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Abstract

Crowdsourcing works by distributing many small tasks to large numbers of workers, yet the

true potential of crowdsourcing lies in workers doing more than performing simple tasks—

they can apply their experience and creativity to provide new and unexpected information to

the crowdsourcer. One such case is when workers not only answer a crowdsourcer’s ques-

tions but also contribute new questions for subsequent crowd analysis, leading to a growing

set of questions. This growth creates an inherent bias for early questions since a question

introduced earlier by a worker can be answered by more subsequent workers than a ques-

tion introduced later. Here we study how to perform efficient crowdsourcing with such grow-

ing question sets. By modeling question sets as networks of interrelated questions, we

introduce algorithms to help curtail the growth bias by efficiently distributing workers

between exploring new questions and addressing current questions. Experiments and simu-

lations demonstrate that these algorithms can efficiently explore an unbounded set of ques-

tions without losing confidence in crowd answers.

1 Introduction

Crowdsourcing has emerged as a powerful new paradigm for accomplishing work by using

modern communications technology to direct large numbers of people who are available to

complete tasks (workers) to others who need large amounts of work to be completed (crowd-

sourcers) [1–4]. Crowdsourcing often focuses on tasks that are easy for humans to solve, but

may be difficult for a computer. For example, parsing human written text can be a difficult

task and optical character recognition systems may be unable to identify all scanned words [5–

7]. To address this, the reCAPTCHA [8] system takes scanned images of text which were diffi-

cult for computers to recognize and hands them off to Internet workers for recognition. By

having many people individually solve quick and easy tasks, reCAPTCHA is able over time to

transcribe massive quantities of text. Crowdsourcing in general is especially important as a

new vehicle for addressing problems of social good [9–11].

Deciding on an optimal way to assign particular tasks to workers, and in what order,

remains an active area of research. For many problems, multiple worker responses to a task

must be aggregated to determine a final answer [4] but often, a budget limits the total
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crowdsourcing resources available [12–15], either due to financial limits when workers are

compensated or time constraints where the speed or size of the crowd limits the number of

tasks to be performed or questions to be answered. Most previous work on optimal task assign-

ment takes the form of a Markov Decision Process (MDP) [12, 16]. MDP provides a rigorous

mathematical framework to test policies for allocating tasks to workers [17]. Using MDP and

other strategies, such as Thompson sampling [18], methods have been introduced to efficiently

aggregate responses from workers, including consideration of which workers are most likely

to be well suited for a given question based on their past performance on related questions

[19–27].

However, to the best of our knowledge, past research has been limited to the case where a

fixed set of tasks need to be accomplished, and the response of a worker to a task is only ever

to complete the assigned task. In contrast, consider a crowdsourcing problem where workers

are able to do more than perform tasks—they may be allowed to propose new questions as well

as answers to a given question. The truest expression of crowdsourcing must incorporate the

intuition and experience of workers, who are potentially capable of providing the crowdsour-

cer with far more actionable information for many problem domains [28–30]. While MDP

made significant contributions to the design of question assignment algorithms, when the

question set is growing due to the crowd, MDP does not naturally account for the hidden state

transitions needed to represent newly contributed questions. The lack of research on algo-

rithms accounting for growing question sets reveals a gap in our abilities to efficiently assign

questions to workers.

To this end, we study a type of crowdsourcing problem we term Reply & Supply. As workers

answer a given question (Reply), they are given the opportunity to propose a related question

(Supply). Example applications of Reply & Supply include:

• Exploring social networks (“Are Alice and Bob friends?” “Who else is friends with Alice?”
“With Bob?”)

• Product recommendations (“Have you bought a camera and laptop together?” “What else
would someone buy when buying a camera?”)

• Image classification (“Does this photo contain a horse and a mountain?” “What else does it
contain?”)

• Causal attribution (“Do you think ‘hot weather’ causes ‘violent crime’?” “What causes ‘violent
crime’?”)

• Health informatics: Crowdsourcing patient reports to find connections between co-occur-

ring symptoms, new drug interactions, etc. (“Do you suffer from symptom X?” “What other
symptoms do you have?” “Do you take drug Y?” “What other drugs do you take?”)

In all these examples, new questions can be built by combining crowd-suggested responses

with the components of the original question, leading to the creation of a network structure of

interrelated questions. To explore a social network, for example, if a worker responds that

Alice and Bob are friends (Reply) and also proposes that Alice and Carol are friends (Supply),

then a new question (“Are Alice and Carol friends?”) is formed that other workers can consider

and that links to other questions related to Alice. Further, we will show that this network repre-

sentation naturally generalizes to non-network question sets, and the methods we develop

here are fully applicable to both question sets and question nets.

Question networks can be studied with tools from network science that consider the statis-

tical properties governing how theoretical and real-world networks grow and behave [31–38].

One property, the scale-free or heavy-tailed degree distribution [33], where most nodes in the
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network have low degree but some very high-degree nodes do exist, holds in many real-world

networks. How a scale-free network grows over time introduces biases (‘first-mover advan-

tage’) that are also inherent in a growing crowdsourced experiment.

