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Abstract

Baleen has been harvested by indigenous people for thousands of years, as well as col-

lected by whalers as an additional product of commercial whaling in modern times. Baleen

refers to the food-filtering system of Mysticeti whales; a full baleen rack consists of dozens

of plates of a tough and flexible keratinous material that terminate in bristles. Due to its prop-

erties, baleen was a valuable raw material used in a wide range of artefacts, from imple-

ments to clothing. Baleen is not widely used today, however, analyses of this biomolecular

tissue have the potential to contribute to conservation efforts, studies of genetic diversity

and a better understanding of the exploitation and use of Mysticeti whales in past and recent

times. Fortunately, baleen is present in abundance in museum natural history collections.

However, it is often difficult or impossible to make a species identification of manufactured

or old baleen. Here, we propose a new tool for biomolecular identification of baleen based

on its main structural component alpha-keratin (the same protein that makes up hair and fin-

gernails). With the exception of minke whales, alpha-keratin sequences are not yet known

for baleen whales. We therefore used peptide mass fingerprinting to determine peptidic pro-

files in well documented baleen and evaluated the possibility of using this technique to differ-

entiate species in baleen samples that are not adequately identified or are unidentified. We

examined baleen from ten different species of whales and determined molecular markers

for each species, including species-specific markers. In the case of the Bryde’s whales, dif-

ferences between specimens suggest distinct species or sub-species, consistent with the

complex phylogeny of the species. Finally, the methodology was applied to 29 fragments of

baleen excavated from archaeological sites in Labrador, Canada (representing 1500 years

of whale use by prehistoric people), demonstrating a dominance of bowhead whale

(Balaena mysticetus) in the archaeological assemblage and the successful application of

the peptide mass fingerprinting technique to identify the species of whale in unidentified and

partially degraded samples.

PLOS ONE | https://doi.org/10.1371/journal.pone.0183053 August 30, 2017 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Solazzo C, Fitzhugh W, Kaplan S, Potter C,

Dyer JM (2017) Molecular markers in keratins

from Mysticeti whales for species identification of

baleen in museum and archaeological collections.

PLoS ONE 12(8): e0183053. https://doi.org/

10.1371/journal.pone.0183053

Editor: Dong Hoon Shin, Seoul National University

College of Medicine, REPUBLIC OF KOREA

Received: December 21, 2016

Accepted: July 30, 2017

Published: August 30, 2017

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The analytical work was supported by a

Burch Fellowship in Theoretical Medicine and

Affiliated Sciences (Smithsonian Institution).

Caroline Solazzo-2014 recipient: https://www.

smithsonianofi.com/fellowship-opportunities/

george-e-burch-fellowship/. The funder provided

support in the form of salaries for authors [CS], but

did not have any additional role in the study design,

https://doi.org/10.1371/journal.pone.0183053
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183053&domain=pdf&date_stamp=2017-08-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183053&domain=pdf&date_stamp=2017-08-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183053&domain=pdf&date_stamp=2017-08-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183053&domain=pdf&date_stamp=2017-08-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183053&domain=pdf&date_stamp=2017-08-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183053&domain=pdf&date_stamp=2017-08-30
https://doi.org/10.1371/journal.pone.0183053
https://doi.org/10.1371/journal.pone.0183053
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://www.smithsonianofi.com/fellowship-opportunities/george-e-burch-fellowship/
https://www.smithsonianofi.com/fellowship-opportunities/george-e-burch-fellowship/
https://www.smithsonianofi.com/fellowship-opportunities/george-e-burch-fellowship/


Introduction

Beginning in the 1990s, museum collections and in particular natural history specimens have

become important resources to address questions of evolution, lineages and population genet-

ics, as well as issues linked to ecology, responses to climate change, conservation, loss of

genetic diversity and population declines [1–6]. Advances in genetics (e.g., high-throughput

sequencing) have allowed for the recovery of maximum amounts of genetic data from minimal

sample sizes, thus helping address issues of DNA degradation and contamination in ancient or

damaged specimens [1, 3, 4, 6–8]. Genetic material has been retrieved from a variety of tissues

from museum specimens: bones and teeth, plant tissues, insects, feathers and skins [1]. DNA

has also been successfully recovered from baleen plates, some over a hundred years old [9, 10],

and from historical [11] and archaeological [12, 13] artefacts fashioned from baleen. This work

has shown that analyses of baleen can contribute to studies of population genetics, conserva-

tion and exploitation and use of Mysticeti whales in past and recent times. However, studies

have also suggested a significant degradation of DNA (in particular nuclear DNA) in historical

baleen compared to fresh specimens [8, 14].

Baleen refers to the food-filtering apparatus of Mysticeti whales [15] (taxonomy in S1 File): a

full baleen rack consists of dozens of plates (thin sheets packed with longitudinal tubules and

covered with a layer of horn-like material) made of a tough and flexible keratinous material

[15–17]. The plates are terminated by bristles, resulting when the horn cover is worn out and

the tubules exposed (Fig 1). Recently, interesting venues of research have been developed using

the growth pattern of baleen plates. Baleen is formed continually and is worn out at the tip over

years or decades; for species with particularly long plates such as right and bowhead whales, the

length of a plate can represent up to 25 years of the life of an animal. This characteristic is being

used to study stress-related factors affecting whales and their reproductive hormone levels over

time, for example to document pregnancies [18, 19]. Thus there is the possibility that physiolog-

ical stresses due to climate change and changing environmental conditions could be assessed in

modern whale populations and compared to ancient specimens whose plates are stored in

museum collections [19]. In combination with isotope readings along the plate, whale migra-

tion patterns could be determined, as could diet and the location of feeding grounds [20].

