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Abstract

Global interest on plant-microbe-insect interactions is rapidly growing, revealing the multiple

ways in which microorganisms mediate plant-herbivore interactions. Phytopathogens regu-

larly alter whole repertoires of plant phenotypic traits, and bring about shifts in key chemical

or morphological characteristics of plant hosts. Pathogens can also cause cascading effects

on higher trophic levels, and eventually shape entire plant-associated arthropod communi-

ties. We tested the hypothesis that a Candidatus Phytoplasma causing cassava witches’

broom (CWB) on cassava (Manihot esculenta Grantz) is altering species composition of inva-

sive herbivores and their associated parasitic hymenopterans. We conducted observational

studies in cassava fields in eastern Cambodia to assess the effect of CWB infection on abun-

dance of specialist and generalist mealybugs (Homoptera: Pseudococcidae), and associated

primary and hyper-parasitoid species. CWB infection positively affects overall mealybug

abundance and species richness at a plant- and field-level, and disproportionately favors a

generalist mealybug over a specialist feeder. CWB phytoplasma infection led to increased

parasitoid richness and diversity, with richness of ‘comparative’ specialist taxa being the

most significantly affected. Parasitism rate did not differ among infected and uninfected

plants, and mealybug host suppression was not impacted. CWB phytoplasma modifies host

plant quality for sap-feeding homopterans, differentially affects success rates of two invasive

species, and generates niche opportunities for higher trophic orders. By doing so, a Candida-

tus phytoplasma affects broader food web structure and functioning, and assumes the role of

an ecosystem engineer. Our work unveils key facets of phytoplasma ecology, and sheds

light upon complex multi-trophic interactions mediated by an emerging phytopathogen.

These findings have further implications for invasion ecology and management.

Introduction

In their natural environment, plants face concurrent and successive exposure to a variety of

attackers, including insect herbivores, viruses, bacteria and fungi [1]. While single plant-
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antagonist combinations have been fairly well described, the dynamics of plant-herbivore

interactions under multiple attack have only recently caught scientists’ attention [2,3]. Never-

theless, these plant-microbe-insect (PMI) interactions can have far-reaching impacts at multi-

ple levels of biological organization, and may shape the composition and function of entire

trophic communities [4]. Pathogen-mediated interactions should therefore preferably be

assessed within the community context and examined through the lens of multi-trophic ecol-

ogy [3,5,6].

Co-occurring antagonists can differentially affect defense signaling pathways and subse-

quently shape a plant’s volatile emissions or modify colonization and foraging patterns by plant-

associated arthropods [2,7,8]. In addition to affecting herbivores, systemically-induced plant

defenses and semiochemical release can also have major implications for higher trophic levels

[9]. Furthermore, plant-microbe-insect interactions can affect the overall plant phenotype and

alter the chemical, morphological and physiological traits of plants [10,11]. Pathogen-infected

plants can also have vastly different color, architecture or micro-climate conditions [12], any of

which could affect plant-herbivore interactions. Herbivore morphology, life history, fitness, and

behavior can be impacted by plant quality, with cascading effects on natural enemies such as par-

asitoids and predators [13,14,15,16], thus affecting the composition, structure, and function of

entire arthropod communities [3]. Lastly, pathogen-mediated effects tend to be highly species-

specific and context-dependent, and can vary greatly among herbivores within the same feeding

guild or family [17].

Although a rapidly growing body of literature covers the many intricate ways in which viral

pathogens modulate host-vector interactions, the effect of other classes of plant pathogens is

less well studied [18,19]. Examples from certain pathosystems show that bacterial and fungal

pathogens often have subtle indirect impacts on herbivores and higher trophic levels. For

example, mildew-infected plants are less attractive to the braconid parasitoid Cotesia glomer-
ata, and pierid caterpillars on those plants have lower levels of parasitisation [20]. Also, citrus

trees infected by the bacterium, Candidatus Liberibacter asiaticus have altered volatile blends

and plant nutrient profiles that subsequently modify host choice, mate selection and move-

ment patterns of the psyllid vector Diaphorina citri [21,22]. At present, it is widely accepted

that phytopathogenic fungi or bacteria modulate populations of their vectors as much as non-

vector herbivores, but the effect at higher trophic levels is yet to be fully understood [6].

