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Abstract

The brain constantly adjusts perceived duration based on the recent event history. One

such lab phenomenon is subjective time expansion induced in an oddball paradigm (“odd-

ball chronostasis”), where the duration of a distinct item (oddball) appears subjectively lon-

ger when embedded in a series of other repeated items (standards). Three hypotheses

have been separately proposed but it remains unresolved which or all of them are true: 1)

attention prolongs oddball duration, 2) repetition suppression reduces standards duration,

and 3) accumulative temporal preparation (anticipation) expedites the perceived item onset

so as to lengthen its duration. We thus conducted critical systematic experiments to dissoci-

ate the relative contribution of all hypotheses, by orthogonally manipulating sequences

types (repeated, ordered, or random) and target serial positions. Participants’ task was to

judge whether a target lasts shorter or longer than its reference. The main finding was that a

random item sequence still elicited significant chronostasis even though each item was odd.

That is, simply being a target draws top-down attention and induces chronostasis. In Experi-

ments 1 (digits) and 2 (orientations), top-down attention explained about half of the effect

while saliency/adaptation explained the other half. Additionally, for non-repeated (ordered

and random) sequence types, a target with later serial position still elicited stronger chronos-

tasis, favoring a temporal preparation over a repetition suppression account. By contrast,

in Experiment 3 (colors), top-down attention was likely the sole factor. Consequently, top-

down attention is necessary and sometimes sufficient to explain oddball chronostasis;

saliency/adaptation and temporal preparation are contingent factors. These critical bound-

ary conditions revealed in our study serve as quantitative constraints for neural models of

duration perception.

Introduction

Perceiving time is special to humans because time itself is not a physical entity commensurate

with matter and energy. Accordingly, the subjective sense of time may rely upon inferences

from primary senses as well as a person’s cognitive state. In the sub-second range of time
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perception, a growing body of research has shown that the perceived duration of an event not

only depends on its temporal context but also on the observer’s psychological activities. For

example, in a string of events, humans tend to observe particular events as lasting longer, such

as the first or the last in the sequence [1], or when there is an odd event in the context (e.g.,

[2]). The subjective expansion of time is also experienced when we switch hearing from one

ear to the other [3], during the first moment after we shift our gaze to read a clock (e.g., [4]),

and during the moment right before baseball or tennis players strike the ball [5]. These

reported subtypes of subjective time expansion effects may share related neural underpinnings,

reflecting how the brain constructs and regulates perceived time.

Prior research has revealed that time perception involves multiple cortical and subcortical

brain areas (e.g., [6–8]). A clear picture of how these areas interact is still lacking. The afore-

mentioned phenomena thus provide a window into how the brain takes bottom-up, stimulus-

driven and top-down, goal-driven factors both into account. In this study, we focus on the

mechanisms of subjective time expansion with an oddball paradigm. It is a perceptual case that

does not concern action-related factors, and arguably one of the most theorized and experi-

mented case among related phenomena. In such a paradigm, the duration of a novel item

(oddball) appears subjectively longer than that of other repeated items (standards) in a

sequence [2]. For the sake of simplicity, we will refer to this specific phenomenon as ‘oddball

chronostasis’ in the remainder of this article, following the generic term ‘chronostasis’ first

introduced by Yarrow et al. [4] to describe the situation that the second hand of a clock seems

to have stopped (i.e., subjective time expansion).

In the literature, two major theories were proposed to explain oddball chronostasis that res-

onates with this top-down and bottom-up distinction. One is the attention theory, which states

that attention increases the subjective duration of the oddball [2, 9]. The other is the repetition

suppression theory, which instead states that through adaptation or predictability, the subjec-

tive duration of the standards reduces [10–13]. By contrast, the oddball stimulus appears lon-

ger because it is less susceptible to the repetition suppression.