In brief, this manuscript makes the following contributions:

1. The introduction of a growing network of linked questions with an accompanying theoreti-

cal analysis;

2. The use of Thompson sampling to develop crowd-steering algorithms that enable efficient

exploration of an evolving set of tasks or questions without losing confidence in answers;

3. Simulations and real-world crowdsourcing experiments that validate the efficiency and, to

some extent, the accuracy of the crowdsourcing performed under the crowd-steering

algorithm.

The rest of this paper is organized as follows: Section 2 poses the generic crowdsourcing

problem we focus on, analyzes a simple graphical model of how a growing question net is built

by a crowd, and uses this model to motivate methods for efficiently assigning questions to

workers as the question net grows. Section 3 describes experiments and evaluation metrics to

test the proposed theory and methods with both simulated and real-world crowdsourcing

tasks. Section 4 presents the results of these experiments and Sec. 5 concludes with a discussion

of these results and future work.

2 Methods

Here we introduce a graphical model of a growing question network where questions consider

the presence or absence of a relationship between two items (Sec. 2.1). We study the network’s

properties under a null condition where the crowdsourcer assigns questions to workers ran-

domly without use of a “steering” algorithm to provide guidance (Sec. 2.2). We then use these

properties to develop a probability matching algorithm which provides said guidance to the

crowdsourcer (Sec. 2.3).

2.1 Crowdsourcing growing question networks

We model a growing set of questions (or tasks) as a graphs where nodes are items and edges or

links represent questions relating pairs of items. A question network G = (V, E) is composed of

a set of nodes V and a set of edges E, where |V| = N and |E| = M. Edge attributes record the

answers given by workers, i.e., associated with each edge is a categorical variable storing the

counts of worker responses. Those workers may also propose new questions (i.e., new combi-

nations of new or existing items), leading to new nodes and edges. This network model also

accommodates non-network question sets, for example by considering each question as a dis-

joint edge.

As an example of such a network, consider a synonym proposal task (SPT) where workers

are asked if two words u and v are synonyms. The question is the link (u, v) between two items

u and v representing those words. After replying to the question, the worker may also supply

another word w which is a synonym for u, for v, or for both words. This grows the question

network by introducing new questions linking items (u, w), or items (v, w), or both (u, w) and

(v, w). The degree ki of item i counts the number of questions linking item i to other items.

We focus on cases, such as the SPT, where questions have binary answers, e.g, when work-

ers are asked whether or not a link between two items should exist. Edge attributes on links

capture the number of ‘yes’ and ‘no’ answers given by workers. However, this graph represen-

tation is flexible enough to allow edge attributes to contain any number of dimensions and
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there are no restrictions imposed on how workers propose questions. Moreover, this graphical

model is capable of representing growing question sets without such relations, for example, a

collection of N disjoint questions always containing the response items ‘True’ and ‘False’ only

may be a two node, N multi-edge graph. While not a particularly meaningful representation, it

demonstrates that the algorithms we develop are applicable to general crowdsourcing tasks

without modification. Lastly, one can also extend this model to non-binary, multiple choice

questions in several ways, including representing questions as hyperedges in a hypergraph.

2.2 Null model

We propose a generative null model for a growing question network [39, 40]. Beginning from

a network with one question, a crowdsourcer randomly chooses existing questions to send to

workers also chosen at random. Those workers answer the questions and then with some

probability also propose new questions. We study the properties of the network under these

assumptions to motivate the development of a probability matching algorithm that can allow a

crowdsourcer to efficiently explore the growing question network.

The network begins (at time t = 0) with two nodes and one undirected link connecting

those nodes, representing a single question considering two items. Under the null model,

every link (i, j) has an associated innovation rate ρij. The innovation rate for (i, j) defines the

probability a random worker will introduce a new question into the network when presented

with question (i, j). If she chooses to innovate, the new question may relate to either or both of

the items i and j of the original question the worker was given.

Specifically, suppose a random worker is given question (u, v) relating items u and v. Under

the null model:

1. The worker answers question (u, v) with probability 1.

2. The worker proposes a new item w to study with probability ρuv:

a. w is linked to one of the items of the original question with probability γuv. A single new

question, either (u, w) or (v, w) chosen uniformly at random, is introduced;

b. otherwise, w links to both items of the original question with probability 1 − γuv. Two

new questions, (u, w) and (v, w), are introduced.

3. Repeat from (1) with another sampled question and worker until termination.

This model is tractable but quite basic and does not consider many potential details. For

example, it assumes that while questions may have different innovation rates, workers do not.

However, for sufficiently large numbers of workers, the average response is always going to be

the primary concern, particularly in most crowdsourcing tasks which need to aggregate multi-

ple worker responses to decide upon a final answer for a question. If it is necessary, a crowd-

sourcer interested in accounting for variation between workers can propose a statistical model

for their features, and then use statistical inference to estimate these worker parameters during

crowdsourcing (see also the Discussion).

We now prove several average properties of this null model. Studying the characteristics of

the randomly growing, uncontrolled network informs policies that a crowdsourcer may use to

manipulate the network (such as the algorithm we develop in Sec. 2.3). Many of these results

are also informative for non-network growing question sets.

The first theorem describes question growth in the random uncontrolled network.