One group of vector-borne bacterial pathogens that has received virtually no attention from

a community ecology perspective are Candidatus Phytoplasma spp. [3]. Phytoplasma are

phloem-limited bacteria that modify plant hormone balance and cause dramatic alterations in

plant morphology, including extensive leaf proliferation, and creation of pseudo-flowers or

witches’ broom symptoms [23]. These distinct plant morphologies may create niche opportu-

nities for plant-associated species, alter the foraging success of natural enemies, or create

enemy-free space for herbivores [24]. Considered ‘expert manipulators’ of sieve elements, phy-

toplasma cause marked shifts in hormone balances, energy flows and phloem content [25,26],

and could thus affect the nutritional ecology of phloem-feeders such as aphids, scales or mealy-

bugs [27]. Despite the association of phytoplasma with several economically-important dis-

eases, these pathosystems have remained critically under-researched [28]. One particular

knowledge gap concerns the extent to which individual herbivore species or arthropod com-

munities are influenced by phytoplasma-mediated alterations in plant phenotype [23,29].

Much of the past work on cross-kingdom interactions has not deliberately focused on non-

native versus endemic organisms, or contrasted the response of antagonists of varying levels of

dietary specialization. Nevertheless, non-native phytopathogens can have dramatic effects on

food webs, and can facilitate the spread of invading arthropods [30,31]. Also, pathogen-medi-

ated changes in host plant quality can differentially affect development and performance of
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specialist and generalist herbivores. Through the ‘tri-trophic interactions hypothesis’ (TTI),

specialists are predicted to be more dominant than generalists and experience higher evolu-

tionary success on low-quality plants, with plant quality and palatability greatly increased by

pathogen co-infection [32]. To our knowledge, no research has been conducted on the extent

to which a specific phytopathogen shapes relative success ratios of invasive herbivores of differ-

ing dietary specialization, and their associated trophic communities.

We tested the TTI hypothesis through observational studies in a tropical agro-ecosystem,

using the unique case of a semi-perennial host plant that is concurrently attacked by a non-

native systemic plant pathogen and two non-native phloem-feeders. More specifically, we

assessed performance of two invasive mealybugs in cassava (Manihot esculenta); a tropical root

crop extensively grown by smallholder farmers throughout Southeast Asia. In recent years, a

number of non-native mealybug (Hemiptera: Pseudococcidae) species have colonized Asia’s

cassava fields [33], including the specialist Phenacoccus manihoti Matile-Ferrero, a Neotropical

parthenogenetic herbivore (9 recorded host species); and the generalist Paracoccus marginatus
Williams & Granara de Willink, a Nearctic sexual herbivore (133 host genera). Invasion his-

tory is fairly similar for both species, with respective colonization of Asian cassava presumably

initiated around 2008 and 2010 [34]. Biological control of both species has been attempted,

with the encyrtids Anagyrus lopeziDe Santis (for P.manihoti, released in 2009), and Aceropha-
gus papayae Noyes & Schauff released against P.manihoti (2009) and P.marginatus (2010)

respectively. Furthermore, cassava fields have been invaded by cassava witches broom (CWB)

disease, an emerging pathogen associated with multiple strains of Candidatus Phytoplasma

[33,35]. CWB-affected plants exhibit distinctive leaf discoloration, extensive proliferation of

leaves and stems, and stunted growth.

We assessed the effect of CWB-infection on the abundance and diversity of mealybugs and

their associated parasitoid communities. We focused on 3 research questions: (1) Does CWB

infection affect the relative abundance of specialist versus generalist herbivores within the

same feeding guild and insect family? (2) Does CWB phytoplasma infection alter the abun-

dance and composition of parasitoid and hyperparasitoid assemblages, this affecting mealybug

biological control? (3) Does phytoplasma infection create new habitat and species-specific

niche opportunities for invasive species? We reveal how phytoplasma infection is shaping

entire host x parasitoid communities in cassava fields, add understanding of phytoplasma-

mediated ecological processes, and inform management interventions that benefit insect bio-

logical control in a different context.

Materials and methods

We surveyed farmer-managed cassava fields located in Kracheh province (eastern Cambodia)

over the course of two months (January-February) during the 2016 dry season. Selection of

fields was done in close collaboration with officials from the Kracheh Provincial Department

of Agriculture (PDA), Ministry of Agriculture, Forestry and Fisheries (MAFF) of the Royal

Government of Cambodia, and with consent from individual farmers. Observational studies

were done in two fields in each of four sites, based on local availability of fields with differing

levels of infection by cassava witches’ broom disease (CWB). Geographical coordinates (Lat/

Long) of the districts and villages where fields were selected as follows: Chetborey, Chang-

chrong (12.58275˚, 106.07681˚), Chetborey, Sambuk (12.64369˚, 106.06290˚), Prakprosab,