Historical and cultural importance of baleen whales

Baleen in material culture. Mysticeti whales are ubiquitous around the world; there are

currently 14 species of listed baleen whales (Table A in S1 File). Some species (sei, blue, fin,

Fig 1. Baleen rack of specimen USNM 267999, an 11 m humpback whale (Megaptera novaeangliae)

collected in Western Australia, 1938.

https://doi.org/10.1371/journal.pone.0183053.g001
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minke and humpback) have nearly worldwide distributions while others are adapted to spe-

cific ecosystems; for instance the Bryde’s whale inhabits the tropical and subtropical latitudes

and the bowhead whale the northern circumpolar regions. While evidence of prehistoric whal-

ing has been found around the globe [21, 22] (for example in Indonesia [23], Japan [24], Nor-

way, Scotland and Iceland [25]), indigenous whale hunting has been of particular importance

for the Arctic and North Pacific where traditional hunting of large whales has been practiced

for over 4000 years and stranded whales have likely been harvested for thousands of years

[26–29]. Prehistorically, baleen was collected along with the bones, meat and blubber of a

whale. A number of Arctic cultures fashioned baleen into fishing and hunting implements

(buckets, ice scoops, bows, sled runners, fish lines, lashings, nets, snares), clothing (boot insu-

lation) and other artefacts [30–32], and today baleen is incorporated into Alaskan Iñupiat and

Yup’ik artwork and fashioned into baskets. In Japan some baleen artefacts date back to the 8th

c. [33], and more recently baleen has been used to make tea trays, decorative elements such as

the wrapping of swords and puppet springs [31].

Elsewhere, there is little known about traditions of baleen use, even though whale remains

and artefacts made of whale bones have been found in many archaeological sites (for instance

in Northern Europe [34–37], South America [38] and New Zealand [39, 40]). In the United

Kingdom for example, only two archaeological finds of baleen are known [41]. This is likely

due to the poorer preservation of keratinous tissues in warm and temperate climates compared

to bone. Bone is tightly packed with collagenous fibrils and is highly mineralized (50–70%).

The inorganic component of baleen is much lower than in bone; in sei whales, for example, the

hydroxyapatite content has been estimated at only 4.5% [42]. Without the protective mineral

component, baleen, like other keratinous tissues, would be susceptible to biodegradation [41].

Baleen becomes more conspicuous in material culture associated with commercial whaling

by Europeans and later by Americans. Due to its tough and flexible properties, the material

was used for a wide range of objects and acquired a high commercial value. As early as the 13th

c. A.D., baleen was used in Europe in the construction of armor and tourney equipment [41].

During the 18th and 19th c. A.D., when exploitation of baleen was at its maximum, the plastic

material was made into sheets, strips or rods and used in items of clothing (stays, corsets and

hoop skirts) [43], and in the production of objects such as umbrella stays, eyeglass frames,

combs, boxes, etc. [31, 41, 43].

Exploitation of baleen whales. Most archaeological sites containing whale bones are

found in the northern hemisphere and right and bowhead whales have been considered to

have been the most targeted species. It is usually associated with prehistoric and historic Iñu-

piat, Thule and Inuit sites [44–46]; for instance bowhead whale bones are found in abundance

in Alaska and central Canada, where prehistoric Inuit used them as house supports [44, 47]. It

was hunted in the Eastern Arctic, and together with the humpback whale, was taken in Green-

land by early Greenlandic whalers [21]. Archaeological sites along the Pacific Northwest Coast

(where whale use has been demonstrated for at least 4,000 years [48, 49]) have yielded only a

small proportion of right whale bones, while gray whale and humpback whale remains consti-

tute almost the entirety of the bone assemblages of archaeological sites such as the Toquaht

sites on Vancouver Island [48], the Ozette site in Washington State [50] and the Par-Tee site

on the Oregon Coast [51]. The gray whale, whose range extends to the Chukchi Sea and Wran-

gel Island, was also hunted by Chukchi and Inuit in Russia [21] and in Japan [33]. With the

invention of net whaling in the second half of the 17th c. in Japan, catching of the right whale

was made easier and whaling intensified and extended to humpback, Bryde’s, minke, fin and

blue whales [33].

In pre-modern whaling, right, bowhead and gray whales were favored by European and

American whalers as they were slower swimmers than other whales, produced large amounts
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PLOS ONE | https://doi.org/10.1371/journal.pone.0183053 August 30, 2017 3 / 24

https://doi.org/10.1371/journal.pone.0183053


of oil and could be killed with hand-thrown harpoons and lances ([52], p600). For example,

the right whale was named so because it inhabits coastal waters, is a slower swimmer than

other mysticetes and floats when dead—i.e., it was the “right” whale to catch ([52], p77). When

Basque whaling started in the 11th c. (French Basque country in the Bay of Biscay) and the 12th

c. (Spanish Basque country) the North Atlantic right whale was mainly hunted during its win-

ter southern migration [53]. Later on whaling by westerners moved to the North Atlantic,

starting with the English Channel in the 14th c., Iceland in the 15th c., Norway and Svalbard in

the 16th c and Greenland in the 17th c. At that point large numbers of bowhead whales were

caught in addition to the right whale [43]. European whaling expanded to the coasts of New-

foundland and Labrador in the 16th c. [54, 55] where recent genetic studies on 16th and 17th c.

bones have shown that the Basques caught mostly bowhead and a few humpback whales and

not the right whale as initially thought [56, 57].

It was not until the advent of power boats and harpoon guns ([52], p416) that the fast ror-

quals (Balaenoptera sp) were caught as well. The intensive whaling activity that ensued in the

19th and 20th c. have caused most species to be severely depleted and there is currently a debate

about pre-commercial whaling population sizes. A better appreciation of the species hunted

and the extent of whaling in specific geographical areas are needed for conservation purposes.

In addition, knowledge about the species used prehistorically for their baleen could contribute

to our understanding of various groups’ cultural traditions. Firm identification of the species

represented in baleen specimens and baleen artefacts is a step towards these goals. Baleen

plates vary in shape, size, thickness and color depending on the species (Table B in S1 File),

but these features can be difficult to recognize once the material has been worked, cut or has

degraded [31, 41]. Upon drying, baleen shrinks and becomes brittle (Fig 2), and the tubules

become detached from the outer layer. Since the morphological characteristics of baleen have

been altered in ancient baleen we turned to biomolecular techniques to develop a method of

identifying the species of whale from which the ancient baleen was originally harvested.