Theorem 1 (Rate of question growth). The total number of links M(t) as a function of time t
is, on average, M(t) = ηt + 1 where η = hρi (2 − hγi) is termed the exploration rate.
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Proof. For the network to grow, a worker must suggest an additional question, which occurs

with probability on average hρi (average of ρij). Once the worker commits to a suggestion, one

question is added with probability on average hγi or two questions are added with probability

on average 1 − hγi. Combining these two possibilities, the total number of questions grows on

average over one timestep according to

Mðt þ 1Þ ¼ MðtÞ þ hgihri þ 2hrið1 � hgiÞ;

with initial condition M(0) = 1 representing the single seed question of the network. Making a

continuum approximation, this difference equation becomes M0(t) = hρi(2 − hγi), which has

solution

MðtÞ ¼ Zt þ 1; ð1Þ

where the exploration rate η� hρi(2 − hγi) plays an important role in the overall network

growth.

The number of links grows linearly with a rate η that combines the average rates hρi and

hγi. Intuitively, the network grows faster if questions are more likely to be innovative (larger

hρi), and/or the worker is able to suggest a question for both items at the same time (smaller

hγi).
The solution to the rate equation for question growth can be used to compute the mean

number of worker answers per question:

Theorem 2 (Mean answer density). The mean answer density (number of answers per ques-
tion) hAi ! 1/η as t!1.

Proof. The mean number of answers per question is

hAi ¼
total number of answers

total number of questions
: ð2Þ

At every time step a question in the network accumulates a single answer from a worker. The

denominator of Eq (2) is the solution Eq (1), and so the average density of answers per ques-

tion is

hAi¼
t

Zt þ 1
¼

1

Zþ
1

t

!
1

Z

as t!1.

The mean answer density correlates with the overall uncertainty in the crowdsourcing since

there is generally more certainty (but not necessarily correctness) in crowd responses when

more workers on average have independently answered questions. Controlling the answer

density, and therefore the certainty, now boils down to controlling the exploration rate η. The

mean answer density’s dependence on η also encapsulates an ‘exploration-exploitation’ trade-

off: lower η leads to higher answer density, but at the cost of less exploration in the network;

higher η increases the exploration but lowers answer density and makes more uncertainty in

the network. In this null model, the crowdsourcer does not make choices that can exploit this,

but tuning between these poles is a key component of the probability matching algorithm we

introduce in Sec. 2.3.

The previous two theorems govern global properties of random question networks. We

now turn to properties of individual items within the network to explain the unequal distribu-

tion of questions attached to items:
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Theorem 3 (Rich-get-richer mechanism). A node i entering the network at time ti will gain

degree, on average, as kiðtÞ ¼
Z

hri

1þZt
1þZti

� �1=2

Hðt � tiÞ, where H is the Heaviside function.

Proof. An existing item i only gains a question when the crowdsourcer chooses a question

attached to i and the worker answering that question proposes a new question involving i. A

question (i, j) associated with item i is selected by the crowdsourcer with probability ki(t)/M(t),
where ki(t) is the degree (number of questions) of i at time t. After the worker answers question

(i, j) she must innovate (probability hρi) with an item w that is not already a neighbor of i (and

w 6¼ i) and the new question must be (w, i) (probability hγi/2) or it must be two questions

(w, i) and (w, j) (probability 1 − hγi). If the worker introduces question (w, j) only (probability

hγi/2) then i does not gain a new question and so this possibility does not contribute to ki(t).
Combining these possibilities together, ki(t) evolves on average according to

kiðtÞ ¼ kiðt � 1Þ þ ki
hri

Mðt � 1Þ

hgi

2
þ ð1 � hgiÞ

� �

: ð3Þ

We approximate and simplify this difference equation as before:

dki
dt
¼ ki

hri

MðtÞ
1 �
hgi

2

� �

¼
ki

2

Z

Zt þ 1

� �

; kiðtiÞ ¼
Z

hri
; ð4Þ

where ki(ti) is the initial degree when item i was introduced at some time ti. Solving Eq (4)

results in

kiðtÞ ¼
Z

hri

1þ Zt
1þ Zti

� �1=2

Hðt � tiÞ: ð5Þ

We see from this derivation that the rich-get-richer, preferential attachment mechanism

[33] is automatic when questions are chosen at random: an item i is more likely to appear in a

sampled question the more questions it has, and therefore items with more questions are more

likely to gain further questions than other items. Further, the degree of an item depends criti-

cally on two quantities. The first, the ratio of exploration rate η to hρi, equally affects all items

in the network. The second, the time of entry ti, dampens the growth of items that enter the

network late and increases the growth of earlier items. This phenomena is often called the ‘first

mover’s advantage’, and in the context of crowdsourcing a growing network, items entered

earlier in the system accrue more questions than later items.

Using the local estimate of item degree to derive the global degree distribution of the net-

work, we find:

Theorem 4 (Degree Distribution). The degree distribution of the growing question network

PðkðtÞÞ ! 2
Z

hri

� �2
1

k3
ð6Þ

as t!1.

Proof. Following [39], begin with the cumulative probability distribution of item i’s degree:

PðkiðtÞ < kÞ ¼ P
1

hri

1þ Zt
1þ Zti

� �1=2

< k

 !

¼ 1 � P ti < Z
1

khri

� �2

ð1þ ZtÞ �
1

Z

 !