Bang Liegh (12.35089˚, 105.98528˚), Snoul (12.02920˚, 106.40232˚). Within each site, we

selected one field with high (>20%) and one field with low (0–5%) incidence of CWB, as deter-

mined by assessing the presence of plants with typical symptoms of CWB infection (i.e., stunt-

ing, leaf yellowing, leaf and petiole proliferation). Incidence rates refer to the percentage plants
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within a given field with above disease symptoms, and incidence categories (i.e., high, low)

were defined based upon prevailing CWB infection rates in Kracheh province. Those symp-

toms are typical for infestation by CWB phytoplasma and cannot be ascribed to any other dis-

ease, infection or herbivore attack [33]. Though phytoplasma regularly exhibit an uneven

distribution in infected plant tissue [36], CWB phytoplasma was positively detected through

PCR from 70–100% of symptomatic tissue collected from Laos and Vietnam [33]. Sites were at

least 7 km apart, with individual field plots located at minimum 2 km from each other. Fields

measured 1 to 4 ha in size, close to maturity (8–9 months old), planted with a locally common

variety and exclusively managed by growers using the same practices.

Within each field, we first assessed local incidence and plant-level population pressure of

different mealybug species using an established transect-based monitoring protocol [33]. In

brief, we recorded mealybug population levels and CWB-infection status on a total of 50 plants

in each field, positioned along five transects randomly distributed throughout the field. In

addition to field-level monitoring, we randomly sampled four mealybug-infested plants with-

out CWB symptoms from each field, and an additional four mealybug-infested CWB-symp-

tomatic plants from plots with high CWB incidence (N = 64; total number of samples). To

investigate whether CWB infection altered mealybug and parasitoid populations at a field

level, we opted to contrast herbivore and parasitoid populations between symptomatic and

asymptomatic plants only in setting with high CWB incidence. We thus obtained mealybug-

infested plant samples in three categories, based upon field- or plant-level infection with CWB:

CWB_NN (asymptomatic plants in ‘CWB-free’ plots), CWB_YN (asymptomatic plants, in

CWB-affected plots) and CWB_YY (symptomatic plants, in CWB-affected plots). Plants were

chosen based upon the presence of mealybugs on leaves and stems or on deformed leaves (so-

called bunchy tops). We sampled each plant by cutting the apical part at 18 cm from the

growth tip, and placing into a 27 x 32 x 13cm paper bag. Bags were subsequently sealed, placed

in a cooler box and transported to a field laboratory for further processing. All field collections

were conducted between 8:30 and 10:00 am.

Upon arrival in the laboratory, we carefully removed plants from the bags, and counted and

identified all mealybug individuals. Other arthropods occurring on the plant (e.g., spiders,

lacewings, ladybeetles) were initially identified based on morpho-type, and then stored in 95%

ethanol for further identification. Cassava plant tips were then transferred individually to 20 x

14 x 14 cm transparent polyvinyl chloride (PVC) containers, and closed with fine cotton fabric

mesh to prevent escape of arthropods. We checked containers daily for emergence of parasit-

oids or hyperparasitoids over a period of 14 days, Emerging insects were removed from con-

tainers using an aspirator, photographed, identified to morpho-type and stored in ethanol for

subsequent species-level identification. Primary parasitoids are generally attacked by hyper-

parasitoids or mummy parasitoids, but no distinction was made between both guilds. As our

experimental protocol did not allow distinguishing the exact herbivore or (primary) parasitoid

host of particular hyperparasitoids, we used the parasitoid / host ratio as proxy for parasitism

rates. Host range and ecological role of each of the different parasitoid species was queried in

the Universal Chalcidoidea Database [37] and Taxapad [38]. These databases were equally

used to indicate whether particular species either acted as primary parasitoids, hyperparasi-

toids (or both). Data were used to calculate a Simpsons’ Index for each plant sample, as a mea-

sure of parasitoid species richness and diversity. Differences in parasitoid assemblages for each

sample were characterized by non-metric multidimensional scaling (NMDS) ordination using

metaMDS in the R package Vegan [39], and the resulting ordination plot was visualized using

the R package ggplot2 [40]. A Bray-Curtis dissimilarity matrix was calculated using vegdist in

package Vegan, and permutational multivariate analysis of variance using distance matrices

(PERMANOVA) analysis was performed using Adonis in the R package Vegan. In the model,
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the influence of plant-level CWB infection status, i.e. CWB_NN (asymptomatic plants in

CWB-free plots), CWB_YN (asymptomatic plants, in CWB-affected plots) and CWB_YY

(symptomatic plants, in CWB-affected plots), on the dissimilarity matrix was calculated, in

order to identify significant differences in parasitoid assemblage abundances between different

plant-level CWB infection statuses. Furthermore betadisper in the R package Vegan was used

to test homogeneity of variance assumption of the PERMANOVA procedure.

