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Abstract

Primary cilia are non-motile cilia that serve as cellular antennae for sensing and transducing

extracellular signals. In general, primary cilia are generated by cell quiescence signals.

Recent studies have shown that manipulations to increase actin assembly suppress quies-

cence-induced ciliogenesis. To further examine the role of actin dynamics in ciliogenesis,

we analyzed the effect of jasplakinolide (Jasp), a potent inducer of actin polymerization, on

ciliogenesis. Unexpectedly, Jasp treatment induced ciliogenesis in serum-fed cells cultured

at low density. In contrast, Jasp had no apparent effect on ciliogenesis in cells cultured at

higher densities. Jasp-induced ciliogenesis was correlated with a change in cell morphology

from a flat and adherent shape to a round and weakly adherent one. Jasp treatment also

induced the phosphorylation and cytoplasmic localization of the YAP transcriptional co-acti-

vator and suppressed cell proliferation in low density-cultured cells. Overexpression of an

active form of YAP suppressed Jasp-induced ciliogenesis. These results suggest that Jasp

induces ciliogenesis through cell rounding and cytoplasmic localization and inactivation of

YAP. Knockdown of LATS1/2 only faintly suppressed Jasp-induced YAP phosphorylation,

indicating that LATS1/2 are not primarily responsible for Jasp-induced YAP phosphoryla-

tion. Furthermore, overexpression of active Src kinase suppressed Jasp-induced cyto-

plasmic localization of YAP and ciliogenesis, suggesting that down-regulation of Src activity

is involved in Jasp-induced YAP inactivation and ciliogenesis. Our data suggest that actin

polymerization does not suppress ciliogenesis per se but rather that cell rounding and

reduced cell adhesion are more crucially involved in Jasp-induced ciliogenesis.

Introduction

Primary cilia are microtubule-based sensory organelles that protrude from the plasma mem-

branes of most vertebrate cells. They are non-motile cilia that serve as cellular antennae for

sensing and transducing a variety of chemical and mechanical signals from the extracellular

environment [1, 2]. Primary cilia play an essential role in the development and homeostasis of

various tissues; therefore, defects in the formation or function of primary cilia cause diverse

human diseases, collectively termed ciliopathies, including polycystic kidney disease, retinal
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degeneration, neurodevelopmental disorders, and situs inversus [1, 2]. The formation of pri-

mary cilia is tightly associated with cell cycle arrest or exit; in cultured cells, primary cilia are

generated under the conditions that lead to cell quiescence, such as serum starvation and high

confluence culture [3–5]. Primary cilia are formed through a multistep process that includes

the formation of the ciliary vesicle at the distal end of the mother centriole, translocation of the

mother centriole to the plasma membrane to form the basal body, extension of axonemal

microtubules from the basal body, and transport of ciliary components into cilia [6, 7]. Previ-

ous studies have identified numerous factors that regulate the individual steps of ciliogenesis

[6–9]; however, the mechanism by which cell quiescence signals induce primary cilium forma-

tion has remained elusive [3–5]. Recent studies have implicated changes in actin filament

dynamics and organization in quiescence-induced ciliogenesis [9–11].

Actin filament dynamics and reorganization play essential roles in various cell activities,

including migration, morphogenesis, division, and vesicular transport. Actin filament dynam-

ics also play a crucial role in transducing the signals of cell geometry and mechanical states,

connecting them to the gene expression that drives cell growth and proliferation [12, 13]. YAP

(Yes-associated protein) is a transcriptional co-activator that promotes cell proliferation by

associating with transcription factors, such as TEAD (TEA domain transcription factor) [14,

15]. YAP activity is negatively regulated by the Hippo pathway, a kinase cascade consisting of

the MST1/2 and LATS1/2 kinases, which phosphorylate YAP and thereby promote its cyto-

plasmic retention or degradation [14, 15]. Several lines of evidence suggest that YAP is a key

mediator in transducing cytoskeletal and mechanical signals into cell proliferation [16–25].

Under the conditions suitable for cell proliferation (such as serum feeding, low cell density,

and stiff substrate), actin filaments tend to assemble, and YAP is translocated to the nucleus to

stimulate cell proliferation; however, the inhibition of actin polymerization or Rho signaling

results in cytoplasmic retention and inactivation of YAP and suppression of cell proliferation,

even though cells are under growth-promoting conditions [16–25]. Inversely, under the condi-

tions of cell quiescence (such as serum starvation, high cell density, and soft substrate), actin

filaments tend to disassemble, and YAP is retained in the cytoplasm; however, forced stimula-

tion of actin polymerization causes nuclear localization and activation of YAP and promotes

cell proliferation, even under growth-inhibitory conditions [16–25]. Thus, it seems likely that

actin assembly facilitates cell proliferation by promoting the nuclear translocation and activa-

tion of YAP, whereas actin disassembly leads to cell quiescence through the cytoplasmic reten-

tion and inactivation of YAP.

Because primary cilia are formed by cell quiescence signals and resorbed under cell prolifer-

ating signals, it may be presumed that actin disassembly promotes while actin assembly

represses ciliogenesis by inhibiting and promoting cell cycle progression, respectively. In

accordance with this assumption, several studies have shown that actin disassembly resulting

from treatment with cytochalasin D (CytoD) or knockdown of the actin nucleator Arp3 pro-

motes ciliogenesis, while actin assembly resulting from the knockdown of actin-severing fac-

tors, such as gelsolin or cofilin, represses ciliogenesis [9, 10]. However, the mechanisms by

which actin dynamics regulate YAP activity and ciliogenesis remain largely unknown.

To further examine the role of actin dynamics in primary cilium formation, we analyzed

the effect of jasplakinolide (Jasp), a potent inducer of actin polymerization, on ciliogenesis. In

contrast to the model in which actin assembly represses ciliogenesis, we observed that Jasp

treatment induced ciliogenesis under growth-promoting conditions. We provide evidence

that Jasp induces ciliogenesis through cell rounding, Src inactivation, and YAP inactivation.

Our results suggest that actin polymerization does not suppress ciliogenesis per se but rather

that changes in cell shape and adhesiveness are more crucially involved in Jasp-induced pri-

mary cilium formation.