:

ð7Þ
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Meanwhile, the entry times ti of items into the network follow a distribution proportional to

hρi uniformly through time:

Pðti ¼ tÞ / hri;

and, after normalizing, we discover the time of entry follows a uniform distribution. Referring

back to Eq (7) and using the integral definition of a cumulative distribution,

PðkiðtÞ < kÞ ¼ 1 �
1

t
1

khri

� �2

Zð1þ ZtÞ �
1

Zt
: ð8Þ

Lastly, differentiating Eq (8) with respect to k gives the degree distribution:

@PðkiðtÞ < kÞ
@k

¼ PðkðtÞÞ ¼
2ZðZt þ 1Þ

thri2
1

k3
! 2

Z

hri

� �2
1

k3
ð9Þ

as t!1.

Our theoretical analysis is supported by simulations of growing question networks (Fig 1).

We conducted 5,000 simulations and recorded the degree distribution P(k) and degree k of

items across different values of exploration rate η and time of item entry ti. Fig 1(a) validates

the slower rate of question accrual for late arriving items, and Fig 1(b) shows the degree distri-

bution’s match to theory by the collapse of each curve over multiple values of η.

2.3 Probability matching algorithm for growing question sets and nets

Most algorithms for steering workers towards questions choose questions by defining a metric

that captures important characteristics in the system. For example, algorithms stressing accu-

racy often build metrics that reward higher numbers of answers for questions, achieving a p-

value below a pre-defined threshold, or diminishing the variance of questions.

The framework of probability matching, specifically Thompson sampling [18] (TS), is one

of the most powerful ways to efficiently choose from a set of dynamic “options” when choices

Fig 1. Agreement of theoretical predictions of network growth under the null model with simulations for several different choices

of parameters.

https://doi.org/10.1371/journal.pone.0182662.g001
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must be made with limited information. Unlike greedy algorithms, one of the strengths of TS

is that its stochastic nature prevents choosing locally optimal questions only.

To Thompson sample from a set of options, one assumes a random variable X which fol-

lows a distribution φ(xjθi(t)), where θi(t) is a set of parameters specific to i at time t. One draws

an xi(t) for each option i and selects the option j with the smallest x (or largest x, depending on

what x represents), j = arg mini xi (t). After option j is played (in our case, the worker’s answer

is received), the parameters for option j are updated. Often x is a Bernoulli random variable

and it is natural for φ to be the conjugate Beta distribution with parameters α, β which are

updated depending on whether x = 0 or x = 1.

For specific problems, TS depends on an appropriate reward function. In the context of

crowdsourcing, one generally cannot verify the accuracy of crowd answers, so the best choice

is to reward certainty or consensus. If the crowd is consistent in their responses for a given

question, then that implies the question is being answered as well as possible under current

conditions. Thus, in contrast to the Bernoulli Bandit problems typically studied with TS, we do

not want to reward ‘yes’ answers over ‘no’ answers only. Instead, we want to reward choices

that lower the crowdsourcer’s measure of uncertainty for questions.

A natural measure of uncertainty for a categorical random variable is the Shannon entropy.

However, efficiency is also important to a crowdsourcer. A yes/no question that has 200

responses which are evenly split is very different than a question with 2 responses which is also

evenly split, despite having the same entropy. Generally, the crowdsourcer would prefer to

assign a worker to the latter question, as there is greater hope of lowering its uncertainty.

This argument guides us to choosing a metric involving both the total number of answers

to a question and how evenly distributed those answers were over the categories of that ques-

tion. We introduce a metric called link bias (d) that is sensitive to the uncertainty of a question,

but unlike entropy, also accounts for the total number of answers. To begin, the multinomial

distribution, with C − 1 parameters, naturally models the distribution of a categorical ques-

tion’s total number of answers T across C possible answers, and the Dirichlet distribution, con-

jugate to the multinomial, can estimate the parameters of the multinomial. Since we expect no

available prior information, a non-informative prior can be used. In the case of two categories,

which we focus on, the Dirichlet distribution reduces to the Beta distribution (B(α, β)).

To define question uncertainty, we need a reference point. At a question’s peak uncertainty,

workers have answered evenly among the question’s (C) categories causing an equal propor-

tion of answers per category. In our binary case (C = 2), this corresponds to a proportion of 1/

C = 1/2. The link bias d transforms the proportion of answers for question (i, j) to the distance

from maximum uncertainty with d� |2 − pij(1)|, where pij(1) is the fraction of ‘1’ or ‘yes’ or

‘true’ answers. When pij * B(α, β), the probability density of d becomes

φðdja; bÞ ¼
ð1 � 2dÞa� 1

ð1þ 2dÞb� 1
þ ð1þ 2dÞa� 1

ð1 � 2dÞb� 1

Bða;bÞ2aþb� 2
; ð10Þ

where for simplicity the dependence of α, β on (i, j) has been suppressed. Intuitively, a low link

bias (d� 0) occurs when the crowd is evenly split among possible answers, while a high link

bias (at most d = 1/2) tells us the crowd converged on a single category.

However, the link bias alone may not sufficiently steer the crowdsourcer to choose ques-

tions with a lower number of answers. If needed, we can combine a preference for sampling

questions with few answers, with a preference for questions that are uncertain, by weighting
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Eq (10) by the current number of answers to define a new ‘weighted phi’ metric φN:

φNðd j a;bÞ �
Nijφðdja; bÞX

uv2E
Nuv

; ð11Þ

where Nij is the total number of answers to question (i, j) at the time of sampling.