In all analyses, we considered three different CWB infection statuses: CWB_NN (asymp-

tomatic plants in CWB-free plots), CWB_YN (asymptomatic plants in CWB-affected plots),

and CWB_YY (symptomatic plants in CWB-affected plots). We tested the effect of plant-level

and field-level CWB infection on the relative abundance and sex ratio of both herbivores and

parasitoids using multivariate analysis of variance (MANOVA). We employed non-parametric

tests (e.g., Kruskal-Wallis) since data were not normal. Parasitism rates, parasitoid richness,

and diversity were also compared between different sites. Data were tested for normality and

homoscedasticity, and subsequently square root-transformed. Statistical analyses were per-

formed using SPSS [41].

Results

Herbivore abundance and species composition

Over the course of the experiment, a total of 3,785 mealybugs were recorded on cassava plants.

The mealybug community was primarily composed of P.manihoti (54.2%) and P.marginatus
(34.8%), while P. jackbeardsleyi represented 8.9% and Ferrisia virgata 2.0% of the total species

complex (Table 1; S1 Table). Overall mealybug abundance varied greatly between research sites

and fields (Fig 1). The specialist P.manihoti was the most abundant species on CWB-asymptom-

atic plants (CWB_NN and CWB_YN), while abundance of the generalist mealybug Pa. margina-
tuswas significantly higher compared to the other taxa on CWB-symptomatic plants (Fig 1).

Total mealybug abundance was significantly affected by site (ANOVA, F3,36 = 3.748, p = 0.001),

and marginally significant for a site x CWB infection status interaction (F6,36 = 2.155, p = 0.071).

For P.manihoti, significant effects were recorded for site (F3,16 = 5.127, p = 0.011) and CWB

infection status (F2,16 = 6.932, p = 0.007). For Pa. marginatus, significant effects were noted for

CWB infection status (F2,16 = 6.113, p = 0.011), and a site x CWB infection status interaction

(F2,16 = 4.701, p = 0.025).

CWB-infection status significantly increased mealybug richness (Kruskal Wallis, Χ = 6.172,

p = 0.046), as well as mealybug diversity (Χ = 7.926, p = 0.019). On infected plants within

CWB-affected plots, mealybug diversity was three times higher than in un-affected plants in

disease-free fields (i.e., species diversity 0.09 ± 0.16 vs. 0.28 ± 0.26).

Parasitoid and hyperparasitoid communities

A total of 888 parasitoids and hyperparasitoids were reared from field-collected mealybugs

(Table 1). The parasitoid community was composed of 11 different (morpho-)species, with A.

lopezi, A. papayae and Prochiloneurus sp. representing 46.4%, 13.4% and 12.5% respectively of

the entire community. Overall parasitoid abundance was significantly affected by research site

(F3,29 = 3.962, p = 0.018), and by a site x CWB infestation status interaction (F6,29 = 2.533,

p = 0.043) (Table 2). For abundance of comparative specialists, marginally significant effects

were noted for site (F3,25 = 2.781, p = 0.062), and a site x infection status interaction (F6,25 =

2.956, p = 0.025). Hyper-parasitoid abundance was not significantly affected by site or CWB

infection status. For A. lopezi, (marginally) significant effects on abundance were noted for site

(F3,19 = 3.963, p = 0.024), CWB infection status (F2,19 = 2.268, p = 0.131) and a site x infection

status interaction (F4,19 = 4.534, p = 0.010); for A. papayae, CWB infection status significantly
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affected parasitoid abundance (F2,6 = 7.695, p = 0.022); while for Prochiloneurus sp. and Pseu-
doleptomastix sp. no significant effects of site nor CWB infection status were detected.

Field- and plant-level pathogen-infection significantly affected richness of specialist parasit-

oids (Kruskal Wallis Χ = 6.98, p = 0.03), and had marginally significant effects on total parasit-

oid richness and diversity (Fig 2). Significantly distinct parasitoid complexes (PERMANOVA,

F (2, 45) = 2.34, p = 0.02), differentiated by plant-level CWB infection status were observed

through NMDS (Fig 3).