Several previous key findings support the attention hypothesis. First, Tse et al. [2] discov-

ered that the amount of visual duration distortion in general rose with reference duration with

an initial local peak around 225 msec followed by a dip around 375 msec until it saturated

beyond 1000 msec, consistent with the signature of transient and sustained components of

attention (e.g., [14–15]). Given that attention orienting takes time, the attention hypothesis

could also explain why anti-chronostasis (subjective time compression) occurred when the ref-

erence duration was less than about 120 ms. Second, Tse and colleagues [2] found that oddball

chronostasis in visual and auditory cases shares similar patterns, which is consistent with a

central mechanism account such as attention. Third, New & Scholl [9] found that the occur-

rence of an oddball dilated the perceived duration of another item simultaneously presented at

a different location and the effect was unaffected by target-oddball spatial distance or whether

the oddball and the target item belong to the same object. They thus concluded that this global

time expansion effect might reflect increased arousal driven by attention.

On the other hand, other existing evidences support the repetition suppression hypothesis

more. First, oddball chronostasis scales with oddball’s serial position [12, 16–17]. Second, odd-

ball chronostasis scales with feature discrepancy between the oddball and the standards [12–

13, 16]. Third, oddball chronostasis can be elicited by brightness oddballs dimmer than the

standards [13]. Therefore, the underlying mechanisms of repetition suppression may involve

low-level adaptation as well as high-level prediction error of stimulus content or position.

Interestingly, the attention and the repetition suppression hypotheses are in fact logically

compatible. The former predicts the subjective expansion of the oddball duration while the lat-

ter subjective compression of the standard duration. It means that these two hypotheses can
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both possibly contribute to the oddball chronostasis, and that they can be directly compared in

a single experiment. First, the attention effect can be broken down into bottom-up saliency

and top-down attention (c.f. [2]). Second, the repetition suppression effect can be divided into

adaptation as well as prediction error [13]. Therefore, the four new hypotheses in question

become top-down attention, bottom-up saliency, adaptation, and prediction error. Theoreti-

cally saliency and adaptation are different, but indistinguishable empirically in the operational

definition of the following experiments. Accordingly, we regroup the hypotheses above into

three instead: top-down attention, saliency/adaptation, and prediction error and aim to iden-

tify their relative contributions across experimental conditions.

To dissociate these refined hypotheses, we measured participants’ chronostasis magnitude

(CM, which quantifies how large the subjective time expansion of a target is when compared

with a reference, see Materials and methods for details) with three types of item sequences:

repeated, ordered, and random (Fig 1A). The repeated condition was the classic oddball para-

digm. The standards were repeated and the oddball was distinct from the standards. As Fig 2A

illustrates, in the most comprehensive scenario, top-down attention, saliency/adaptation,

and prediction error could all be underlying factors. In the ordered condition, items never

repeated; hence, this condition excluded adaptation/saliency as an explanation. The target was

the item that did not follow the regularity. In the random condition, the observers were pre-

instructed which item would be the target while the other items were random and carried no

information about what the target would be. Compared with an ordered sequence, a random

sequence further excluded prediction error and thus singled top-down attention out as an

underlying cause. Therefore, contrasting CM across sequence types could unravel which fac-

tors are critical. Fig 2A–2D depict several possible scenarios of the sequence type effect.

Apart from the main issue regarding the origin of oddball chronostasis, there is also a side

issue about what mechanism modulates it. Several previous studies [12, 16–17] have reported

that the larger the serial position of the oddball is inside a sequence, the greater the CM, and

the effect could eventually saturate. Two explanations have been proposed. One is the temporal

preparation account by Kim and McAuley [16] which states that oddball chronostasis at least

partly originates from how early one could detect the onset of the target item. Assuming that

the offset is unaffected, an apparently earlier onset is tantamount to longer perceived duration.