Thompson sampling of questions via φ or via φN defines the two probability matching algo-

rithms we propose. These algorithms handle growing networks of questions automatically and

are fully applicable to problems without graphical relations between questions. We will con-

duct experiments on growing question networks testing the relative performance of both algo-

rithms, and comparing them to other null or control baseline strategies, such as randomly

choosing questions.

3 Experiments

We conducted two experiments to test the theoretical analysis and the sampling methods. For

the first experiment, we simulated crowdsourcing of a growing question network with a com-

monly used benchmarking dataset by superimposing two distinct network structures onto a

previously conducted crowdsourcing task [12], where questions have been time-ordered to

mimic a growing question network, and used this to test three different question sampling

algorithms. For the second experiment, we conducted real-world crowdsourcing using the

Mechanical Turk crowdsourcing platform [2].

3.1 Experiment 1

To determine the effectiveness of choosing questions based on link bias, we first performed a

five-armed experiment using the Recognizing Textual Entailment (RTE) dataset [12], a set of

8,000 binary answers (0 or 1) to 800 unique questions.

For simulating question growth, we superimposed graph structures onto the question set to

link the 800 questions together. As mentioned in the introduction, many crowdsourcing prob-

lems naturally possess a network structure; here we imposed a structure on the RTE dataset

only because it allows us to use the same benchmark dataset that many other researchers have

studied. We built 5,000 Erdős-Rényi (ER) and Barabási-Albert (BA) networks [41]. These two

options represent two extremes of network structure, and were chosen to test question sam-

pling algorithms over different classes of networks. Briefly, an ER network [31] (specifically

the G(n, m) formulation) starts with a set of N nodes and 0 links; a pre-specified number of

links M are placed in the network choosing randomly without replacement from all possible
N
2

� �
pairs of nodes. In contrast, the BA network [33] starts with 2 nodes joined by a single

link, nodes are added one at a time until all N nodes are placed, and each new node attaches

to m0 existing nodes in the network. New nodes attach to an existing node i with probability

ki/∑n2N kn, a mechanism that is often called preferential attachment.
For simulation purposes, each ER network realization must contain exactly 400 nodes, 800

links, and be connected. BA networks are connected by design; we still enforced the same

number of nodes and links as the ER networks. Each simulated crowdsourcing was initialized

with one question (a link in the network connecting two corresponding item) chosen at ran-

dom from the underlying network. During the simulated crowdsourcing, workers answer a

question with a 1 with probability equal to the proportion of 1’s observed in the original RTE

dataset for that question, otherwise the worker answers 0. Next, and with probability hρi, a

new node (item) is introduced into the network by selecting randomly from the unseen neigh-

bors of either i or j within that simulation’s graph. (This differs slightly from the analytic null
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model because there is no hγi. Instead, two links are formed automatically if the newly intro-

duced item is linked to both i and j in the superimposed network.) If there are no new items to

add corresponding to the selected question, this iteration is undone and the algorithm contin-

ues. All simulations were run with hρi = 0.20 for 6,000 time steps.

Simulations were performed independently for each of five arms. The condition of each

arm governs how questions are selected by the simulated crowdsourcer:

Random: The first arm of the experiment had a condition where questions (links) were chosen

randomly from the pool of already visited links.

Looping: The second arm used a looping question sampling algorithm. The first link that

entered the system is answered by a worker, then the second link in the system is given to a

worker, then the third link and so on. When the algorithm reaches the most recent link

within the system it starts again from the oldest link.

Binomial sampling: This strategy selects questions (i, j) based on p-values for a two-sided

binomial test that the proportion pij(1) is significantly different from 1/2. If the p-value of

this exact test is small, then it is likely the crowd has already reach consensus on that ques-

tion and it is not worthwhile to sample that question further. The sampled question was

chosen randomly from the set of questions which have a p-value >0.2 and which have

received fewer than 10 answers (at the time of sampling)

Thompson sampling with φ: The fourth arm uses Thompson sampling to select links based

on link bias (φ).

Thompson sampling with φN: As in the fourth arm but links are Thompson sampled with φN

instead of φ.

This experiment can demonstrate the strengths and weaknesses of selecting links based on

these different sampling strategies, and, because it is synthetic, many trials can be conducted

while avoiding the costs associated with a new crowdsourcing experiment. Results of Experi-

ment 1 are presented in Sec. 4.

3.2 Experiment 2: Synonym proposal task

This three-armed experiment created new question networks grown from a single seed

question (link), and evaluated the φN-based Thompson sampling and Binomial sampling

versus Random sampling. We paid US-based workers on Amazon’s Mechanical Turk

crowdsourcing platform [2, 42] to participate in a synonym validation and proposal exper-

iment. Synonymy proposal is a good test application for the question sampling algorithms

we study because workers can easily understand the question and are capable of proposing

new questions (by suggesting new synonyms). Of course, data on synonymy relations are

available in lexical resources such as WordNet [43], which we used in this specific task for

assessing the accuracy of proposed synonyms (see below), but our primary goal with this

experiment is not crowdsourcing a new thesaurus but testing the different question sam-

pling strategies.