Parasitism rate, and diversity x function relationship

Parasitism rates varied greatly according to field, site and CWB-infection. Total parasitism did

not vary significantly depending sites or CWB-infection status. For A. lopezi parasitism levels,

no differences were found between sites or CWB infection contexts, but A. papayae parasitism

was significantly affected by site (F3,14 = 5.119, p = 0.013), CWB infection (F2,14 = 6.317,

p = 0.011) and a site x infection status interaction (F1,14 = 9.353, p = 0.009). Relative abundance

of A. lopezi significantly increased in P.manihoti-dominated mealybug colonies (F1,35 = 7.423,

p< 0.001; Fig 4), while relative abundance of A. papayae was significantly lower in P.manihoti
colonies (F1,35 = 6.398, p = 0.016). CWB-infection status had a marginally-significant effect on

A. lopezi sex ratio (F2,26 = 2.613, p = 0.092), with more male-biased sex ratios on CWB-infected

plants.

Total parasitism rates were consistently higher in settings with species-rich parasitoid com-

munities, but species-rich parasitoid communities did not result in lower mealybug abundance

Table 1. Principal herbivore, parasitoid and hyperparasitoid species recorded during early 2015 from mealybug-infected cassava plants in Kra-

cheh province, eastern Cambodia.

Feeding guild Family / species Host range (n)a Main hosts Hyper-

parasitoid

Herbivore

Homoptera, Pseudococcidae

1. Phenacoccus manihoti 9 Cassava -b

2. Paracoccus marginatus 133 papaya, cassava, mulberry -

3. Pseudococcus jackbeardsleyi 98 mango, banana, cacao, tea, cassava -

Primary parasitoid / hyper- or mummy parasitoid

Hymenoptera, Encyrtidae

1. Anagyrus lopezi 4 P. manihoti No

2. Acerophagus papayae 1 P. marginatus No

3. Prochiloneurus pulchellus 30 P. marginatus, P. manihoti Yes

4. Anagyrus sp. 4 P. marginatus No

5. Pseudoleptomastix sp. 1 P. marginatus No

6. Aenasius advena 14 P. jackbeardsleyi, P. manihoti, Ferrisia virgate No

Hymenoptera, Eriaporidae

7. Promuscidae unfasciativentris 18 F. virgata Yes

Hymenoptera, Aphelinidae

8. Marietta leopardina - - Yes

For each of the different trophic groups and insect families, primary species are listed and baseline information is provided on their associated host plants,

mealybug hosts, and eventual status as hyperparasitoid (or mummy parasitoid).
a Host range data cover plant hosts for herbivores and mealybug hosts for primary parasitoids, as distilled from Ben-Dov et al. (2016), Noyes (2016) and Yu

et al. (2012). Primary host records were also obtained from the above sources.
b Not applicable

https://doi.org/10.1371/journal.pone.0182766.t001
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(Figs 5 and 6). Highly significant regression patterns were recorded for total parasitoid or spe-

cialist parasitoid species richness and parasitism rate were observed (F1,44 = 15.304, p<0.001;

F1,44 = 17.143, p<0.001). No interaction effects were recorded for CWB-infection status for

either total parasitoid or specialist parasitoid richness (ANCOVA, interaction effect: F7,32 =

Fig 1. Plant-level abundance of the three dominant invasive mealybug species, under contexts of different plant- and field-level infection

with cassava witches’ broom (CWB) disease. Abundance ratios are presented for CWB_NN (uninfected plants, in CWB-free plots), CWB_YN

(uninfected plants, in CWB-affected plots), CWB_YY (infected plants, in CWB-affected plots). Asterisks in the graph indicate statistically significant

differences (ANOVA, Tukey HSD posthoc, α = 0.05).

https://doi.org/10.1371/journal.pone.0182766.g001

Table 2. Aggregate and species-specific abundance measures (average ± SD) for the most abundant parasitoid and hyperparasitoid species, as

reared from mealybug-infested plants.

Abundance measure Pathogen infection status Test statistic

CWB_NN CWB_YN CWB_YY

Total parasitoid abundance 19.43 ± 35.10a 13.75 ± 16.31a 22.31 ± 37.62a F2,38 = 0.59, p = 0.56

Specialist abundance 13.81 ± 22.41a 10.62 ± 12.74a 14.68 ± 25.29a F2,34 = 0.01, p = 0.99

Hyper-parasitoid abundance 4.37 ± 11.80a 1.93 ± 2.59a 2.62 ± 6.88a F2,18 = 1.16, p = 0.33

A. lopezi 13.31 ± 22.60a 9.93 ± 12.25a 2.50 ± 5.38a F2,26 = 1.11, p = 0.34

A. papayae 0.12 ± 0.50a 0.19 ± 0.40a 7.12 ± 18.29b F2,6 = 7.69, p = 0.02

Prochiloneurus pulchellus 2.87 ± 6.24a 1.62 ± 2.22a 2.43 ± 6.18a F2,17 = 2.18, p = 0.14