Using an oddball detection task, their data did reveal such a negative correlation between

response time and CM. The other is the repetition suppression account [10–13] as described

earlier, which states that the more the repetition, the greater the CM. However, in previous

experiments [12, 16–17] reporting this target serial position effect, standards were always

repeated. Thus, a critical test between these two hypotheses was missing. By contrast, in our

design, the sequence type and the target serial position were orthogonally manipulated. If the

temporal preparation hypothesis were true, CM would grow with target serial position regard-

less of sequence type (Fig 2E), resulting to no interaction effect. Conversely, if the repetition

suppression hypothesis were true, CM would grow with target serial position in the repeated

but not in the ordered and the random sequence condition, leading to significant interaction

effect (Fig 2F).

In Experiment 1, we started from digits as stimuli (Fig 1B), as these distinct sequence types

can be intuitively constructed (Fig 1A). The results demonstrated that half of the oddball

chronostasis could be explained by top-down attention, while the other half by bottom-up

saliency or adaptation, but not prediction error. To determine whether the findings can be

generalized to lower level visual attributes, Experiment 2 tested orientations as stimuli, which

were also adopted in several previous studies [10, 12–13]. To further disentangle adaptation

from saliency, Experiment 3 examined colors because they are highly salient and draw stimu-

lus-driven attention rather automatically. The results revealed that top-down attention is
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sufficient as an explanation for oddball chronostasis among colors. The overall implications

for top-down and bottom-up mechanisms underlying chronostasis are discussed.

Materials and methods

Participants

All experiment protocols were approved by the institutional review board of California Insti-

tute of Technology (Caltech). The observers were drawn from the Caltech brain science subject

pool, which mainly consisted of Caltech and Pasadena City of College students. In Experiment

1, there were 16 observers (8 female; 14 naïve; 20–54 years; M = 29.8; SD = 8.1). In Experiment

2, there were 19 participants (9 female; 18 naïve; 18–59 years; M = 27.5; SD = 10.5). In Experi-

ment 3, there were 14 participants (6 female; 14 naïve; 18–41 years; M = 25.4; SD = 7.6). All

participants provided written informed consent before the experiments. The naïve participants

were paid for their cooperation. Participants of Experiment 3 all passed an Ishihara color

blindness test.

Fig 1. Paradigm and stimuli. (A) In each type of item sequences, the observers performed a duration discrimination task between the target and its

reference to estimate the amount of duration distortion (see Methods for details). (B-D) Stimulus sets in Experiments 1, 2, and 3, respectively.

https://doi.org/10.1371/journal.pone.0182639.g001
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Fig 2. Theoretical predictions of results. Vertical axis is chronostasis magnitude (the amount of subjective time

expansion, see Methods and supplementary methods for details). (A-D) Four likely scenarios of the sequence type main

effect, given the controversy between the attention and the repetition suppression theories. (E-F) Two likely scenarios of

the interaction effect between sequence types and target serial positions, given the controversy between temporal

preparation and repetition suppression theories. See introduction for details of the rationale and the experimental design.

The predictions here assume additive and independent components.

https://doi.org/10.1371/journal.pone.0182639.g002
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Apparatus

The stimuli were presented using a Philips Brilliance 202P7 monitor in Experiments 1 and 3,

and a Lacie Electron 22 Blue IV monitor in Experiment 2. The screen resolution was set at 800

(H) x 600 (V) with frame rate 120Hz. The viewing distance was 70cm. The stimuli presentation

code was written in Python with PsychoPy toolbox [18] under Mac OS X. To ensure that the

timing was precise, a preemptive setting was adopted to override other background processes.

All Commission Internationale d’Éclairage (CIE) 1931 chromaticity (x, y) and luminance (Y)

values were measured by a Konica Minolta CS-100A colorimeter.

Design

The two independent variables sequence type and target serial position were factorially crossed

within subjects. There were 3 levels of sequence types (repeated, ordered, random) in Experi-

ments 1 and 2, and 2 levels (repeated, random) in Experiment 3. There were 3 levels of target

positions (4th, 5th, 6th) in all experiments. The dependent variable was chronostasis magni-

tude (CM), whose measurement is described in the later subsections. Therefore, CM was ana-

lyzed with a two-way analysis of variance (ANOVA) in each experiment.