Jasplakinolide induces ciliogenesis via YAP inactivation
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Materials and methods

Antibodies, plasmids, siRNAs, and reagents

Monoclonal antibodies against acetyl (Ac)-tubulin (Sigma), β-actin (Sigma), YAP (Santa Cruz

Biotechnology), and Myc-tag (Medical & Biological Laboratories), and polyclonal antibodies

against Arl13b (Proteintech), GFP (Molecular Probes), LATS1 (Cell Signaling), and LATS2

(Bethyl Laboratories) were purchased from the indicated suppliers. Alexa-488-labeled anti-Ki-

67 antibody and Alexa-633-labeled phalloidin were purchased from Abcam and Thermo Fisher

Scientific, respectively. The cDNA for human YAP was cloned by PCR amplification. The plas-

mid encoding YAP(5SA), in which five serine residues (S61, S109, S127, S164, and S397) were

replaced by alanine [26], was constructed with a site-directed mutagenesis kit (Agilent). The

cDNA plasmids encoding wild-type (WT) LIMK1 and its kinase-dead (KD) mutant, in which

Asp-460 was replaced by Ala, were constructed as described previously [27]. The cDNA plas-

mids encoding (Myc+His)-tagged Src and its constitutively active (ΔC, amino acids 1–522) and

KD (with a replacement of Asp-389 by Ala) mutants were constructed, as described previously

[28, 29]. The siRNAs targeting LATS1, LATS2, MST1, MST2, NDR1, NDR2, and TTBK2 were

purchased from Thermo Fisher Scientific. The siRNA targeting sequences were as follows; 5’-
CCU CCA UAC GAG UCA AUC A-3’ (LATS1 siRNA #1), 5’-GGAGUG AUG AUA ACG AGG A-
3’ (LATS1 siRNA #2), 5’-GUUCGG ACC UUA UCA GAA A-3’ (LATS2 siRNA #1), 5’-GCA
UUU UAC GAA UUC ACC U-3’ (LATS2 siRNA #2), 5’-GGAUGG AGA CUA CGA GUU U-3’
(MST1 siRNA), 5’-GAG AUA CAC UGC GAA AAG A-3’ (MST2 siRNA), 5’-GCAAUG AAA
AUA CUC CGU A-3’ (NDR1 siRNA), 5’-GGUUUG AAG GGU UGA CUC A-3’ (NDR2 siRNA),

and 5’-GUCAUG ACA UGU UAC CCA A-3’ (TTBK2 siRNA). Jasplakinolide (Jasp, Adipogen),

latrunculin B (LatB, Sigma), and cytochalasin D (CytoD, Sigma) were purchased from the indi-

cated suppliers.

Cell culture and transfection

Human telomerase reverse transcriptase (hTERT)-immortalized retinal pigmented epithelial

(RPE)-1 cells (hereafter referred to as RPE1 cells) were provided by H. Nakanishi (Kumamoto

University, Japan) and M. Matsuyama (Okayama University, Japan). RPE1 cells were cultured

in Dulbecco’s modified Eagle’s medium (DMEM)/Ham’s F-12 (Wako Pure Chemical) supple-

mented with 10% fetal calf serum (FCS). Transfections with plasmids and siRNAs were per-

formed using Lipofectamine LTX with PLUS and Lipofectamine RNAiMAX (Thermo Fisher

Scientific), respectively. To examine the effects of Jasp on ciliogenesis, RPE1 cells were plated

on coverslips in 6-well culture plates at low (2.1 x 103 cells/cm2), medium (1.0 x 104 cells/cm2),

or high (5.2 x 104 cells/cm2) densities. Cells were usually treated with 0.5 μM Jasp for 24 h in

10% FCS-containing medium and then fixed. For overexpression or knockdown experiments,

RPE1 cells were transfected with plasmids or siRNAs, cultured for 24 h, and then further cul-

tured for 24 h at low density in 10% serum-containing medium in the presence of 0.5 μM Jasp

or control DMSO before fixation. To examine the effect of EDTA treatment on ciliogenesis,

RPE1 cells were cultured on poly-L-lysine-coated coverslips in 6-well culture plates at low den-

sity. Cells were treated with 6 mM EDTA for 24 h in 10% FCS-containing medium and then

fixed.

Immunostaining and fluorescence microscopy

Immunostaining was carried out as described previously [30]. Cells were fixed with 4% para-

formaldehyde in phosphate-buffered saline (PBS), followed by permeabilization with 0.1%

Triton X-100 in PBS. Cells were stained with primary antibody diluted with Can-Get-Signal

Jasplakinolide induces ciliogenesis via YAP inactivation
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immunostain (Toyobo) and secondary antibody diluted with 2% FCS in PBS. Fluorescence

images were obtained using a DMI6000B fluorescence microscope (Leica Microsystems)

equipped with a PL Apo 63x oil objective lens and CCD camera (Cool SNAP HQ, Roper

Scientific).

Immunoblotting

Immunoblotting was carried out as described previously [31]. To analyze the level of YAP

phosphorylation, cells were lysed with pre-heated sodium dodecyl sulfate (SDS)-containing

lysis buffer (1% SDS, 50 mM Tris-HCl pH 7.5, and 1 mM dithiothreitol) and boiled for 20 min

at 100˚C. Cell lysates were analyzed by SDS-polyacrylamide gel electrophoresis (PAGE) using

SDS-polyacrylamide gels containing 20 μM Phos-tag (Wako Pure Chemical), according to the

manufacturer’s instructions. Proteins were transferred to polyvinylidene difluoride (PVDF)

membranes using Mini Trans-Blot Electrophoretic Transfer Cells (Bio-Rad) according to the

manufacturer’s instructions. Protein-transferred membranes were subjected to immunoblot

analyses using a standard protocol.

F-actin sedimentation assay

F-actin sedimentation assay was carried out as described previously [32]. Briefly, Jasp-treated

RPE1 cells were lysed in lysis buffer (50 mM HEPES pH 7.4, 100 mM NaCl, 1 mM MgCl2, 0.2

mM CaCl2, 1 mM dithiothreitol, 0.2 mM ATP, 1% NP-40, and 2 μM phalloidin). Cell lysates

were centrifuged at 100,000 xg for 30 min at 4˚C. Equal amounts of pellet and supernatant

were subjected to SDS-PAGE and analyzed by immunoblotting with an anti-β-actin antibody.