Pseudoleptomastix sp. 0.12 ± 0.50a 0.37 ±± 0.88a 4.69 ± 7.92a F2,11 = 1.81, p = 0.21

Parasitoid abundance levels are listed for CWB_NN (asymptomatic plants, in CWB-free plots), CWB_YN (asymptomatic plants, in CWB-affected plots),

CWB_YY (symptomatic plants, in CWB-affected plots). Values within the same row followed by identical letters are not statistically significant (ANOVA,

honest significant difference Tukey posthoc, α = 0.05).

https://doi.org/10.1371/journal.pone.0182766.t002
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1.680, p = 0.149; F4,38 = 1.908, p = 0.129). Regression analysis revealed significant correlation

between total parasitoid or specialist parasitoid species richness and total mealybug abundance

(F1,46 = 17.450, p<0.001; F1,46 = 13.411, p = 0.001). Once again, no interaction effects were

recorded for CWB-infection status for either variable (F7,34 = 0.651, p = 0.711; F4,40 = 1.420,

p = 0.245).

Discussion

Despite the flourishing research on cross-kingdom interactions, only scant information exists

about the ways in which Candidatus Phytoplasma spp. affect herbivores or shape arthropod

communities on plants. Recent work has revealed that other phytopathogens, e.g., viruses,

fungi and bacteria, affect defense response pathways and induce changes in plant physiology,

morphology and chemistry [10]. A number of pathogens are even termed ‘manipulative para-

sites’ for the extent to which they attract or discourage potential insect vectors or non-vector

organisms [4,42]. Certain pathogens modulate behavior, fitness and population dynamics of

individual arthropods and determine structure and function of entire trophic communities

[18,43,44]. This study provides a first account of how a Candidatus phytoplasma triggers bot-

tom-up cascades and affects complex herbivore x parasitoid x hyperparasitoid assemblages.

Although CWB phytoplasma creates entirely new habitats for insect colonist through modified

plant metabolites, defense chemicals, and plant architecture, it is challenging to fully capture

Fig 2. Species richness and diversity indices for total parasitoids, comparative specialists and hyper-parasitoids, as recorded under

contexts of varying plant- and field-level infection with cassava witches’ broom (CWB) disease. Richness and diversity indices are presented for

CWB_NN (uninfected plants, in CWB-free plots), CWB_YN (uninfected plants, in CWB-affected plots), CWB_YY (infected plants, in CWB-affected

plots). Asterisks indicate level of significance, with ** highly significant at p<0.01, and * marginally significant at p<0.1 (Mann-Whitney U).

https://doi.org/10.1371/journal.pone.0182766.g002
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the evolutionary and ecological forces that act among the various organisms in our study sys-

tem. Nevertheless, we postulate a number of different hypotheses and highlight priority areas

for follow-up research.

Biotrophic pathogens such as phytoplasma trigger salicylate-dependent defense pathways,

but also ‘hijack’ a plant’s immune system through release of specific effector proteins [21,45].

Phloem-feeding herbivores such as mealybugs equally induce hormonal defenses, and regu-

larly manipulate the hormonal response of a plant to their own advantage [46]. The unique

case of CWB phytoplasma simultaneously facilitating generalist and inhibiting specialist

phloem feeders, i.e., Pa. marginatus or P.manihoti respectively, supports the notion that plant-

phytoplasma interactions change host quality for herbivores, with the outcome dependent

upon species-specific plant-herbivore interactions [27].

Induction of plant defense mechanisms can also result in suppression or increased emission

of specific volatile organic compounds (VOCs) [2]. Recent work shows that Phytoplasma spp.

Fig 3. Non-metric multidimensional scaling (NMDS) ordination of different plant-level CWB infection status based on parasitoid assemblages,

specifically on species-level and morphotype abundance levels. Clustering within the NMDS ordination space shows significantly different

(PERMANOVA, F (2, 45) = 2.34, p = 0.02) parasitoid assemblages on phytoplasma-infected plants (CWB_YY; grey squares), on un-infected plants in CWB-

affected plots (CWB_YN; grey triangles) and uninfected fields (CWB_NN; black circles). The dominant parasitoid species within specific assemblages is

depicted, as such: AL (A. lopezi), AP (A. papayae), PP (Prochiloneurus sp.), ALo (Anagyrus sp.), PU (P. unfasciativentris), ML (M. leopardina), AA (A.

advena), Psp (Pseudoleptomastix sp.) and 3 unidentified species (XX1, 2, 3).