Peptide mass fingerprinting (PMF) of baleen

To address problems of species identification of unidentified museum specimens (resulting for

example from outdated, inaccurate, absent or erroneous curatorial records), DNA barcoding

was developed as a taxonomic tool. This method uses one or multiple short genetic sequences

to identify a specimen or part of an animal and if possible connect it to a reference species, and

has been used to describe new taxa [58–61]. However concerns have been raised about the

accuracy of this method of analysis, such as species delimitation and availability of controlled

reference specimens [61–64]. The idea that DNA barcoding can be used to describe new

organisms and assess biodiversity based on a single locus has been criticized [65]. The proteo-

mics equivalent to DNA barcoding, peptide mass fingerprinting (PMF), is different in that it

targets whole proteins and relies on multiple peptide markers instead of a short DNA

sequence. As in DNA barcoding though, it relies on well-characterized specimens for reference

materials and has taxonomic limitations (identification up to the genus level for example). But

PMF can be used to select ancient specimens for liquid chromatography-tandem mass spec-

trometry (LC–MS/MS) that will produce sufficient peptide sequences to establish molecular

phylogeny (based on one type of protein, e.g., collagen [66]). Peptide mass fingerprinting is a

rapid, accurate and efficient method for species identification of ancient artefacts, it requires

little material and can provide results on processed and degraded material [41, 67, 68]. It has

recently been used to study marine mammal remains, using collagen peptides in bones for spe-

cies identification and to screen whale remains for biomolecule preservation in ancient depos-

its [36, 38, 69]. Species belonging to the same genus (Balaenoptera sp.) have PMFs distinct

Peptide mass fingerprinting of baleen (Mysticeti whales)
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enough to identify those species in archaeological bones [36], which raises the interesting pos-

sibility that similar results could be obtained on baleen.

Baleen is made of alpha-keratin proteins, the same type found in hair and nail; the tubules

are made of flattened keratinised cells packed with intermediate filaments (α-keratins) in the

length of the tubule and surrounded by a protein matrix. A preliminary study on baleen [70]

found that the typical type I (acidic Ha) and type II (basic Hb) keratin proteins dominated the

peptidic profile, and that this profile presented distinct peaks at similar positions to animal

fibers. Based on variations in amino acid sequences across taxa, each PMF is however repre-

sentative of the analyzed genus (and sometimes species). Here we use 27 specimens from the

Smithsonian Institution’s Museum of Natural History collection (acquired between 1879 to

1988) to determine markers of identification for 10 species of mysticeti whales (North Pacific

right, North Atlantic right, bowhead, Bryde’s, sei, blue, common minke, fin, humpback and

gray whales). The Southern right whale (Eubalaena australis), the Pigmy right whale (Caperea
marginata, belonging to its own distinct family), Omura’s whale (Balaenoptera omurai) and

the Antarctic minke whale (Balaenoptera bonaerensis) were not included in this study due to

the lack of availability of suitable specimens. Species assignment of each specimen sampled

was based on accession records, morphological characteristics of the plate and in some cases

the whole rack; multiple specimens were sampled for each species whenever possible. The

Fig 2. Archaeological baleen from Labrador. Left: Strip and bristles from Avayalik-1 (JaDb-10, 49A). Right: Strip and bristles from

Johannes Point (IbCq-1).

https://doi.org/10.1371/journal.pone.0183053.g002
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methodology was applied to 29 archaeological baleen samples obtained from multiple sites in

Labrador, Canada (Fig 3) spanning up to 1500 years of aboriginal use of whales, including

both stranded and hunted individuals. Taxonomic identifications based on the formerly

described morphological characteristics of baleen [41] were impossible due to the fragmentary

state of the remains.

Materials and methods

Sample collection

Reference materials from Eubalaena japonica (one specimen, n = 1), Eubalaena glacialis
(n = 2), Balaena mysticetus (n = 3), Balaenoptera brydei/edeni (n = 4), Balaenoptera borealis
(n = 4), Balaenoptera musculus (n = 3), Balaenoptera acutorostrata (n = 1), Balaenoptera

Fig 3. Map of Labrador, Canada, modified from NordNordWest [CC BY-SA 3.0 (http://

creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons, and showing the location of the

archaeological sites where baleen was found, as shown in Fitzhugh, 1980 [71].

https://doi.org/10.1371/journal.pone.0183053.g003
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physalus (n = 3), Megaptera novaeangliae (n = 3), Eschrichtius robustus (n = 3), were obtained

from the Marine Mammals department at the Smithsonian Institution (Table 1). A permit for

destructive sampling was obtained from the Division of Mammals of the National Museum of

Natural History (NMNH). Samples were collected by drilling at the base (the side of the plates

embedded in the jaw) where there was maximal thickness. The surfaces of the plates were

cleaned with water and the first drilled layer was discarded. The second layer was then col-

lected from one hole (two for thin plates) and placed into plastic vials. Another recent speci-

men (date and species unknown) was also obtained from AgResearch (Jeff Plowman, Proteins

and Biomaterials group), Christchurch, New Zealand (unregistered specimen, no permit

required for sampling) by scratching the surface with a razor blade (S2 File).

Archaeological baleen was sampled from plate strips (five samples) and bristles (24 samples)

(details in Table A in S3 File), recovered from houses and middens excavated in 1977–1978

from sites attributed to different cultures (Fig 3): Dorset, ca. 1500 B.P. to 600 B.P. [71] (20 sam-

ples), Dorset/Thule (three samples), Thule, ca. A.D. 1500 [72, 73] (two samples), Thule/Inuit

(one sample), and historic period Labrador Inuit, post A.D. 1800 (four samples). Since cata-

loguing in 1978 the samples have been stored in sealed plastic vials at the Arctic Studies Center,

NMNH (no permits were required for the described study).