Statistical analyses

Data are expressed as means ± SEM of three to four independent experiments. All statistical

analyses were carried out by Prism 6 (GraphPad Software). P-values were calculated using

unpaired Student’s t-tests for two-group comparisons and one-way ANOVA followed by Dun-

nett’s test for multiple data set comparisons. In all cases, P< 0.05 was considered statistically

significant.

Results

Jasp treatment induces ciliogenesis

Previous studies showed that treatment with CytoD or knockdown of Arp3 promotes ciliogen-

esis, whereas knockdown of gelsolin or cofilin represses ciliogenesis [9, 10]. These results sug-

gest that actin disassembly promotes and actin assembly represses ciliogenesis. To further

examine the roles of actin dynamics in ciliogenesis, we analyzed the effects of various drugs

that induce actin assembly or disassembly on ciliogenesis. RPE1 cells were cultured at low cell

density (2.1 x 103 cells/cm2) in 10% serum-supplemented medium (i.e., under growth-promot-

ing conditions that usually suppress cilium formation), treated with actin-modulating drugs

for 0.5–48 h, and then fixed and stained with antibodies against Ac-tubulin and Arl13b to

detect the formation of primary cilia. As reported [9, 10], treatment with CytoD or LatB, drugs

that inhibit actin polymerization, increased the frequency of ciliated cells in a time-dependent

manner (Fig 1A). Unexpectedly, treatment with Jasp, a drug that induces actin polymerization

[33], also increased the frequency of ciliated cells in a time- and concentration-dependent

manner (Fig 1A, 1B and 1C, first and second rows). F-actin sedimentation assays using ultra-

centrifugation confirmed that treatment with Jasp potently increased the ratio of F-actin to

total actin in RPE1 cells (S1 Fig). These results indicate that Jasp treatment induces primary

Jasplakinolide induces ciliogenesis via YAP inactivation
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Fig 1. Jasplakinolide (Jasp) induces ciliogenesis and cell rounding in cells cultured at low density. (A) Effects of actin-

modulating drugs on ciliogenesis. RPE1 cells were cultured at low density in serum-containing medium; treated with 0.5 μM CytoD, 1 μM

LatB, or 1 μM Jasp for the indicated lengths of time; and then fixed. The percentage of ciliated cells was counted based on staining for

Ac-tubulin and Arl13b. (B) Dose-dependent effect of Jasp on ciliogenesis. RPE1 cells were cultured at low density in serum-containing

medium, treated with the indicated concentrations of Jasp for 24 h, and then fixed. The percentage of ciliated cells was analyzed as in

Jasplakinolide induces ciliogenesis via YAP inactivation
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cilium formation in serum-fed cells cultured at low density, even though Jasp promotes actin

polymerization.

Jasp-induced ciliogenesis is correlated with cell rounding

We next examined whether Jasp induces ciliogenesis in cells cultured at higher cell densities.

RPE1 cells were plated at low (2.1 x 103 cells/cm2), medium (subconfluent, 1.0 x 104 cells

/cm2), or high (confluent, 5.2 x 104 cells/cm2) density, cultured in 10% serum-containing

medium, and treated with Jasp for 24 h; cilia were then analyzed by anti-Ac-tubulin and anti-

Arl13b staining. As described above, when cells were cultured at low density, primary cilium

formation was not observed in the absence of Jasp but was induced in 37% of Jasp-treated cells

(Fig 1C and 1D). When cultured at medium and high densities in the absence of Jasp, primary

cilia were observed in 8% and 55% of cells, respectively, even in the presence of serum (Fig 1C

and 1D). In contrast to cells at low density, Jasp treatment had no significant effect on ciliogen-

esis in cells at medium or high density (Fig 1C and 1D). Notably, Jasp-induced ciliogenesis

was correlated with a change in cell morphology; differential interference contrast (DIC)

microscopy showed that most cells at low density exhibited a dramatic change in morphology

from a flat and adherent shape to a round and weakly adherent one upon Jasp treatment; in

contrast, cells cultured at medium or high density retained the flat and adherent shape even

after Jasp treatment (Fig 1C, DIC images). These observations suggest that cell rounding and

reduced cell attachment to the dish are involved in Jasp-induced ciliogenesis in low density-

cultured cells.

Jasp treatment induces cell quiescence and YAP cytoplasmic

localization and phosphorylation

Primary cilia are generally formed under cell quiescence conditions. We next asked whether

Jasp treatment induces cell quiescence. RPE1 cells cultured at low density in serum-containing

medium were treated with Jasp for 0.5–48 h and then fixed and stained for Ki-67, a commonly

used marker for proliferating cells. Most cells were Ki-67-positive before Jasp treatment, but

the number of Ki-67-positive cells markedly decreased 24–48 h after treatment with Jasp (Fig

2A), indicating that Jasp treatment induces cell quiescence. The time course of Jasp-induced

cell quiescence was similar to that of ciliogenesis, indicating that Jasp-induced ciliogenesis is

tightly associated with cell quiescence.

YAP is a transcriptional co-activator promoting cell proliferation. YAP activity is inhibited

by phosphorylation and cytoplasmic retention [14, 15]. Previous studies showed that changes

in cell morphology and actin dynamics regulate YAP localization and phosphorylation [16–

25] and that CytoD-induced actin disassembly suppresses YAP activity and thereby promotes

ciliogenesis [10]. Since Jasp treatment induces cell rounding, quiescence, and ciliogenesis, we

next examined whether Jasp affects the subcellular localization and phosphorylation of YAP.