Stimuli

All stimuli were presented at the center of the screen where there was a constant red (CIE

x = 0.614, y = 0.342, Y = 26.1) fixation point spanning 0.1˚ (H) x 0.1˚ (V) visual angle at the

center of the screen. The background was black. In Experiment 1, the stimuli set comprised

white digits 0 to 9 each spanning 1.0˚ (H) x 1.5˚ (V) visual angle (Fig 1B). In Experiment 2, the

stimuli set comprised bars spanning 5˚ (H) x 1˚ (V) visual angle with one of the 8 orientations:

0˚, 22.5˚, 45˚, 67.5˚, 90˚, 112.5˚, 135˚ and 157.5˚ (Fig 1C). In the ordered condition, the orien-

tation sequence followed either a clockwise or a counter-clockwise order, where the step

between stimuli was either -22.5˚ or 22.5˚. The target was the item that deviated from the

expected regularity by skipping ahead or going backwards. To remain perceptual consistency,

the last item resumed the regularity from the target rather than the items preceding the target.

In Experiment 3, the stimuli set comprised squares spanning 4˚ (H) x 4˚ (V) visual angle with

one of the 6 nominally isoluminant colors: red (x = 0.39, y = 0.31, Y = 61.7), yellow (x = 0.43,

y = 0.47, Y = 61.7), green (x = 0.26, y = 0.47, Y = 61.7), blue (x = 0.20, y = 0.28, Y = 61.7), purple

(x = 0.29, y = 0.24, Y = 61.7), and gray (x = 0.31, y = 0.33, Y = 61.7) (Fig 1D). Unlike Experi-

ments 1 and 2, Experiment 3 did not include an ordered condition since there was not a clear

way to order the colors. The item colors were specifically chosen to be isoluminant because it

was known that stimulus luminance could affect its perceived duration (e.g., [19]).

Procedure

The dependent variable CM was derived from the psychometric function estimated by the

method of constant stimuli (see the subsection below for details), Thus, the participants’ task

was to discriminate the duration between the target item and its reference, which was the item

just before it (Fig 1A). They were forced to make their best guess and to choose either target

perceived “longer” or “shorter” using one of two keys on the computer keyboard.

In each trial, 5 to 7 items were presented one at a time, as the target serial position was

between the 4th and the 6th, and an additional item was presented after the target (Fig 1A).

We specifically avoided using the first or the last item as the target or the reference to avoid the

potential confounding chronostasis effects elicited by the first and the last stimulus (e.g., [1]),

as in van Wassenhove and colleagues’ oddball chronostasis study [20]. The participants were
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also instructed to respond only after all items had been presented. This long gap between the

target item presentation and the response helped avoid chronostasis induced by action prepa-

ration (e.g., [5]). Duration of all items except the target was fixed at 600 ms. Centered around

that standard duration, the target duration varied in 8 levels from 250 to 950 ms in 100 ms

steps to avoid inflation of CM caused by asymmetric distribution [21]. Each inter-stimulus

interval (ISI) was random, chosen from a uniform distribution between 250 and 500 ms. Each

inter-trial interval (ITI) was random, chosen from a uniform distribution between 700 and

1100 ms.

Every participant was tested in 3 sessions, where each session comprised a practice block

and 10 blocks of trials of a given sequence type. The order of sequence types was random per

participant. A session typically took about 40 minutes. The participants were always given two

separate days to finish all 3 sessions. Each session had a sequence type specific experimental

instruction, followed by a practice block of 6 trials, and experiment blocks (10 in Experiments

1 and 2; 9 in Experiment 3). The practice trials were from the conditions of shortest (250 ms)

and longest (950 ms) target durations and were excluded from analysis. Each of the experiment

blocks contained one repeat of all 24 combinations of 3 target serial position and 8 target dura-

tions, whose order was randomly shuffled. Before each block, an instruction screen indicated

the chance to take a short break.