https://doi.org/10.1371/journal.pone.0182766.g003

Phytoplasma infection triggers bottom-up cascades

PLOS ONE | https://doi.org/10.1371/journal.pone.0182766 August 16, 2017 9 / 18

https://doi.org/10.1371/journal.pone.0182766.g003
https://doi.org/10.1371/journal.pone.0182766


Fig 4. Relative abundance of three parasitoid species, on cassava plants with mealybug communities

of variable species composition. Mealybug species composition is represented by the relative proportion of

P. manihoti versus Pa. marginatus. Symbols reflect plant- and field-level CWB infection status.

https://doi.org/10.1371/journal.pone.0182766.g004
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induce shifts in plant volatile emission patterns [47], and thus may possibly modulate herbi-

vore or natural enemy foraging patterns [2,6,7,48]. In our study system, this could explain the

altered patterns of mealybug occurrence or the higher incidence of parasitic wasps on CWB-

affected plants. However, the relative importance of phytohormonal and volatile-mediated

effects of CWB phytoplasma, as for many other pathogens, waits to be investigated [2].

Phytopathogens regularly modify plant traits and thus create different niche opportunities

for herbivores. The increased plant branching and leafy morphologies of CWB-affected plants

may differentially affect herbivore success or alter foraging patterns of natural enemies such as

ladybeetles or lacewings [24,49]. Also, phytoplasma infection impacts phloem transport or leaf

chemistry, and substantially increases levels of phagostimulatory sugars or starch [25,26].

Fig 5. Diversity-function relationship, as represented by species richness of total parasitoids or

comparative specialists versus parasitoid / host ratio (arcsin square root transformed). Regression

curves are presented for different conditions of field- and plant-level disease incidence: CWB_NN (uninfected

plants, in CWB-free plots), CWB_YN (uninfected plants, in CWB-affected plots), CWB_YY (infected plants, in

CWB-affected plots). No significant interaction effects were observed for CWB infection status.

https://doi.org/10.1371/journal.pone.0182766.g005
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These kinds of pathogen-mediated shifts in plant quality can impact palatability and attractive-

ness for herbivores. For example, heightened amino acid levels of fungus-infected birch leaves

lead to increased size, weight and fitness in the aphid Euceraphis betulae [5]. Future research

can investigate whether CWB-affected plants have increased amino acid or carbohydrate con-

tent, and thus provide disproportionate fitness benefits for generalist herbivores such as Pa.

marginatus.
A plant’s secondary chemistry profile can have cascading effects on higher trophic levels,

and lead to a so-called community phenotype [1,14,50,51]. More so, certain phytotoxins accu-

mulate along trophic chains and cause ‘toxic environmental effects’ [52]. This is particularly

relevant for cassava, a plant that employs extensive chemical defenses such as cyanogenic and

Fig 6. Diversity-function relationship, as represented by species richness of total parasitoids or

comparative specialists versus total mealybug abundance (LG10 transformed). Regression curves are

presented for different conditions of field- and plant-level disease incidence: CWB_NN (uninfected plants, in

CWB-free plots), CWB_YN (uninfected plants, in CWB-affected plots), CWB_YY (infected plants, in CWB-

affected plots). No significant interaction effects were observed for CWB infection status.

https://doi.org/10.1371/journal.pone.0182766.g006
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flavonoid glycosides and hydroxycoumarins [53]. Quantitative variation in some of these alle-

lochemicals can differentially impact the development of herbivores of varying dietary speciali-

zation [13,54,55]. Cassava specialists such as P.manihoti are physiologically adapted to their

host’s chemistry and neutralize cyanogenic compounds through detoxification, excretion, or

sequestration [56]. On un-infected plants, P.manihoti therefore attains superior population

levels relative to generalists such as Pa. marginatus, and the P.manihoti-specialist wasp A.

lopezi dominates the parasitoid complex. Phytoplasma infection however, may reverse this bal-

ance, create niche opportunities for Pa. marginatus and enable competitive exclusion of Pa.

manihoti on CWB-infected cassava plants. The “tri-trophic interactions” and ‘slow-growth-

high-mortality’ hypotheses infer that CWB phytoplasma infection likely increases plant quality

and lowers phytotoxin content to such extent that performance of dietary generalists is

enhanced, and natural enemy action against specialists is exacerbated [32,57]. Empirical work

can reveal to what degree phytoplasma modulates this delicate interplay between plant nutri-

tional quality, herbivore dietary breadth, and the relative impact of parasitism or predation.