Protein extraction

The fresh and archaeological samples of baleen were washed with water twice, (archaeological

samples were sonicated for 10 seconds to remove dirt) followed by ethanol and left to dry. The

samples were then cut into small pieces with a scissor cleaned with ethanol. Proteins were

extracted by overnight shaking in a 0.5 ml solution of 8M urea, 50 mM Tris and 50 mM TCEP

at pH 8.4. An aliquot of 100 μL supernatant was alkylated for 45 min in the dark with 400 mM

of iodoacetamide for a final concentration of 40 mM. The samples were dialysed overnight

with 100 mM ammonium bicarbonate in 2 kDa molecular weight cut-off (MWCO) dialysis

units (Slide-A-Lyzer™ MINI Dialysis Devices by Thermo Scientist). The samples were then

digested with 0.5 μg of trypsin, for 18 h at 37˚C, dried down in the morning and resuspended

in 100 μL of 0.1% trifluoroacetic acid (TFA) before solid phase extraction with 3M Empore™
Octadecyl C18 extraction disk (Supelco, Bellefonte PA, USA), cut into 2 x 2 mm pieces. The

proteins were extracted by shaking for 3 hours, the Empore cuts washed with 0.1% formic acid

and proteins eluted with a solution of 75%/25% acetonitrile/formic acid, dried down and

resuspended in 10 μL of 0.1% trifluoroacetic acid. The samples were spotted on AnchorChip™
target (Bruker) as previously described [70].

Peptide mass fingerprinting by MALDI-TOF-MS

Analyses were carried out with an Ultraflex™ III mass spectrometer (Bruker), in positive reflec-

tor mode using a Nd:YAG laser operating at 355 nm. Spectra were acquired using flexControl

3.0 (Bruker) on a mass range of 700–3,500 Da with an accumulation of 500 shots on the stan-

dards and 1000 shots on the samples. The calibration standard (Bruker) was prepared accord-

ing to the manufacturer’s instructions for instrument calibration and consisted of angiotensin

I, ACTH clip(1–17), ACTH clip (18–39) and ACTH clip(7–38) peptides.

Data analysis

The spectra were processed with mMass 5.5.0 (http://www.mmass.org/) after conversion of

the raw files with flexanalysis 3.3 (Bruker). Spectra were smoothed with Gaussian filter (width

0.3 m/z) and internally recalibrated using the peptides identified in Table 2, for an error after

calibration of� 0.02 Da.

Peptide mass fingerprinting of baleen (Mysticeti whales)
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Table 1. Details of specimens sampled and quantity of baleen analysed.

Accession # Scientific name Common

name

Collection

date

Collection location Mass tested

(mg)

Balaenidae family

USNM

339990

Eubalaena japonica Pacific right

whale

22 August

1961

Collected by the Whale Research Institute, south of Kodiak

Island, Gulf of Alaska

16

USNM

504257

Eubalaena glacialis Atlantic right

whale

11 May 1975 Collected from a beached whale carcass by JG. Mead (SI) on

Monomoy Is, Massachusetts

19

USNM

504343

Eubalaena glacialis Atlantic right

whale

15 April 1976 Collected from a whale carcass by JG. Mead (SI) off Duck

Harbor, Wellfleet, Massachusetts

17

USNM

571336

Balaena mysticetus Bowhead

whale

1988 Collected by Richard.Lambertsen, Arctic Ocean, Alaska 11

USNM

571337

Balaena mysticetus Bowhead

whale

1988 Collected by Richard.Lambertsen, Arctic Ocean, Alaska 15

USNM

571338

Balaena mysticetus Bowhead

whale

May 1987 Collected by Richard.Lambertsen, Barrow, Arctic Ocean, Alaska 9

Balaenopteridae family

USNM

239307

Balaenoptera brydei/

edeni

Bryde’s whale 18 March 1923 Collected by AJ Poole & CE. Mirquet from a whale carcass at

Walnut point, Virginia

15

USNM

504074

Balaenoptera brydei/

edeni

Bryde’s whale 30 May 1974 Collected by Barry Peers from a stranding carcass, Tarpon

Springs Gulf of Mexico, Florida

16

USNM

504688

Balaenoptera brydei/

edeni

Bryde’s whale 5 January 1975 Collected by TJ. Mcintyre (SI), during Japanese whaling, East of

South Island of New Zealand

14

USNM

504689

Balaenoptera brydei/

edeni

Bryde’s whale 5 January 1975 Collected by TJ. Mcintyre (SI), during Japanese whaling, East of

South Island of New Zealand

23

USNM

486174

Balaenoptera

borealis

Sei whale 10 December

1972

Collected from a whale carcass by JG. Mead (SI) on north end of

Cape Island, Charleston, South Carolina

4

USNM

504244

Balaenoptera

borealis

Sei whale 16 April 1975 Collected from a whale carcass by JG. Mead (SI) at Corolla,

North Carolina

7

USNM

504706

Balaenoptera

borealis

Sei whale 14 February

1975

Collected by TJ. Mcintyre (SI), during Japanese whaling, in

Bransfield Strait, Antarctica, South Atlantic Ocean

11

USNM

504998

Balaenoptera

borealis

Sei whale 12 July 1974 Collected at La Costa De Buen Hombre, Dominic Republic 18

269541 Balaenoptera

musculus

Blue whale No record 12

USNM

302977

Balaenoptera

musculus

Blue whale NA Gift from Russian whaling ship 14

USNM

504996

Balaenoptera

musculus

Blue whale 1970s Collected by ED. Mitchell ‘s team from a stranded whale, West

coast of Newfoundland

11

USNM

239305

Balaenoptera

acutorostrata

Minke whale July 1922 Collected by EP. Walker (SI), Pearl Island, Pribilof Islands, Alaska 17

USNM

275769

Balaenoptera

physalus

Fin whale 30 August

1947

Collected by RM. Gilmore at Eureka, Del Norte, California 4

USNM

504258

Balaenoptera

physalus

Fin whale 27 May 1975 Collected from a whale carcass by JG. Mead (SI) in Brigantine,