The actual items per trial depended on the sequence type (Fig 1A). The repeated condition

was the classical oddball paradigm, where all items except the target were the same. Hence, the

oddball was the target. All items were randomly redrawn from the stimulus set per trial. In the

ordered condition, the sequence always was ascending and started from 1. The target was the

item that deviated from the expected regularity. In the random condition, the target item was

randomly chosen from the stimulus set per block and prompted in the block instruction. Each

of the standard items was sampled with replacement from the stimulus set excluding the target

stimulus.

Psychometric function and chronostasis magnitude

In each sequence type and target serial order combination, the probability of a participant

reporting the target as subjectively longer than the reference were calculated. A cumulative

Gaussian distribution was fitted to those data to estimate psychometric functions. The point of

subjective equality (PSE) of each condition was the corresponding physical duration when the

probability was 0.5 on the psychometric function. Chronostasis magnitude was thus defined as

CM = reference duration—PSE. For example, a 500 ms target subjectively equivalent to a 600

ms reference this way indicates CM of 100 ms.

Results

Experiment 1: Digits

Crossing the factors sequence type and target serial position resulted in 9 conditions per par-

ticipant. A two-way 3 (sequence type) x 3 (target position) repeated measures ANOVA was

performed on the measured CM. Our refined hypotheses predict that the sequence type main

effect on CM could fall into one of the four scenarios as in Fig 2A–2D, resolving which of the

top-down attention, saliency/adaptation, and prediction error hypotheses are true. The inter-

action effect between these two factors could also fall into either scenario as in Fig 2E and 2F,

suggesting whether the temporal preparation or the repetition suppression hypothesis is more

likely.

Fig 3 summarizes the results (N = 16) from Experiment 1. The main effect of sequence

types was significant (F2,30 = 5.42, P< 0.01, ηp
2 = 0.27) (Fig 3A). Tukey post-hoc tests revealed
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that CM significantly differed between the repeated and the ordered conditions (Z1,30 = 3.01,

P< 0.01), between the repeated and the random conditions (Z1,30 = 2.78, P< 0.05), but not

between the ordered and the random conditions (Z1,30 = -0.22, P = 0.97). Since in the random

sequence condition, the block-specific targets were defined at the beginning of each block, to

verify that participants correctly memorized the target while performing the task, every block

was broken into two halves. PSEs derived from the first and the second halves were compared

with a two-tailed paired t-test. The non-significant difference (t15 = 0.92, P = 0.37) suggested

that participants were able to perform the task with robust memory of the targets. A one-tailed

paired t-test further showed that CM in the random condition significantly differed from 0

(t15 = 1.76, P< 0.05). The data pattern matched the prediction in Fig 2B. Therefore, it suggests

that both top-down attention and saliency/adaptation, but not prediction error, are the neces-

sary underlying factors of oddball chronostasis at least for digits stimuli. The exclusion of

prediction error was in line with the conclusion of Cai and colleagues [10] that high-level stim-

ulus content prediction may not be an underlying factor. Our experimental design and data

further showed that top-down attention and saliency/adaptation contributed about equally.

Pearson’s correlation of CM across participants between sequence types also strengthened this

Fig 3. Results from Experiment 1 (digits). (A, E, F) The group average CM bar graphs along with statistical outcomes. Error bars indicate 1 S.E.M. (A)

The significant sequence type main effect is consistent with the prediction scenario shown in Fig 2B. (B-D) Scatter plots and correlations of CM between

sequence type condition pairs. Each data point represents one participant. (E) The significant target serial position main effect is consistent with previous

findings. (F) The non-significant interaction effect of sequence type and target serial position matches closer to the data pattern predicted in Fig 2E.

https://doi.org/10.1371/journal.pone.0182639.g003
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conclusion. The correlation was significant between the repeated and the ordered conditions

(r = 0.72, P< 0.01), between the repeated and the random conditions (r = 0.83, P< 10−4), and

between the ordered and the random conditions (r = 0.78, P< 0.001) (Fig 3B–3D). It suggests

that chronostasis among those three sequence types share a common mechanism, which is

likely top-down attention.