In Experiment 2, each worker completes synonymy tasks at a compensation of $0.08 USD

per task. Each synonymy task gives a pair of words to a worker and asks whether or not they

are synonyms. After a worker answer either ‘yes’ or ‘no’, we allow the worker to suggest addi-

tional synonyms for each word of the given pair, or a single synonym associated with the com-

bined word pair. A screenshot of the web form used for this task is shown in Fig 2.
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Three independent crowdsource networks were built, one for each arm. All three networks

began with the same seed question (the word pair patriotic, person). All other word pairs were

proposed by the crowd. The question sampling algorithms draw from all previous worker

answers and suggested questions within their respective arms to deliver a question to the next

queued worker. The first arm (Random sampling) chooses links using the same methodology

as the random arm from Experiment 1, which also closely matches the null model we studied

(Sec. 2.2). The second arm (Binomial sampling) selects links according to the Binomial sam-

pling algorithm introduced in Experiment 1. Lastly, the third arm (Thompson sampling)

selects links according to Thompson sampling of φN. Results for Experiment 2 are presented

in Sec. 4.

3.3 Evaluation metrics

For the first experiment, we measure five attributes across the simulated crowdsourcings to

compare the different question sampling algorithms. At each time step t, for each simulated

network we record network properties fnodes, the fraction of items, and fedges, the fraction of

questions:

fnodes ¼
jVðtÞj
jVð1Þj

; fedges ¼
jEðtÞj
jEð1Þj

; ð12Þ

where V(t) is the set of items at time t, V(1) is the set of all items at the end of the experiment,

E(t) is the set of questions at time t, and E(1) is the set of all questions at the end of the

experiment.

Next, we record the entropy S and link bias d, averaged over all currently visible questions,

to quantify uncertainty in the network:

hSi ¼ �
1

jEðtÞj

X

ij2EðtÞ

X

x2f0;1g

pijðxÞlog
2
pijðxÞ ð13Þ

and

hdi ¼
1

jEðtÞj

X

ij2EðtÞ

j2 � pijð1Þj; ð14Þ

where pij(x) is the (Laplace-smoothed) fraction of binary answers of x for question (i, j) (at

time t).
The final evaluation metric, mean answer density, measures how many answers are given

per question in a particular network (see also Thm. 2):

hAi ¼
1

jEðtÞj

X

ij2EðtÞ

X

x2f0;1g

NijðxÞ; ð15Þ

where the Nij(x) represents the count of answer x for question (i, j) (at time t).
Validating proposed synonyms. A factor that motivated us to choose the synonym pro-

posal task as our crowdsourcing example is that synonym proposal can, in principle, be vali-

dated. Therefore, we will measure both crowd consensus (measured by hSi or hdi) and, as best

we can, if Experiment 2’s crowdsourcing algorithms lead to different quality rates of synonyms

—are we trading off quality for efficiency?

However, measuring synonymy from natural language text is challenging. In principle, all

that is needed is a complete thesaurus, meaning a complete lookup table of all words and all

their synonyms, perhaps with weights denoting the degree of relatedness between a word and
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Fig 2. Screenshots of the Mechanical Turk web interface for the synonymy proposal task (Experiment

2). After replying ‘yes’ or ‘no’ (a), the form expands for the worker to supply new potential synonym pairs (b).

https://doi.org/10.1371/journal.pone.0182662.g002
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its synonym and accounting for all possible contexts in which those words may appear. How-

ever, without such an exhaustive resource, it can be challenging to determine synonyms, espe-

cially when workers may introduce typos, may propose different forms (runs, running, ran) of

the same root lemma (run), or they may propose a multi-word phrase (MWP) which may have

a synonymous meaning but where such a meaning is difficult to determine computationally.

Given the challenges of measuring synonymy, we applied two measures to the synonym

word pairs (u, v) proposed by workers during the crowdsourcing experiments:

Shared WordNet lemmas The first measure starts by determining for each word w the set of

all forms of all its synonym lemmas as encoded in WordNet [43]:

LðwÞ ¼ [
s2synsetsðwÞ
[

‘2lemmasðsÞ

‘; ð16Þ

where synsets(w) is the set of all synonym forms stored in WordNet (we merge sets across

parts-of-speech and take synsets(w) = ; if w is not present in WordNet). We then say that the

two words u and v are synonyms if they share at least one lemma, i.e. that |L(u) \ L(v)|> 0,

otherwise they are not synonyms. This is a relatively strict test, and fails to account for many

MWPs and natural language concerns such as misspellings, so we expect many (u, v) pairs

that workers deem synonyms to be missed by this measure and therefore the actual propor-

tion of synonymous word pairs may be much higher.

Word vector similarity The second measure we employ is based on the meanings encoded by

the “word2vec” word embedding algorithm [44]. Word2vec uses a neural network model

to learn low-dimensional vector representations of words based on their contextual co-

occurrence patterns over a very large text corpus. Supported by the distributional hypothe-

sis [45], the contexts encoded in these vectors are then considered to capture to some extent

the meanings and relationships of these words such as, for example, analogous relationships

(Berlin is to Germany as Paris is to France). Given a pre-trained set of 300-dimensional vec-

tors trained on a 100B word corpus taken from Google News, we define the similarity

between two words (or MWPs, if the MWPs are present in the vector data) u and v as their

cosine similarity:

similarityðu; vÞ ¼
u � v
kukkvk

; ð17Þ

where w represents the associated word vector for word or MWP w. If either u or v is not

present in the word2vec vector data, we exclude that pair from our analysis (this occurred

in Experiment 2 for approximately 17.9% of crowd-proposed word pairs for the Random

sampling experiment, 19.8% for Binomial sampling, and 10.9% for Thompson sampling).