Our work provides initial evidence that CWB phytoplasma modifies refuge quality and

enemy-free space for two phloem feeders [58], by decreasing host plant suitability for special-

ists, and facilitating colonization by a generalist phloem feeder. Refuges can confer spatial,

temporal or chemical protection from parasitoids or predators, and help sustain multi-trophic

interactions [59,60]. As equally observed in an aphid x Brassica system [61], uninfected cassava

plants possibly provide specialist herbivores, i.e., P.manihoti, with a chemically-mediated ref-

uge against (generalist) parasitoids. Phytoplasma infection may remove this refuge, leading to

more abundant and speciose parasitoid populations, increased parasitism rates and male-

biased sex ratios on CWB-affected plants. Moreover, certain parasitoids (e.g., A. papayae, Pseu-
doleptomastix sp.) almost exclusively forage on phytoplasma-affected plants.

Enhanced nutritional quality, attenuated phytochemical content and an associated reduc-

tion of enemy-free space all directly affect parasitoid communities, enhancing species richness

[14,15,62,63]. Although the mechanism is often unclear, pathogen co-infection can either

reduce or enhance parasitoid success and affect parasitism rates, e.g. by impacting herbivore

fitness [8,10,64]. Cases in which pathogen co-infection lowers predator diversity, and simpli-

fies arthropod food webs have also been reported [12,65]. In our study, CWB-infection

increased overall mealybug abundance and diversity at a plant and field-level, lowered parasit-

ism rates on un-infected plants, and sustained species-rich parasitoid complexes on infected

plants. Although CWB infection did increase parasitoid richness and diversity at both a plant

and field level, this was not reflected in heightened parasitism rates [66]. CWB-infection did

not compromise the diversity x function relationship, either in terms of parasitism rates or

mealybug host suppression (see Fig 4).

In the case of insect-vectored pathogens such as phytoplasma, parasitoids can act as selec-

tion forces in plant-pathogen evolution [6,67]. Parasitic wasps can upset the competitive bal-

ance between (colonizing) herbivores and enable apparent competition, as exemplified in a

classic study by Settle et al. [68]. Also, hyperparasitoids can directly interfere with establish-

ment and reproductive success of introduced parasitoids, such as A. lopezi and A. papayae
[69]. These organisms can either release invasive species, such as P.manihoti, from biological

control, or promote population suppression through stabilization of host-parasitoid dynamics

[70,71]. It is likely that differential hyperparasitism (for parasitoids) and parasitism (for mealy-

bug hosts) act within our study, but population-level outcomes under field conditions are par-

ticularly difficult to interpret or predict, even more so when co-infection occurs with a

phytopathogen [72,73].

Aside from causing extensive leaf proliferation and disrupting a plant’s phloem flow, our

work reveals how a non-native Candidatus phytoplasma infection modifies host quality for
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sap-feeding homopterans, and generates niche opportunities for higher trophic orders, such as

parasitoids or hyperparasitoids. In this process, new habitat is created for multiple species, her-

bivore population dynamics are altered, and entire (agro-)ecosystems are restructured. CWB

phytoplasma affects the success of biological control against both P.manihoti and Pa. margina-
tus, and may determine broader food web function and stability [25,39]. Through its far-reach-

ing impact on species richness, invader success, and food web complexity, CWB phytoplasma

might thus take on the role of an ecosystem engineer [49,74].

Our work leaves little doubt that CWB phytoplasma assumes prime ecological importance

within Asia’s cassava ecosystems, and alters evolutionary trajectories for several species,

including major agricultural pests such as Pa. marginatus or P.manihoti. Our work has imme-

diate relevance to the fields of community ecology, invasion biology and biological control,

and can guide future cassava breeding initiatives to account for multiple, concurrent stressors

[75]. Holistic approaches are now required to assess how phytoplasma x mealybug interactions

shape local ecological communities [76]. A full integration of research approaches and reliance

upon e.g., next-generation sequencing, molecular ecology, chemical ecology or metabolomics

toolkits can provide much-needed insights into the underlying trophic, physiological or hor-

monal processes (e.g., [4,31,42,77,78]). Among the different research priorities, an in-depth

assessment of CWB phytoplasma ecology and transmission dynamics should be included.

Also, a (multi-trophic) community perspective will be needed to predict dynamics of invasive

pests, such as P.manihoti and Pa. marginatus, and to visualize ecological repercussions of

CWB at broader spatio-temporal scales [67]. Lastly, the socio-economic implications of the

above ecological research cannot be overlooked, as cassava remains one of the world’s prime

staple, feed and bio-energy crops, and an immediate source of cash income and livelihood

security for millions of Asian resource-poor farmers.
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