RPE1 cells cultured at low, medium, or high density in serum-containing medium were treated

with Jasp for 24 h and stained with an anti-YAP antibody. At low cell density, YAP mostly

localized to the nucleus in untreated control cells, but Jasp treatment caused cell rounding and

(A). (C) Effects of Jasp on ciliogenesis and cell morphology in cells cultured at distinct cell densities. RPE1 cells were cultured at low (2.1

x 103 cells/cm2), medium (1.0 x 104 cells /cm2), or high (5.2 x 104 cells /cm2) density in serum-containing medium, treated with 0.5 μM

Jasp for 24 h, and then fixed. Cells were stained with anti-Ac-tubulin (red) and anti-Arl13b (green) antibodies. DNA was stained with

DAPI (blue). Arrows indicate primary cilia. Scale bar, 20 μm. (D) Quantification of the frequency of ciliated cells in Jasp-treated or

untreated cells cultured at distinct densities. In (A), (B), and (D), data are means ± SEM from three independent experiments. *P < 0.05;

n.s., not significant.

https://doi.org/10.1371/journal.pone.0183030.g001
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Fig 2. Jasp treatment induces cell quiescence and the cytoplasmic localization and phosphorylation of YAP. (A) Effect of Jasp

treatment on cell proliferation. RPE1 cells were cultured at low density in serum-containing medium, treated with 1 μM Jasp for the

indicated lengths of time, and then fixed and stained with Alexa-488-conjugated anti-Ki-67 antibody (green). DNA was stained with DAPI

(blue). Scale bar, 20 μm. (B) Jasp induces the cytoplasmic localization of YAP in cells at low density. RPE1 cells were cultured at low,

medium, and high densities in serum-containing medium, treated with 0.5 μM Jasp for 24 h, and then fixed and stained with anti-YAP

antibody (green). DNA was stained with DAPI (blue). DIC images are shown in the right panels. Scale bar, 20 μm. (C) Quantification of

the effects of Jasp treatment on YAP localization. The percentage of cells with YAP localization in the nucleus (preferentially in the

nucleus or equally in the nucleus and cytoplasm) was counted. Data are means ± SEM from three independent experiments. *P < 0.05;

Jasplakinolide induces ciliogenesis via YAP inactivation
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translocation of YAP to the cytoplasm (Fig 2B). Quantitative analysis showed that more than

90% of cells exhibited YAP localization in the nucleus in the absence of Jasp but that Jasp treat-

ment markedly reduced the number of cells with nuclear YAP localization, with more than

80% of Jasp-treated cells exhibiting YAP localization predominantly in the cytoplasm (Fig 2C).

At medium and high densities, YAP predominantly localized to the cytoplasm in most cells in

the absence of Jasp, and Jasp treatment had no significant effect on cell morphology or YAP

localization (Fig 2B and 2C). Immunoblot analysis after Phos-tag-containing SDS-PAGE

revealed that levels of phosphorylated YAP (p-YAP) in cells at low density markedly increased

upon treatment with Jasp at concentrations of 0.5–1.0 μM (Fig 2D). These results indicate that

Jasp treatment causes YAP inactivation by promoting its phosphorylation and cytoplasmic

localization.

A previous study showed that intraperitoneal injection of high concentrations of Jasp causes

nuclear translocation and activation of YAP in high-density cells in zebrafish blastemal region

[34]. So, we further examined the effects of higher concentrations of Jasp on YAP localization

and ciliogenesis in high-density RPE1 cells. In the absence of Jasp, about 90% of RPE1 cells cul-

tured at high density exhibited YAP localization predominantly in the cytoplasm (S2 Fig) and

about 70% of cells formed cilia (S3 Fig). Treatment of these cells with Jasp at concentrations of

0.2–5.0 μM had no significant effect on the cytoplasmic localization of YAP (S2 Fig) and the

ratio of ciliated cells (S3 Fig). Treatment with 2–5 μM Jasp caused cell rounding, but such

treatment had no further effect on YAP localization and ciliogenesis (S2 and S3 Figs). Thus, in

contrast to the results obtained in zebrafish in vivo models, treatment with high concentrations

of Jasp did not promote nuclear localization of YAP in RPE1 cells cultured at high density.

Overexpression of active YAP suppresses Jasp-induced ciliogenesis

Recent studies showed that YAP activation suppresses ciliogenesis [10]. Since Jasp treatment

was found to cause YAP inactivation, we next examined the role of YAP inactivation in Jasp-

induced ciliogenesis. To do this, we constructed a constitutively active form of YAP, YAP

(5SA), in which five serine residues involved in phosphorylation and inactivation of YAP were

substituted with alanine [26]. RPE1 cells were transfected with GFP-tagged YAP(5SA) or con-

trol GFP, cultured at low density in serum-containing medium, and treated with Jasp for 24 h.

Immunoblotting with anti-GFP antibody confirmed the expression of GFP or GFP-YAP(5SA)

(Fig 3A). Immunofluorescence analyses revealed that GFP-YAP(5SA) mostly localized to the

nucleus, even after Jasp treatment (Fig 3B), indicating that YAP(5SA) is resistant to Jasp-

induced cytoplasmic translocation and inactivation. Jasp treatment induced cilium formation

in control GFP-expressing cells, but expression of GFP-YAP(5SA) significantly suppressed

Jasp-induced ciliogenesis (Fig 3B and 3C). These results suggest that YAP inactivation is

involved in Jasp-induced ciliogenesis.

Effects of LATS1/2 knockdown on Jasp-induced YAP phosphorylation

and ciliogenesis

LATS1 and LATS2 are protein kinases that phosphorylate and inactivate YAP [14, 15]. To

examine the role of LATS1/2 in Jasp-induced YAP phosphorylation and ciliogenesis, we ana-

lyzed the effects of LATS1/2 knockdown. The siRNAs targeting LATS1 and LATS2 effectively

n.s., not significant. (D) Jasp promotes YAP phosphorylation. RPE1 cells were cultured at low density in serum-containing medium and

treated with the indicated concentrations of Jasp for 24 h. Cell lysates were subjected to Phos-tag-containing and normal SDS-PAGE

and analyzed by immunoblotting with anti-YAP and anti-β-actin antibodies, respectively.