4 Results

Experiment 1

Fig 3 displays the five evaluation metrics associated with Experiment 1, averaged over the

5,000 ER and BA networks. (For simulated Binomial sampling only, note that we required

questions to have fewer than 30 answers at the time of sampling, not 10 as discussed previ-

ously, to provide more simulation statistics.) The Binomial sampling and φN Weighted

Thompson sampling algorithms outperformed all others in exploration metrics across ER and

BA networks. Both methods explored more of the network, and faster, than other methods, as

evidenced by hfedgesi and hfnodesi. Weighted Thompson sampling performed best at minimizing
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the uncertainty of answers, as measured by lower entropy hSi and higher link bias hdi. In con-

trast, Binomial and Thompson sampling φ were inconsistent for these two metrics. Lastly,

Binomial and φN Weighted Thompson sampling also required fewer answers than other algo-

rithms (lower hAi).
Binomial sampling slightly outperformed φN Weighted Thompson sampling in many met-

rics. However, Binomial sampling has a distinct drawback: the thresholds used to sample ques-

tions may lead to a situation where no questions meet its sampling criteria. This is visible in

the simulation curves, which are quite noisy due to individual simulations which terminated

too early. Of course, this can be fixed by any of several means, such as falling back to random

sampling when no questions meet the criteria, or tuning the cutoffs used in Binomial sam-

pling. But Thompson sampling avoids these complexities entirely.

The overall performance of Binomial sampling and φN-based Thompson sampling in

simulated crowdsourcing nominates them as candidate algorithms for Experiment 2’s real

crowdsourcing.

Experiment 2

Fig 4 shows the constructed networks for each arm of the Synonym Proposal Task (the task is

described in Fig 2). Qualitatively, all three networks appeared similar. Quantitatively, (Table 1)

Fig 3. Experiment 1’s evaluation metrics for five different question sampling algorithms.

https://doi.org/10.1371/journal.pone.0182662.g003
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both Binomial and Thompson sampling were able to explore more of the network (discovering

more items and questions) than Random sampling with more efficiency (lower mean number

of answers hAi). The explored networks appeared similar by a number of network metrics,

although the network generated via Binomial sampling has a lower average degree and higher

average shortest path length. Lastly, Binomial and Thompson sampling were comparable to

Random sampling in crowd consensus on individual answers, having similar levels of entropy

and link bias. Both of these statistics measured how skewed the worker answers were in favor

of ‘yes, they are synonyms’ or ‘no, they are not synonyms’.

Taken together, both Binomial and Thompson sampling maintained a comparable level of

certainty (measured by consensus or consistency in worker responses) in the network with

fewer answers needed on average than Random sampling.

To further understand the answer density of the different sampling methods, we computed

the distribution of the number of answers Nij to question (i, j) in Fig 5. Here Random sampling

clearly separated from the other two sampling strategies, and Random sampling ended with

Fig 4. Comparison of question networks for the synonymy proposal task under random sampling, binomial sampling, and φN

Thompson sampling.

https://doi.org/10.1371/journal.pone.0182662.g004

Table 1. Summary statistics for the three arms of Experiment 2. Both Binomial and Thompson sampling are more efficient than Random sampling (lower

hAi) without losing the crowd’s average consensus on answers, measured by hSi and hdi.

Random Binomial Thompson

N(items) 1134 1537 1509

N(questions) 2413 2887 3020

N(responses) 5043 4993 5034

hAi 2.090 1.729 1.667

Average degree, hki 4.256 3.757 4.003

Clustering coefficient, hCCi 0.265 0.220 0.243

Eccentricity, hei 10.304 11.247 11.840

Shortest path length, hℓi 5.732 6.346 5.982

Entropy, hSi 0.560 0.553 0.551

Link bias, hdi 0.361 0.371 0.390

https://doi.org/10.1371/journal.pone.0182662.t001
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more questions with more answers than the other sampling strategies. We also note that all

three arms finished with many questions with few answers: approximately 50% of questions at

the end of the experiment had a single answer. We discuss this further in Sec. 5.

Next, we examined the synonym “quality” of the SPTs, using the synonymy measures intro-

duced in Sec. 3.3. We limited these calculations to proposed word pairs examined by at least

three crowd workers to ensure sufficient answers from the crowd. Fig 6(a) shows the propor-

tion of word pairs that share at least one WordNet lemma: Both Binomial and Thompson sam-

pling have slightly higher proportions than Random sampling, at over 12% compared with

approximately 11%. This indicates that quality was not lost when using a more efficient sam-

pling strategy. Of course, 11–12% of word pairs sharing a lemma seems low, but recall that

shared lemmas is a very strict measure that is likely to miss many synonymous word pairs and

so we do not conclude that the majority of the crowd answers are “wrong.” Furthermore, to

better understand the shared lemma proportion, we constructed a randomized control by

shuffling the word pairs (preserving the total frequencies of individual words) and re-mea-

sured the proportion of shared lemmas. We found a significant drop in the proportion to

approximately 1% (the error bars on these proportions are shown in Fig 6(a) but are quite

small).