New Jersey

9

USNM

504712

Balaenoptera

physalus

Fin whale 13 March 1975 Collected by TJ. Mcintyre (SI), during Japanese whaling,

Antarctica, South Pacific Ocean

6

USNM

16252

Megaptera

novaeangliae

Humpback

whale

12 April 1879 Collected by EE. Small & Capt. NE. Atwood (SI) from a stranded

whale in Provincetown, Massachusetts

10

USNM

267999

Megaptera

novaeangliae

Humpback

whale

24 August

1938

Baleen collected from a seized whale from the whaling ship

Frango by Lt. TR Midtlyng in Western Australia

16

USNM

504216

Megaptera

novaeangliae

Humpback

whale

29 February

1975

Collected from a whale carcass by JG. Mead (SI) at Virginia

Beach, Virginia

16

Eschrichtiidae family

(Continued )
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Results

Markers of identification in fresh baleen

The species analyzed here have common peptides (Table 2 and in Fig 4 indicated with white-

filled diamonds). The sequences of these peptides were previously identified [70] and have

matches in the few publically available keratin sequences from the minke whale (Table 2). In

particular, the peptide LNVEVDAAPTEDLNR appears to be specific to all Mysticeti whales

only (Blast search against all organisms, timestamp December 2016). A few additional

sequences were determined manually from MALDI-TOF-MS/MS spectra (Table 2 and S4

File). These sequences were used to re-calibrate internally the spectra for an error of less than

0.02 Da after calibration. Peaks that fell within this error tolerance are indicated in Table 3.

Balaenidae (North Atlantic and North Pacific right whales, and bowhead whale) have com-

mon peaks that differentiate them from the other baleen species (in light green Table 3). In

addition, the right whales are characterized by a peak at m/z 1541.64 while the presence in the

bowhead whale of a peak at m/z 1843.95 (and absence of m/z 1857.99, Table 2) allows distinc-

tion from the right whales. A peak at m/z 2204.02 was found in the North Atlantic right whale

only (Fig 4a).

The Balaenopteridae (Bryde’s, sei, blue, minke, fin and humpback whales) and Eschrichtii-

dae (gray whale) species are characterized by one common peak, at m/z 1028.57 (sequence in

Table 2). The peak at m/z 2517.33 (sequence in Table 2) also indicates a species from these

families, but was absent in two of the Bryde’s whale specimens tested (see below). Bryde’s and

sei whales, two species genetically close, have a few common peaks (light blue Table 3), but sei

whale has the highest occurrence of specific peaks of all species (dark blue Table 3 and Fig 4b).

Blue and minke whales have one common peak at m/z 1779.82 but can be differentiated by the

presence of the peaks at m/z 1950.99 and m/z 2184.15 (sequence in Table 2) in the minke

whale, and m/z 1818.89 in the blue whale. Fin and humpback whales have four common peaks

(light blue Table 3), but are differentiated from each other by the peak at m/z 1425.65 in the fin

whale, and four specific peaks in the humpback whale (dark blue in Table 3 and Fig 4c). Finally

gray whale can also easily be differentiated by the presence of four specific peaks (in red

Table 3 and Fig 4d). Reference mass spectra are given in S4 File for each species (raw data in

S1 Data).

Identification of the Bryde’s whales

The Bryde’s whale samples analyzed here come from two different geographical areas, the

North Atlantic Ocean for specimens 239307 and 504074 and the South Pacific Ocean for speci-

mens 504688 and 504689. They are characterized by the specific peaks at m/z 1532.58, 1549.62

Table 1. (Continued)

Accession # Scientific name Common

name

Collection

date

Collection location Mass tested

(mg)

USNM

504999

Eschrichtius

robustus

Gray whale 15 January

1968

Collected by RL. Delong at Del Monte whaling station at

Richmond, California

11

USNM

572613

Eschrichtius

robustus

Gray whale 3 January 1967 Collected by FM. Greenwell (SI) from the Del Monte Fishing

Company, San Francisco, California

8

USNM

572614

Eschrichtius

robustus

Gray whale Jan. 1967 Collected by FM. Greenwell (SI) possibly from Point Reyes,

California

12

Unknown

339 Unknown No record Likely collected in New Zealand 10

https://doi.org/10.1371/journal.pone.0183053.t001
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and 2547.34 (sequence in Table 2). However, the North Atlantic specimens (Fig 5a) present a

peak at m/z 1844.73 (not to be confounded with the bowhead peak at m/z 1843.95), which is

visible in very low intensity in the South Pacific specimen 504688 (Fig 5b) and totally absent

from the South Pacific specimen 504689 (Fig 5c). In addition, peptide m/z 2517.33 is present

in specimen 504688 but not in 504689 or 504074.

Archaeological samples

All but two archaeological samples were matched to the bowhead whale reference PMF

(Fig 6a) based on the presence of peaks at m/z 1025.52, 1425.65, 1514.64, 2664.37 (Balaenidae)

and m/z 1843.95 (species-specific); a sample from Avayalik-1 is shown in Fig 6b (Ava18) and

all other samples in S3 File (Table A and Figures A1 to A29). The samples from the Inuit site

Johannes Point in Hebron cannot be matched to any species (Fig 6c). The profiles show pat-

terns of degradation with loss of common peptides and new peaks likely originating from

modifications to the polypeptide chains. While peaks at 1081 and 1655 (Fig 6c) are indicative

of baleen, diagnostic peptides are absent, instead showing peaks at m/z 1218, 1791 and 1434.

The same pattern of degradation seen at Johannes Point is reproduced in the Dorset Avayalik-

1 samples 16 and 33 (Figures A4 and A14 in S3 File), in these samples however, the presence of

Table 2. Sequences used for recalibration, with calculated m/z (C indicates Carbamidomethylation of the cysteine) and matched species: (i) Mysti-

ceti species where peaks are observed with� 0.02 Da error; and (ii) species matched by sequence homology using Blast (https://blast.ncbi.nlm.

nih.gov/).