https://doi.org/10.1371/journal.pone.0183030.g002
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reduced the expression of each target protein in RPE1 cells (Fig 4A). RPE1 cells transfected

with LATS1/2 siRNAs were cultured at low density in serum-containing medium and treated

with Jasp for 24 h; levels of YAP phosphorylation were then analyzed by gel mobility shift

assay using Phos-tag-containing SDS-PAGE. In control siRNA-treated cells, Jasp treatment

caused the gel mobility shift of YAP (Fig 4B, lanes 2 and 3), indicating that Jasp treatment

markedly increases the level of YAP phosphorylation. In cells with single or double knock-

down of LATS1/2, YAP-immunoreactive bands with higher gel mobility (indicated by aster-

isks) were detected (Fig 4B, lanes 4–8), indicating that single or double knockdown of LATS1/

2 slightly suppresses Jasp-induced YAP phosphorylation. In addition, the total level of YAP

seemed to decrease upon Jasp treatment (lanes 3–8, middle panel in Fig 4B), which may reflect

the proteasome-dependent degradation of phosphorylated YAP [35, 36]. We also examined

Fig 3. Overexpression of active YAP suppresses Jasp-induced ciliogenesis. (A) Expression of GFP or

GFP-YAP(5SA) in Jasp-treated RPE1 cells. RPE1 cells transfected with GFP or GFP-YAP(5SA) were cultured

at low density in serum-containing medium and treated with 0.5 μM Jasp for 24 h. Cell lysates were subjected

to SDS-PAGE and analyzed by immunoblotting with anti-GFP and anti-β-actin antibodies. (B) Effect of YAP

(5SA) overexpression on Jasp-induced ciliogenesis. RPE1 cells were transfected with GFP or GFP-YAP(5SA)

and treated with Jasp as in (A), and then fixed and stained with anti-Arl13b antibody (red) and DAPI (blue).

Cells were also imaged by GFP fluorescence (green). Arrowheads indicate primary cilia. Arrow indicates

nuclear localization of GFP-YAP(5SA). Scale bar, 20 μm. (C) Quantification of the percentage of ciliated cells

among GFP-positive cells. Data are means ± SEM from four independent experiments. *P < 0.05.

https://doi.org/10.1371/journal.pone.0183030.g003
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the effects of LATS1/2 knockdown on ciliogenesis by counting the frequency of ciliated cells.

Single or double knockdown of LATS1/2 had no apparent effect on Jasp-induced ciliogenesis

compared with control siRNA treatment (Fig 4C). These results indicate that LATS1/2 are

only partially involved in Jasp-induced YAP phosphorylation and that they are dispensable for

Jasp-induced ciliogenesis. It seems likely that knockdown of LATS1/2 is not sufficient to

increase YAP activity to the level required for inhibiting ciliogenesis. Thus, LATS1/2 appear to

play only a minor role in Jasp-induced YAP inactivation and ciliogenesis.

Fig 4. Effects of LATS1/2 knockdown on Jasp-induced YAP phosphorylation and ciliogenesis. (A) Effects of

LATS1/2 siRNAs on the expression of LATS1 (left) and LATS2 (right). RPE1 cells were transfected with control, LATS1,

or LATS2 siRNAs and cultured for 48 h. Cell lysates were analyzed by immunoblotting with antibodies against LATS1,

LATS2, and β-actin. (B) Effects of LATS1/2 knockdown on Jasp-induced YAP phosphorylation. RPE1 cells were

transfected with control siRNA or LATS1/2 siRNAs, cultured for 24 h at low density in serum-containing medium, and

then further incubated with 0.5 μM Jasp for 24 h. Cell lysates were subjected to Phos-tag-containing or conventional

SDS-PAGE and analyzed by immunoblotting with anti-YAP and anti-β-actin antibodies. In lane 1, lysates were treated

with λ phosphatase. Asterisks indicate the positions of partially dephosphorylated YAP. (C) Effects of LATS1/2

knockdown on Jasp-induced ciliogenesis. RPE1 cells were transfected with control siRNA or LATS1/2 siRNAs, cultured

for 24 h at low density in serum-containing medium, further incubated with 0.5 μM Jasp for 24 h, and then fixed. The

percentage of ciliated cells was counted based on staining for Ac-tubulin and Arl13b. Data are means ±SEM from four

independent experiments. n.s., not significant.

https://doi.org/10.1371/journal.pone.0183030.g004
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We also analyzed the effects of the knockdown of MST1/2 or NDR1/2, other kinase compo-

nents of the Hippo pathway [14, 37–40], on Jasp-induced ciliogenesis. Knockdown of MST1/2

or NDR1/2 had no significant effect on Jasp-induced ciliogenesis (S4 Fig). In contrast, the

knockdown of TTBK2, a protein kinase essential for ciliogenesis [30, 41, 42], strongly sup-

pressed Jasp-induced ciliogenesis (S4 Fig).

Overexpression of Src suppresses Jasp-induced ciliogenesis and

cytoplasmic translocation of YAP

As mentioned above, Jasp treatment caused cell rounding and decreased cell attachment to the

dish. Src is a tyrosine kinase that is activated downstream of integrin-mediated cell adhesion

and inactivated after cell detachment from the substratum [43]. To examine the role of cell

rounding and detachment in Jasp-induced ciliogenesis, we analyzed the effect of Src overex-

pression on Jasp-induced ciliogenesis. RPE1 cells were transfected with (Myc+His)-tagged Src

(WT) or its mutants, cultured at low density in serum-fed medium, and treated with Jasp for

24 h. Immunoblotting with anti-Myc antibody confirmed the expression of Src-(Myc+His) or

its mutants in Jasp-treated RPE1 cells (Fig 5A). Expression of Src(WT) or its constitutively

active mutant, ΔC, significantly suppressed Jasp-induced cilium formation, compared to that

in control mCherry-expressing cells (Fig 5B). In contrast, expression of a kinase-dead (KD)

mutant of Src had no significant effect on Jasp-induced ciliogenesis (Fig 5B). These results sug-

gest that Src kinase activity has an inhibitory role in Jasp-induced ciliogenesis and that Src

inactivation is involved in Jasp-induced ciliogenesis.