The main effect of target serial position was significant (F2,30 = 9.45, P< 0.001, ηp
2 = 0.39)

(Fig 3E). The Tukey post-hoc tests of target serial positions revealed that CM significantly

differed between the 4th and the 5th (Z1,30 = -4.34, P< 0.001), between the 4th and the 6th

(Z1,30 = -2.42, P< 0.05), but not between the 5th and the 6th positions (Z1,30 = 1.92, P = 0.13).

The pattern was consistent with the results of experiment 3 in Pariyadath and Eagleman [12]

that CM grows with the oddball position but eventually saturates.

Unlike the prediction of the repetition suppression hypothesis (Fig 2F), the interaction

effect was not significant (F2.65,39.82 = 1.00, P = 0.40, ηp
2 = 0.06, Greenhouse-Geisser correction

applied) (Fig 3F). Although the data pattern seemed to match the prediction of the temporal

preparation hypothesis (Fig 2E), a planned comparison could better reveal the source of this

non-significant interaction. If the temporal preparation hypothesis were really true, a later

target would elicit larger CM no matter the sequence type. That is, even in the non-repeated

(ordered and random) sequences, CM would be larger with a later target. A planned one-tailed

t-test, averaging CM in the ordered and the random conditions, showed that this was indeed

the case with the most extreme contrast (6th vs. 4th target serial position: t60 = 1.88, P< 0.05).

Therefore, the results here favored the temporal preparation [16] over the repetition suppres-

sion hypothesis [12, 17] in explaining target serial position effect.

To our knowledge, this is the first systematic experiment directly contrasts the attention

with the repetition suppression hypotheses, as well as the temporal preparation with the repeti-

tion suppression hypotheses. The results imply that both top-down attention and saliency/

adaptation are necessary for explaining oddball chronostasis among digits. On top of that,

temporal preparation rather than repetition suppression separately modulates the chronostasis

effect.

Experiment 2: Orientations

One may argue that the results in Experiment 1 are specific to digits, which require more cog-

nitive processing than basic perceptual attributes. In Experiment 2, we extended the same par-

adigm to stimuli varied in orientations to examine if the conclusion holds.

We obtained a similar pattern in Experiment 2. Fig 4 summarizes the results (N = 19)

from Experiment 2. The main effect of sequence types was significant (F2,36 = 3.45, P< 0.05,

ηp
2 = 0.16) (Fig 4A). Tukey post-hoc tests revealed that CM significantly differed between the

repeated and the ordered conditions (Z1,36 = 2.52, P< 0.05), but not between the repeated and

the random conditions (Z1,36 = 1.97, P = 0.12), or between the ordered and the random condi-

tions (Z1,36 = -0.55, P = 0.85). To verify that participants performed the task with stable mem-

ory of the block-specific target in the random sequence condition, PSEs derived from the first

and the second halves across all blocks were compared with a two-tailed paired t-test. The

non-significant difference (t18 = 0.82, P = 0.42) suggested that participants had robust memory

of the target. A one-tailed t-test further showed that CM in the random condition significantly

differed from 0 (t18 = 2.37, P< 0.05). The data pattern was again consistent with the prediction

in Fig 2B. Pearson’s correlation of CM across participants between sequence types also showed

similarity. The correlation was significant between the repeated and the ordered conditions

(r = 0.55, P< 0.05), between the ordered and the random conditions (r = 0.60, P< 0.01), but

not between the repeated and the random conditions (r = 0.31, P = 0.20) (Fig 4B–4D).
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Compared with the results of Experiment 1, in general, the correlation coefficients were lower

and one of them was not significant. The reason could be that specific bar orientations were

not as overlearned items as digits, making the task harder and thus data pattern noisier than

those in Experiment 1.