Sequence m/z Protein referencesa Species (i) Other matches (ii)

GITGGFGSR 851.44 Hb1, Hb6 All shrew, mole, squirrelc

WQFYQNR 1041.49 Hb1, Hb3, Hb5, Hb6 All > 10 species

DVEEWFTR 1081.50 Ha1, Ha3 All goat, sheep, anteloped

LGLDIEIATYR 1263.70 Hb1, Hb5, Hb6 All > 10 species

LNVEVDAAPTEDLNR 1655.82 Ha1, Ha3, Ha6 All -

TVNALEIELQAQHSMR 1839.94 Ha6 All > 10 species

TVHALEVELQAQHNLR 1857.99 Ha1, Ha3 All but bowhead whale Yangtze dolphine

SDLEANSEALIQEIDFLR 2063.03 Hb1, Hb3, Hb6 All > 10 species

SQQQDPLVCPNYQSYFR 2129.97 Ha1, Ha6 All sperm whalef

VPYISSVPCAPAPQLSTQIRb 2184.15 Ha6 Balaenidae, minke and gray whales -

VEAQLAEIR 1028.57 Ha1, Ha3 Balaenopteridae and gray whale > 10 species

YSSQLAQIQGLIGNVEAQLSEIRb 2517.33 Ha6 Balaenopteridae and gray whale -

YSSQLAQIQGLISNVEAQLSEIRb 2547.34 De novo Bryde’s whales -

YTSQLAQIQCLISNVEAQLSEIRb 2664.37 De novo Balaenidae -

APYISSVPCAPAPQLSTQIRb 2156.12 De novo Bryde’s and sei whales -

aAccession numbers in NCBI are: XP_007177676.1 keratin, type I cuticular Ha1-like [B. acutorostrata scammoni], XP_007177675.1 keratin, type I cuticular

Ha3-I [B. acutorostrata scammoni], XP_007177677.1 keratin, type I cuticular Ha6 [B. acutorostrata scammoni], XP_007179861.1 keratin, type II

microfibrillar, component 7C-like (Hb1) [B. acutorostrata scammoni], XP_007174324.1 keratin, type II cuticular Hb3-like, partial [B. acutorostrata

scammoni], XP_007179462.1 keratin, type II cuticular Hb5 [B. acutorostrata scammoni], XP_007179463.1 keratin, type II cuticular Hb6 [B. acutorostrata

scammoni].
bSequences verified by MALDI-TOF-MS/MS analysis (spectra shown in S4 File).
cthirteen-lined ground squirrel (Ictidomys tridecemlineatus), common or Eurasian shrew (Sorex araneus), star-nosed mole (Condylura cristata);
ddomestic goat (Capra hircus), domestic sheep (Ovis aries), Tibetan antelope or chiru (Pantholops hodgsonii);
eYangtze dolphin (Lipotes vexillifer);
fsperm whale (Physeter catodon).

https://doi.org/10.1371/journal.pone.0183053.t002
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Fig 4. Mass spectra of four baleen specimens with main markers indicated, see Table 3 for colour

references a) North Atlantic right whale (E. glacialis) 504257; b) sei whale (B. borealis) 504998; c)

humpback whale (M. novaeangliae) 267999 and d) gray whale (E. robustus) 572613.

https://doi.org/10.1371/journal.pone.0183053.g004
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Table 3. Main diagnostic markers identified by peptide mass fingerprinting in Balaenidae (North Pacific (NP) right, North Atlantic (NA) right and

bowhead whales), Balaenopteridae (Bryde’s, sei, blue, minke, fin and humpback whales), and Eschrichtiidae (gray whale). In gray and black are

peaks found across families (in gray: all families and in black: Balaenopteridae and Eschrichtiidae), in green are balaenidae-only peaks (darker shade of

green represents the right whales, and darkest green is for species-specific peaks), in blue are balaenopteridae-only peaks (darker shade of blue represents

species-specific peaks), and in red are the eschrichtiidae-specific peaks. The—sign indicates the presence of a peak with relative intensity < 1%.

m/z NP Right* NA Right Bowhead NA Bryde SP Bryde

(504689)

SP Bryde

(504688)

Sei Blue Minke* Fin Humpback Gray

2184.15

1425.65

1514.64

1028.57

2517.33

1844.73 -

2326.04 - -

2343.07 - -

982.49 -

1025.52

1186.49/

1203.50

2664.37 -

1541.64

1843.95

2204.02

1282.63/

1298.64

1371.62

1460.63

1947.90 -

2156.12

1532.58/

1549.62

2547.34

1256.61/

1272.63

1345.62

1434.63

1506.58/

1523.62

2476.08/

2492.07

2565.09

2654.07

2743.09

1779.82

1818.89

1950.99

1073.52

1162.52

1747.88

2406.22 -**

1516.68

1934.97

(Continued )

Peptide mass fingerprinting of baleen (Mysticeti whales)

PLOS ONE | https://doi.org/10.1371/journal.pone.0183053 August 30, 2017 12 / 24

https://doi.org/10.1371/journal.pone.0183053


the m/z 1025.5 peptide points to either the right or bowhead whale, while the presence of a m/z
1844.1 peak, albeit at very low intensity, indicates a likely match to bowhead whale.

Discussion

Phylogeny of baleen whales

The divergence date of the Balaenidae from the other families has been estimated at 28 Ma

[74, 75]. The phylogeny of the Balaenidae is well established with B. mysticetus (bowhead) split

estimated between 5 and 10 Ma [75, 76] and much more recent divergence time for the Euba-

leana (right whales) genus (less than a million year [75]). Our results are consistent with the

ancient split of the Balaenidae family as right and bowhead whales have PMFs distinctive of

the other baleen whales. While analyses of bone collagen have not been able to differentiate

between bowhead and right whales using the ZooMS method [69], the analysis of baleen dem-

onstrates a specific peak for the bowhead whale at m/z 1844, as well as distinct peaks for the

right whale. These results allow distinction of bowhead and right whale in baleen, as well as

indicating a possible separation of North Pacific and North Atlantic right whales. However, as

only one specimen of the North Pacific right whale was available for testing, the absence of the

peak at m/z 2204 in that species will have to be confirmed. These unexpected results also indi-

cate the need to test baleen from the Southern Hemisphere right whale (E. australis) that has

been accepted as a distinct species phylogenetically closer to the North Pacific right whale [77].

In modern times, whalers depleted right whales in the Northern Hemisphere causing the

industry to pursue the right whale in the Southern Hemisphere. The possibility of distinguish-

ing among the different species of right whales could be of great use to provenance baleen in

historic objects. The pigmy right whale (C. marginata), so-called because of morphological

similitudes with the right whale, was not hunted commercially [78]; molecular data have now

placed it with balaenopterids and eschrichtiids rather than with balaenids [79].