We also examined the effect of Src overexpression on Jasp-induced cytoplasmic localization

of YAP. RPE1 cells were transfected with Src(WT) or its mutants, cultured at low density in

serum-containing medium, and treated with Jasp for 24 h. Overexpression of Src(WT) and its

constitutively active ΔC mutant significantly blocked Jasp-induced cytoplasmic localization of

YAP, but expression of the KD form of Src had no significant effect (Fig 5C and 5D). These

results suggest that Src activation blocks Jasp-induced YAP inactivation and that Jasp induces

the cytoplasmic localization and inactivation of YAP through Src inactivation.

Overexpression of LIMK1 suppresses serum starvation-induced

ciliogenesis in adherent cells

Above, we demonstrated that Jasp induces cell rounding and ciliogenesis in RPE1 cells cultured

at low density. However, several studies have shown that actin polymerization suppresses serum

starvation-induced ciliogenesis in adherent cells [9, 10, 44, 45]. To examine whether actin poly-

merization actually suppresses serum starvation-induced ciliogenesis under our experimental

conditions, RPE1 cells were transfected with Myc-tagged LIMK1, a protein kinase that phos-

phorylates and inactivates cofilin and thereby stimulates actin polymerization [27, 32]; cells

were then cultured at medium density in serum-starved medium for 48 h. Expression of LIMK1

(WT) significantly suppressed serum starvation-induced ciliogenesis, but its KD mutant did not

(Fig 6), suggesting that LIMK1-induced actin polymerization indeed suppresses serum starva-

tion-induced ciliogenesis. Similar results were reported with the expression of other cofilin

kinases, LIMK2 and TESK1 [10]. These results are apparently inconsistent with the ciliogenesis-

promoting effect of Jasp in low density-cultured cells (Fig 1). However, unlike Jasp treatment,

overexpression of LIMK1(WT) did not cause cell rounding. Thus, although both Jasp and

LIMK1 induce actin polymerization, they have distinct effects on ciliogenesis, probably due to

their different effects on cell morphology and adhesiveness and actin cytoskeletal organization.
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Fig 5. Overexpression of Src suppresses Jasp-induced ciliogenesis and the cytoplasmic translocation of YAP. (A) Expression of Src-(Myc+His) or

its mutants in Jasp-treated RPE1 cells. RPE1 cells were transfected with (Myc+His)-tagged Src(WT), or its active (ΔC) or kinase-dead (KD) mutant; cultured

at low density in serum-containing medium; treated with 0.5 μM Jasp for 24 h. Cell lysates were subjected to SDS-PAGE and analyzed by immunoblotting with

anti-Myc and anti-β-actin antibodies. (B) Effect of Src overexpression on Jasp-induced ciliogenesis. RPE1 cells were transfected with (Myc+His)-tagged Src

or its mutants or control mCherry, cultured, and treated with Jasp, as in (A), and then fixed. The percentage of ciliated cells was counted based on staining for

Ac-tubulin and Arl13b. (C) Effect of Src overexpression on Jasp-induced cytoplasmic translocation of YAP. RPE1 cells were transfected, cultured, treated with

Jasp, and then fixed, as in (B). Cells were stained with anti-Myc (red) and anti-YAP (green) antibodies. In the first and second rows, cells were imaged by

mCherry fluorescence (red). DNA was stained with DAPI (blue). DIC images are shown in the right panels. Arrows indicate the mCherry- or Myc-positive cells.

Scale bar, 20 μm. (D) Quantification of the effect of Src overexpression on the localization of YAP. The percentage of cells with nuclear localization of YAP

was analyzed, as in Fig 2C. In (B) and (D), data are means ± SEM from three independent experiments. *P < 0.05; n.s., not significant.

https://doi.org/10.1371/journal.pone.0183030.g005
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EDTA-induced cell rounding does not induce ciliogenesis

As described above, we showed that Jasp-induced ciliogenesis is associated with cell round-

ing and YAP inactivation. To examine whether cell rounding and subsequent YAP inactiva-

tion are sufficient for ciliogenesis, we analyzed whether EDTA-mediated cell rounding

would induce ciliogenesis in RPE1 cells. Treatment with EDTA caused cell rounding and

detachment (DIC images in S5A Fig). Immunostaining of YAP revealed that similar to Jasp

treatment, EDTA treatment caused cytoplasmic localization of YAP (S5A and S5B Fig).

However, in contrast to Jasp treatment, EDTA treatment did not induce ciliogenesis (S5A

and S5C Fig). These results suggest that cell rounding and YAP inactivation are not suffi-

cient for triggering ciliogenesis.

Discussion

In this study, we showed that treatment with Jasp (at 0.5 μM) induces ciliogenesis in RPE1 cells

cultured at low density and in serum-containing medium. Under these conditions, Jasp also

induced a change in cell morphology from a flat and adherent shape to a round and weakly

adherent one, the phosphorylation and cytoplasmic translocation of YAP, and cell quiescence.

In contrast, in RPE1 cells cultured at medium or high density, treatment with 0.5 μM Jasp had

no apparent effect on cell shape, YAP localization, or the frequency of ciliated cells. Cell round-

ing and reduced cell adhesion correlated well with YAP inactivation and ciliogenesis, suggesting

Fig 6. Overexpression of LIMK1 suppresses serum starvation-induced ciliogenesis in adherent cells. (A) Effect of

LIMK1 overexpression on serum starvation-induced ciliogenesis. RPE1 cells were transfected with GFP or Myc-tagged wild-

type (WT) or kinase-dead (KD) LIMK1, cultured at medium density in serum-fed medium, and then subjected to serum

starvation for 48 h. Cells were fixed and stained with anti-Ac-tubulin (red) and anti-Myc (green) antibodies and DAPI (blue).

Cells were also imaged by GFP fluorescence (green). Actin filaments were stained with Alexa-633-phalloidin (right panels).

Arrows indicate primary cilia. Scale bar, 20 μm. (B) Quantification of the frequency of ciliated cells. The percentage of ciliated

cells was counted among GFP- or Myc-positive cells, based on staining for Ac-tubulin. Data are means ± SEM from three

independent experiments. *P < 0.05.

https://doi.org/10.1371/journal.pone.0183030.g006
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that these changes in cell morphology and adhesiveness play a crucial role in Jasp-induced YAP

inactivation and ciliogenesis. Overexpression of active Src markedly suppressed the Jasp-

induced cytoplasmic translocation of YAP and ciliogenesis, further supporting the crucial role

of the decline in cell–substrate adhesion in Jasp-induced YAP inactivation and ciliogenesis.

