treatment group. Sand has a very large particle size, which results in a lower sur-

face area and fewer binding sites than substrates with smaller particle size such as clay[12]. As

a result, more DNA would be expected to remain detectable in water with a sandy substrate,

than with a clay or topsoil substrate. Humic substances likely to be found within the organic

topsoil also provide key binding sites for DNA[12]; this may reduce the availability of the tar-

get DNA for survey. However, it is likely that the greatly reduced detection probability in the

topsoil treatment group results from a combination of an increase in PCR inhibitors[29], as

well as removal of available target DNA from the water column.

eDNA research is still an evolving discipline. Unlike more widely recognised survey meth-

ods for freshwater species, the influences on and limitations of detection are still being identi-

fied. Our findings have important implications for how eDNA results are analysed and

interpreted. Although detection of eDNA does not necessarily correspond to the concurrent

presence of the species, the chance of detecting the species after it has vacated a pond reduces

rapidly, and after three weeks can be as low as just 3.9%, as observed in our control group. To

maximise the chance of detection, it is therefore advisable to collect samples when the target

species is likely to be present, to minimise the chance of false absences. Pond specific charac-

teristics such as the sediment also influence the probability of detecting the target organism,

either by increasing PCR inhibition or through other mechanisms. It is therefore important to

recognise when planning or interpreting the results from an eDNA study, that sediment has

an influence of the efficacy of the survey method, and ponds with organic sediment types—or

sediments that become suspended easily—can be a source of false negative results.

Supporting information

S1 Fig. Mean, maximum and minimum air temperature over the course of the study. Day

one temperatures relate to the 24 hours leading up to the sampling time on the 24th of May

2016.

(TIF)

S2 Fig. Difference in total dissolved solid (TDS) levels within the mesocosms of different

substrate types. Showing the median values with interquartile ranges. An analysis of variance

yielded significant variation between sediment type and the TDS loading (F = 2464, DF = 3,

16, 16; p<0.0001). A post-hoc Tukey test showed no significant difference between the control

group and sand (p = 0.98) but all other pairs had highly significant differences (p<0.0001).

(TIF)

S1 Data. Spreadsheet containing the raw data including, detection/non-detections for

qPCR replicates, derived concentrations from qPCR, and presence of inhibition within

each sample as well as environmental covariates.

(CSV)
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