The phylogenetic relationships of the Eschrichtiidae and Balaenopteridae (last common

ancestor estimated at 12–13 Ma [74, 75]) have been the subject of many studies as the morpho-

logical and molecular evidence have brought up different results [80]. Many studies have

found fin and humpback whales to be sister taxa [75, 80–82] (split time 7 Ma [75]), as well as

Bryde’s and sei whales [75, 80–83] (split time 3 Ma [75]). The high occurrence of common

peptides between Bryde’s and sei whales and between fin and humpback whales are in line

with the established relationships. Relationships are less clear for minke and blue whales: a

study on Y chromosomes found minke whales to be close to the fin-humpback clade and the

Table 3. (Continued)

m/z NP Right* NA Right Bowhead NA Bryde SP Bryde

(504689)

SP Bryde

(504688)

Sei Blue Minke* Fin Humpback Gray

2174.90

2201.95

1351.60

1463.71

1537.68

1979.87

*Species for which only one specimen was available.

**Observed in the specimen 267999 from Western Australia (might indicate a local form of humpback whale) and in the unidentified New Zealand sample

B339 (S2 File) as a low intensity peak

https://doi.org/10.1371/journal.pone.0183053.t003
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blue whale branching from the other Eschrichtiidae/Balaenopteridae species [80]. One study

placed the blue whale in a sister group of the fin-humpback clade based on mtDNA but found

blue and fin to be sister taxa based on concatenated nuclear genes with minke as the closest rel-

ative [74]. Another placed the blue whale in a sister clade of the Bryde’s/sei group and minke

Fig 5. Mass spectra between m/z 1800–2600 of the Bryde’s whales (B. brydei) showing subspecies markers a) North Atlantic specimen

504074; b) South Pacific specimen 504688; c) South Pacific specimen 504689.

https://doi.org/10.1371/journal.pone.0183053.g005
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Fig 6. PMF of a) bowhead whale sample 571338; b) archaeological baleen, Dorset (Ava18); c) degraded archaeological baleen, Inuit

(Joh49).

https://doi.org/10.1371/journal.pone.0183053.g006
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whale branching out [82]. In Gatesy et al. (2013) [84], blue whale is placed next to the

Bryde’s/sei group as well as in McGowen et al. (2009) [75] which estimates a split date of 9 Ma.

Our analyses so far found that minke and blue whales cannot be closely associated to any other

species based on keratin markers from PMF; complete sequencing of the keratins would be

needed to determine the phylogenetic placement of these species. In addition, only one speci-

men of minke whale was successfully tested. A second specimen of the common minke whale

yielded no useable data (very degraded profile) and no Antarctic minke whale were tested

here.

McGowen et al. [75] finds Eschrichtiidae (gray whale) to be most closely related to the fin-

humpback clade with a divergence time from within the Balaenopteridae [81] at about 9 Ma

[75]. Our PMF data indicate that keratin sequences are quite divergent between these three

species, as no common diagnostic peptide markers were found among them.

Bryde’s whales

The taxonomy of the Bryde’s whales, first described in South Africa in 1913 [85], has not been

fully established due to the subsequent recognition of a morphologically similar species.

Named B. edeni the new species, under which name all Bryde’s whales have been classified,

was first fully described after a Singapore specimen in 1950 [86]. Recently B. brydei and

B. edeni have been recognized as separate species based on mtDNA [87, 88]. Sasaki refers to

pelagic Bryde’s whales (western North Pacific and eastern Indian Ocean) as belonging to

B. brydei while specimens collected in Hong Kong, Japan and Australia are B. edeni, morpho-

logically smaller than the B. brydei specimen. Several forms of B. brydei have been described,

such as the offshore and inshore South African populations [89]. Bryde’s whales also occur in

the Pacific (Peru), the Atlantic (Brazil) and in New Zealand (B. brydei type) [90]. More

recently, a smaller type of Bryde’s whale was identified through specimens located in the west-

ern Pacific and eastern Indian Oceans. The specimens were first referred as pigmy Bryde’s

whales [91], but in 2003 they were recognized as belonging to a separate species named

B. omurai that lies outside the Bryde’s/sei clade [88].

Our analyses are consistent with the identification of two different species (B. brydei and

B. edeni), or multiple sub-species. The lack of known morphological differentiation between

the plates of B. brydei and B. edeni makes it difficult to associate any of our samples to a partic-

ular species. It is worth noting, however, that the North Atlantic specimens have thinner and

denser bristles with a lighter coloration than the South Pacific specimens. In this regard, the

three profiles observed for the Bryde’s whales should be considered characteristic of any spe-

cies or sub-species of Bryde’s whales independent of their geographical origin. More speci-

mens are needed to validate these results, in particular for the Southern Hemisphere samples

that both yield different profiles. In addition, specimens of the Omura’s whale should be tested

to determine if its baleen profile is indeed different from the Bryde’s and sei whales profiles

and fit current genetic data.

Baleen preservation

The vast majority of the modern baleen sampled from plates yielded good results, with only

three specimens (not included here) failing to give useable PMFs. Those results are encourag-

ing for they suggest that is it possible to identify the species of whale represented in historical

baleen artefacts; the oldest specimen, a humpback whale from 1879, had a profile consistent

with the younger humpback specimens. The archaeological samples also yielded good PMFs,

with the exception of the samples from the Johannes Point Inuit site dating to the 17-19th

centuries.
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As mentioned earlier, keratinous tissues are generally more susceptible to biodegradation

in archaeological sites than are bones; such rapid decomposition has been observed in all hard

tissues made of alpha-keratins (horn, hoof, nail, claw) and beta-keratins (tortoiseshell) [41].

The protein analysis of degraded samples is often translated by the loss of diagnostic peaks: as

the polypeptidic chain is degraded into smaller fragments through hydrolysis, PMFs are char-

acterized by an increase of peptides of smaller molecular weight and decrease or complete loss

of peptides at higher m/z. Further chemical degradation is usually observed with the deamida-

tion of glutamine and asparagine, a frequent modification in archaeological hair for instance

[68] and observed in the archaeological baleen samples to a small degree (Table B in S3 File).