Moreover, the overexpression of active YAP significantly suppressed Jasp-induced ciliogenesis,

indicating the pivotal role of YAP inactivation in Jasp-induced ciliogenesis. YAP inactivation

likely promotes ciliogenesis by suppressing cell proliferation and the transcription of the mitotic

kinases, Plk1 and aurora-A, which are known to inhibit ciliogenesis [10, 46, 47]. Taken together,

these results suggest that Jasp induces ciliogenesis in low density-cultured cells primarily

through pathways involving cell rounding, the inhibition of Src activity, the cytoplasmic locali-

zation and inactivation of YAP, and cell quiescence (Fig 7).

To examine whether cell rounding is sufficient for ciliogenesis, we analyzed the effect of

EDTA-mediated cell rounding on ciliogenesis. Treatment with EDTA caused cell rounding

and cytoplasmic translocation of YAP, but did not induce ciliogenesis, which suggests that cell

rounding and subsequent YAP inactivation are not sufficient for triggering ciliogenesis. A pre-

vious study showed that ciliogenesis requires not only YAP inactivation but also other mecha-

nisms such as stimulation of vesicular transport to the ciliary base [10]. Thus, it is likely that

Jasp treatment induces ciliogenesis by stimulating any unknown mechanisms that are required

for ciliogenesis but are not induced by EDTA treatment, in addition to stimulating the path-

way of cell rounding and YAP inactivation (Fig 7). Alternatively, it is also possible to consider

that EDTA treatment may inhibit any mechanisms required for ciliogenesis.

Previous studies showed that treatments that induce actin assembly, such as knockdown of

cofilin or gelsolin, suppress primary cilium formation [7, 9, 10]. We also showed that the over-

expression of LIMK1 suppresses serum starvation-induced ciliogenesis. Several mechanisms

by which actin assembly may inhibit ciliogenesis have been proposed, including the inhibition

of vesicle transport required for cilium formation by branched actin networks [9–11, 44, 45]

and the blocking of centrosome migration to the plasma membrane by stress fibers [48–50].

Actin fibers also reduce cilium length by recruiting histone deacetylase-6 to cilia, which leads

to axoneme destabilization and represses cilium formation [51]. In addition, actin assembly

and actomyosin-based mechanical tension appear to inhibit ciliogenesis indirectly by promot-

ing YAP activation and cell proliferation, although the mechanisms by which cytoskeletal and

mechanical signals regulate YAP activity are largely unknown [10, 16–25]. In contrast to these

observations, we showed that treatment with Jasp leads to YAP inactivation and ciliogenesis,

even though it promotes actin polymerization. Considering that Jasp induces ciliogenesis in

cells cultured at low density but not at medium or high density and that the cell-rounding phe-

notype correlates well with ciliogenesis, it seems likely that Jasp induces ciliogenesis primarily

through changes in cell morphology and adhesiveness. In addition, Jasp induces the accumula-

tion of disorganized F-actin aggregates [33, 52, 53], whereas the knockdown of cofilin or gelso-

lin or overexpression of LIMK1 induces organized F-actin structures, such as stress fibers and

branched F-actin networks. Such differences in actin cytoskeletal organization may also

explain why Jasp-induced F-actin assembly has no inhibitory effect on ciliogenesis. Since the

integrity of actin cytoskeleton is required for the nuclear localization of YAP [25], disruption

of the actin cytoskeletal integrity may play a role in Jasp-induced cytoplasmic localization of

YAP and ciliogenesis.

We showed that Jasp treatment induces cytoplasmic localization of YAP in RPE1 cells cul-

tured at low density. In contrast, a recent study reported that intraperitoneal injection of the

high concentration of Jasp causes nuclear translocation and activation of YAP in high-density

cells in zebrafish blastema [34]. It remains unclear how Jasp induces distinct effects on YAP

localization in these cells. The high concentration of Jasp causes cell rounding in 2D-cultured
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RPE1 cells even at high density, but does not cause such cell shape changes under in vivo 3D

conditions. These differences in cell morphology may explain the distinct effects of Jasp on

YAP localization in 2D-cultured RPE1 cells and in zebrafish blastema cells in in vivo 3D

systems.

Cell adhesion to the substrate plays an important role in cell survival and proliferation. Cell

attachment promotes YAP activation and cell proliferation, whereas cell detachment inhibits

them [19, 54]. Since Jasp treatment weakens cell attachment, it is likely that cell detachment-

induced YAP inactivation is involved in Jasp-induced ciliogenesis. It has been shown that cell

detachment leads to the phosphorylation and cytoplasmic localization of YAP through the

activation of LATS1/2 [54]. However, in our experimental system, knockdown of LATS1/2

Fig 7. A model for Jasp-induced ciliogenesis. (A) Illustration of Jasp-induced changes in cell morphology

and adhesiveness. (Left) When cells are cultured at low density in serum-containing medium, cells tightly

adhere to the dish, actin filaments assemble into stress fibers, and YAP predominantly localizes to the

nucleus. (Right) Upon Jasp treatment, cells become round and weakly adhere to the dish, actin filaments

further assemble into disorganized structures, YAP translocates to the cytoplasm, and the primary cilium is

formed. (B) A proposed signaling pathway of Jasp-induced ciliogenesis. Jasp-induced cell rounding and

reduced adhesion cause YAP inactivation through the inactivation of Src and the activation of LATS1/2 and

other unidentified protein kinases. YAP inactivation leads to cell quiescence and thereby causes ciliogenesis.