Fig 5. The distributions of the total number of answers per question at the end of crowdsourcing, for each arm of Experiment 2.

The efficiency of Binomial and Thompson sampling compared with Random sampling is clear. In all arms, approximately 50% of proposed

questions are answered only once.

https://doi.org/10.1371/journal.pone.0182662.g005
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Likewise, Fig 6(b) shows word vector similarities for the three sampling methods, decom-

posed into word pairs where at least one worker agreed they were synonyms versus no workers

agreeing they were synonyms. The crowd-proposed word pairs flagged as synonyms had simi-

larities significantly higher than those not flagged as synonyms. There is a small drop in vector

similarity for Binomial and Thompson sampling compared with Random sampling, likely bal-

ancing out the small increase in WordNet shared lemma proportion shown in Fig 6(a). We

conclude that overall there is no loss in quality, at least as indicated by these measures, when

using more efficient sampling algorithms.

Taken together, while we only have one crowdsourcing realization for each arm, it is rea-

sonable to conclude from Experiment 2 that both Binomial sampling and Thompson sampling

achieved much higher rates of exploration (more items) and greater efficiency (fewer answers

per question) than Random sampling without losing confidence or accuracy in question

responses.

5 Discussion

We studied the problem of efficient assignment of crowdsourcing tasks to workers when those

workers are also able to propose tasks themselves. Using workers to contribute new tasks and

not merely perform predetermined tasks helps unlock the true potential of crowdsourcing. We

formulated a growing question network model for this problem, prove theoretical properties

of this system, and developed and validated sampling algorithms that can guide workers to

grow the network efficiently, while only sacrificing at most minimal confidence in their

responses.

Fig 6. Measures of synonymy for Experiment 2’s crowdsourced word pairs. Synonymy for proposed word pairs was estimated using

(a) shared WordNet lemmas, (b) cosine similarity between word2vec word embedding vectors (see Sec. 3.3). Approximately 11–12% of

crowdsourced word pairs share one or more WordNet lemmas (a strict measure of synonymy), and Binomial and Thompson sampling

achieved slightly higher rates than Random sampling. As a control, the word pairs proposed by the crowd were randomized, and the

proportion of word pairs with shared lemmas dropped significantly. Meanwhile, regardless of sampling algorithm, the word pairs proposed by

the crowd also had significantly higher word vector similarity when at least one member of the crowd agreed that the pair were synonymous

(nij(1) > 0), as opposed to no members agreeing the pair were synonymous (nij(1) = 0). This further underscores the estimated quality of the

proposed questions and answers and that Binomial and Thompson sampling methods do not appear to trade off quality for efficiency. (To

avoid ambiguous answers, we considered word pairs that received at least three answers from workers in these calculations, and panel (a)

considers those word pairs with nij(1) > 0.)

https://doi.org/10.1371/journal.pone.0182662.g006

Reply & Supply: Efficient crowdsourcing when workers do more than answer questions

PLOS ONE | https://doi.org/10.1371/journal.pone.0182662 August 14, 2017 17 / 21

https://doi.org/10.1371/journal.pone.0182662.g006
https://doi.org/10.1371/journal.pone.0182662


Modeling the evolution of the uncontrolled question network teaches us how to better

design crowdsourcing policies. For example, by monitoring the innovation rate (ρ) and explo-

ration rate (η) of the growing question network, a crowdsourcer may be able to better and

more efficiently control the question network as it grows. At the same time, the rich-get-richer

growth of items (older items are attached to a larger fraction of questions), implies that crowd-

sourcers should pay special attention to the newest items entering the network, to balance out

the inherent bias in favor of older items.

Thompson sampling is fast, easy to implement, and flexible enough to capture the prefer-

ences of different crowdsourcers, but it is only one potential policy for question selection.

More rigorous question selection techniques can be implemented which may outperform the

proposed techniques, but with potentially more restrictions. The Thompson sampling algo-

rithms proposed here work for both question nets but also non-network question sets, and can

naturally accommodate both growing and static questions sets and nets. Further, statistical

inference of question parameters and worker features [15], based on extensions of the null

model analyzed in Sec. 2.3, can be used by the crowdsourcer to better pair workers with

questions.

There remains considerable room for improvement. For example, in Fig 5, approximately

50% of questions in Experiment 2 received a single answer, regardless of arm. This means that

even with the current algorithms the crowd is still supplying an inordinate amount of ques-

tions that are being left mostly unconsidered. Of course, some of this may be unavoidable; if

there is too much Supply, then the crowd will invariably fall behind. This is further com-

pounded by the inherent bias in favor of older questions. Thompson and Binomial sampling

helped curtail this “first-mover-advantage” bias in the growing network but did not necessarily

eliminate it. This is the fundamental challenge (and appeal) of this crowdsourcing problem,

and more work focused on these issues is needed.

In the future, we will address more detailed schemes for question selection. Questions that

contain more than a binary (true/false) response should be further investigated, although the

only adaptation of the Thompson sampling algorithm is in the choice of metric to Thompson

sample from. Different network structures may arise for different crowdsourcing problems,

and assessing the accuracy of the network inferred by the crowdsourcing, and not necessarily

the accuracy of individual links, will also be investigated. These and many other interesting

and important questions remain in the new problem of crowdsourcing with growing question

nets and sets.
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