Deamidation, however, only results in small measurable shifts in peaks. The observation in the

Johannes Point samples of unknown peaks, not observed in other baleen whale species and, to

our knowledge not observed in hair samples or human contamination, likely results from

other undetermined modifications to the peptides (such as truncated or semi-tryptic

peptides).

The cold environment of the Arctic is undoubtedly a crucial factor for the preservation of

baleen remains. Johannes Point, the southernmost of the sites sampled, is built on well-drained

sands, lacks permafrost and has a protected southern exposure, meaning higher seasonal ambi-

ent temperatures and the greatest exposure to environmental degradation of the archaeological

series. The samples from this site came from test pits that produced poorly-preserved faunal

remains. The advanced chemical degradation of the samples was not obvious through visual

examination when compared to baleen bristles with good protein preservation (Fig 2); this

indicates that the biomolecular information preserved in baleen and by extension in bones is

at risk due to exposure to a warm climate.

Archaeological significance

In the time period covered by this study, several species of whales would have been found in

the Labrador waters: the blue, sei, right, bowhead, humpback, minke, fin and gray whales. The

North Atlantic population of gray whale went extinct around the early 1700s [92] and the

Northwestern Atlantic population of right whale seems to have already been decimated by the

time Basque whaling began in Newfoundland and Labrador in the 16th c. [93]. The identifica-

tion of bowhead in nearly all samples is not necessarily an indication of the sole use of bow-

head for baleen supplies. Several reasons can explain the absence of other species: 1) the

modest sample size of the samples (29 samples), 2) the possibility that samples originate from

the same animal (there are a few samples that come from the same location, Table A in

S3 File), 3) preferential degradation of baleen in some species (the hydroxyapatite content

might vary from species to species [42] and baleen with low mineral content would be more

susceptible to degradation), and 4) a biased representation of baleen in archaeological sites

(baleen is rarely preserved in other sites with more exposure, lacking permafrost deposits or at

lower latitudes).

However, the dominance of bowhead whale remains in samples from Saqqaq, Dorset,

Thule, and historic Inuit sites is consistent with past studies and probably results from two fac-

tors: bowhead accessibility and its highly desirable products. During the Dorset period, seal

and walrus were the principal quarry. Dorset people lacked the technology suitable for hunting

large whales, including floats and other specialized open-water whaling technology, but their

carving of whale bone to make sled runners and tool handles, and use of baleen lashings sug-

gests a consistent pattern of scavenging materials from bowheads that died of natural causes

and drifted ashore. Eighteenth century’s Moravian records document extensive use of ‘drift

whales’ by Labrador Inuit [94] and we can expect Dorset people made similar use of buoyant
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bowheads. Furthermore, recent bowhead DNA evidence from Greenland Saqqaq sites dating

to 4000 B.P. [29] shows this species was used by the first Paleo-Inuit arrivals from Alaska and

the wider North Pacific region, where, we may expect, scavenging and, later, hunting of large

whales probably originated during early/mid-Holocene times.

The Thule specialized in subsistence hunting large whales in open water [72]. Their

pursuit of bowheads was possible because of their specialized harpoon, float, and boat technol-

ogy. This slow-swimming species played a central role in their western Arctic-derived whaling

adaptation. Whale meat, blubber, and skin provided vital nutrition to their communities and

their dog teams. Whale bones were used as architectural elements in dwellings and were carved

into tools and weapons, blubber was used in lamps to light house interiors and cook food, and

baleen was used to make hunting, fishing, traveling and household implements. The social

organization and ideology of a community centered around whale-boat crews and whales.

None of the other large whales could be approached and killed as easily as bowheads. Its con-

tinued importance in later historic Alaska, Labrador and Greenland Inuit society can be attrib-

uted to the same factors: ease of capture and abundant raw materials and food resources.

In the 1600s, trade between Europeans and northern Labrador Inuit communities was initi-

ated and intensified in the 1700s [72]: baleen, sealskins, and down were exchanged for

European-derived raw materials (hardwoods, metals) and manufactured commodities

[73]. After the 1800s, however, large whales became rare in Labrador due to over-

exploitation by European and American whalers, and smaller, less predictable catches were

reported [72].

Conclusion

The identification of baleen species used in ancient artefacts can help archaeologists better

understand what species prehistoric groups hunted and how the resources they provided were

utilized. Historical records about catches are not numerous and are often incomplete. In addi-

tion, the reliability of whale identifications based on visual reports can be questionable. For

instance, it is unclear from historic sightings whether bowhead or right whale was caught by

North Atlantic whalers. In addition, the bowhead was until recently also called Greenland

right whale [37, 95], adding to the confusion as to which species was effectively hunted. As a

result of these problems, using historical records to make estimates of the size of pre-European

whaling whale stock numbers is fraught with problems.

Turning to biomolecular analysis of whale remains is one way to improve our knowledge of

past whaling activity and will add important information about the prehistoric and historic

availability of the Mysticeti whales. Peptide mass fingerprinting of baleen offers a new analyti-

cal tool to identify baleen specimens or baleen-made artefacts: sample sizes can be reduced to a

few mg and baleen sourced from artefacts in both prehistoric and historic collections. We

demonstrate here that identification is possible at the species and possibly at the sub-species

level, with additional well-characterized specimens necessary to look for differences at the sub-

species level. The data indicate a higher level of differentiation in baleen PMFs than in mam-

mal hair. In hair for instance, only one peptide can be reliably used to differentiate sheep from

goat, two species that belong to distinct genera [70]; here, species from the same genus have

distinguishable profiles. The extent of the divergence of the whale keratins will however only

be possible once sequence information for all baleen whales is known (number of alpha-

keratin proteins, amino-acid sequences, intraspecies variations).

Peptide fingerprinting is an interesting alternative to DNA barcoding to identify taxa, and

has many applications, from archaeology to wildlife forensics [61]. There is a wide range of

keratinous tissues (hair, horn, feathers, tortoiseshell) and organisms on which the
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methodology can be applied to provide a fast and easy taxonomic identification that will com-

plement or offer a substitute technique when degradation prevents identification by micros-

copy or DNA.
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