As EDTA-induced cell rounding and YAP inactivation do not cause ciliogenesis, other pathway(s)

independent of YAP inactivation seem to play a role in Jasp-induced ciliogenesis.

https://doi.org/10.1371/journal.pone.0183030.g007
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only slightly suppressed Jasp-induced YAP phosphorylation and had no apparent effect on

Jasp-induced ciliogenesis, indicating that LATS1/2 only slightly, if at all, contribute to Jasp-

induced phosphorylation and inactivation of YAP and subsequent ciliogenesis. Similarly, pre-

vious studies also showed that LATS1/2 are dispensable for serum-starvation- or actin-disas-

sembly-induced YAP phosphorylation and ciliogenesis [10, 17, 20, 23, 39]. These results

suggest that other protein kinase(s) are crucially involved in Jasp- and actin-disassembly-

induced YAP phosphorylation and inactivation. Identification of the responsible kinase(s) is

important for understanding the mechanism of Jasp- and actin-disassembly-induced YAP

phosphorylation/inactivation and ciliogenesis.

Src tyrosine kinase is activated downstream of integrin signaling at cell–substrate adhesion

sites [43]. We showed that overexpression of active Src suppresses Jasp-induced cytoplasmic

translocation of YAP and ciliogenesis, suggesting that a decrease in Src kinase activity is

involved in Jasp-induced YAP inactivation and ciliogenesis. A previous study showed that the

inactivation of Src promotes ciliogenesis by inhibiting cortactin-mediated actin polymeriza-

tion [44]. However, it is unlikely that the inhibition of cortactin-mediated actin polymerization

is involved in Jasp-induced ciliogenesis, as actin is highly polymerized in Jasp-treated cells. It

was also reported that the inhibition of Src promotes the cytoplasmic localization of YAP by

promoting LATS1/2 activity [55]. However, LATS1/2 play only minor roles in Jasp-induced

YAP inactivation in our experimental system. More recently, Src was shown to directly phos-

phorylate YAP and thereby stimulate its nuclear localization and activation, which suggests

that Src inactivation leads to YAP dephosphorylation [56]. However, Jasp treatment led to

increased levels of YAP phosphorylation. Therefore, the mechanism by which Src inactivation

is involved in Jasp-induced YAP inactivation and ciliogenesis remains unclear. Further studies

are required to understand the molecular mechanisms by which Jasp-induced cell rounding

and Src inactivation lead to YAP inactivation and ciliogenesis.

Collectively, we showed that Jasp treatment induces ciliogenesis in cells cultured at low den-

sity. We obtained evidence that Jasp induces ciliogenesis via a pathway consisting of cell

rounding, Src inactivation, YAP cytoplasmic localization and inactivation, and cell quiescence.

Our data suggest that Jasp-induced actin assembly is not involved in ciliogenesis and that

changes in cell shape and adhesiveness are more critical in contributing to the regulation of

YAP activity and ciliogenesis. Further studies are required to understand the precise mecha-

nisms by which cell shape and adhesiveness regulate YAP activity and ciliogenesis.

Supporting information

S1 Fig. Effect of Jasp treatment on actin polymerization. (A) F-actin sedimentation assays.

RPE1 cells were plated at low density in serum-containing medium and treated with the indi-

cated concentrations of Jasp for 12 h. Cell lysates were ultracentrifuged, and the amounts of

actin recovered in the supernatant (S) and pellet (P) were analyzed by immunoblotting with

anti-β-actin antibody. (B) Quantification of the ratio of F-actin (P) to total actin (S+P). Data

are means ± SEM from three independent experiments. �P< 0.05.

(TIF)

S2 Fig. Effect of Jasp treatment on YAP localization in RPE1 cells at high density. (A)

Dose-dependent effect of Jasp on YAP localization in RPE1 cells at high density. RPE1 cells

were cultured at high density in serum-containing medium, treated with the indicated concen-

trations of Jasp for 24 h, and then fixed and stained with anti-YAP antibody (green). DNA was

stained with DAPI (blue). DIC images are shown in the right panels. Scale bar, 20 μm. (B)

Quantification of the effects of Jasp treatment on YAP localization. The percentage of cells

with YAP localization in the nucleus was counted as in Fig 2C. Data are means ± SEM from
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three independent experiments. n.s., not significant.

(TIF)

S3 Fig. Effect of Jasp treatment on ciliogenesis in RPE1 cells at high density. (A) Dose-

dependent effect of Jasp on ciliogenesis in RPE1 cells at high density. RPE1 cells were cultured

at high density in serum-containing medium, treated with the indicated concentrations of Jasp

for 24 h, and then fixed. Cells were stained with anti-Ac-tubulin (red) and anti-Arl13b (green)

antibodies. DNA was stained with DAPI (blue). DIC images are shown in the right panels.

Arrows indicate primary cilia. Scale bar, 20 μm. (B) Quantification of the frequency of ciliated

cells. The percentage of ciliated cells was counted based on staining for Ac-tubulin and Arl13b,

as shown in (A). Data are means ± SEM from three independent experiments. n.s., not signifi-

cant.

(TIF)

S4 Fig. Effects of knockdown of MST1/2, NDR1/2, or TTBK2 on Jasp-induced ciliogenesis.

RPE1 cells were transfected with control siRNA or siRNAs targeting MST1, MST2, NDR1,

NDR2, or TTBK2, as indicated; cultured at low density in serum-containing medium for 24 h;

and then treated with 0.5 μM Jasp for 24 h. The percentage of ciliated cells was counted based

on staining for Ac-tubulin and Arl13b. Data are means ± SEM from three independent experi-

ments. �P< 0.05; n.s., not significant.

(TIF)

S5 Fig. Effects of EDTA treatment on cell shape, YAP localization, and ciliogenesis. (A)

EDTA treatment induces cell rounding and YAP translocation to the cytoplasm. RPE1 cells

were cultured at low density; treated with 6 mM EDTA for 24 h; fixed and stained with anti-

Arl13b (red) and anti-YAP (green) antibodies. DNA was stained with DAPI. DIC images are

shown in the right panels. Scale bars, 20 μm. (B) Quantification of the effect of EDTA treat-

ment on YAP localization. The percentage of cells with YAP localization in the nucleus was

counted as in Fig 2C. (C) Quantification of the effect of EDTA treatment on ciliogenesis. The

percentage of ciliated cells was counted based on staining of Arl13b, as shown in (A). In (B)

and (C), data are means ± SEM from three independent experiments. n.s., not significant.

(TIF)
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