The main effect of target serial position was marginally significant (F2,36 = 3.22, P = 0.05,

ηp
2 = 0.15) (Fig 4E). For the sake of comparison, the Tukey post-hoc tests of target serial posi-

tions were still performed, but one must take precaution in the interpretation. It revealed that

the CM significantly differed between the 4th and the 6th (Z1,36 = -2.42, P< 0.05), but not

between the 4th and the 5th (Z1,36 = -1.88, P = 0.15), or the 5th and the 6th positions (Z1,36 =

-0.54, P = 0.85).

The interaction effect was not significant (F4,72 = 0.27, P = 0.90, ηp
2 = 0.01) (Fig 4F). To

find out whether the lack of interaction was due to significant target serial position effect in

the non-repeated sequences, a planned one-tailed t-test averaging CM in the ordered and the

random conditions revealed that CM in the 6th was larger than that in the 4th target serial

position (t72 = 2.61, P< 0.01). Therefore, consistent with Experiment 1, the results here also

supported the temporal preparation [16] over the repetition suppression hypothesis [12, 17] in

explaining target serial position effect.

Fig 4. Results from Experiment 2 (orientations). The data patterns basically replicate those in Experiment 1 (Fig 3). See Fig 3 caption for other details.

https://doi.org/10.1371/journal.pone.0182639.g004

Duration perception regulating mechanisms

PLOS ONE | https://doi.org/10.1371/journal.pone.0182639 August 8, 2017 10 / 17

https://doi.org/10.1371/journal.pone.0182639.g004
https://doi.org/10.1371/journal.pone.0182639


Therefore, consistent with Experiment 1, the results again imply that both top-down atten-

tion and saliency/adaptation are necessary factors of oddball chronostasis and they contribute

about equally. Temporal preparation is a separate modulatory effect.

Experiment 3: Colors

Although Experiments 1 and 2 both arrived at the same conclusion, it is still likely that the con-

clusion may not be generalizable to other stimulus attributes. This motivated us to carry out an

experiment with nominally isoluminant color stimuli (see Materials and methods for details),

which was, to our knowledge, never examined in the oddball chronostasis literature. Due to

the difficulty of ordering colors, only the repeated and the random sequences were included.

The results revealed a distinct pattern of the sequence type effect, while everything else were

qualitatively similar to those in Experiments 1 and 2.

Fig 5 summarizes the results (N = 14) from Experiment 3. The main effect of sequence

types was not significant (F1,13 = 0.07, P = 0.80, ηp
2 = 0.01) (Fig 5A). PSEs separately derived

Fig 5. Results of Experiment 3 (colors). There are only repeated and random sequence type conditions. (A) The

non-significant sequence type main effect is consistent with the prediction scenario shown in Fig 2D. (B-D) Despite

the stark difference in sequence type main effect from Experiments 1 and 2, other patterns remain similar to those in

the first two experiments. See Fig 3 caption for other details.

https://doi.org/10.1371/journal.pone.0182639.g005
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from the first and the second halves across all random sequence blocks were compared with a

two-tailed paired t-test. The non-significant difference (t13 = 1.81, P = 0.09) suggested that the

participants were able to perform the task with stable memory of the block-specific targets. A

one-tailed t-test further showed that CM in the random condition significantly differed from

0 (t13 = 2.82, P< 0.01). The data pattern matched the prediction in Fig 2D instead. Therefore,

it may indicate that top-down attention but not saliency/adaptation or prediction error, is a

sufficient underlying factor of oddball chronostasis at least for isoluminant color stimuli. Pear-

son’s correlation of CM across participants between the repeated and the random conditions

was significant (r = 0.83, P< 0.001) (Fig 5B). Taken together, it suggests that the common

mechanism underlying the chronostasis of both sequence types is likely top-down attention.

The rest was mostly similar to Experiments 1 and 2. The main effect of target serial position

was significant (F2,26 = 4.46, P< 0.05, ηp
2 = 0.26) (Fig 5C). The Tukey post-hoc tests of target

serial positions revealed that CM significantly differed between the 4th and the 6th (Z1,26 =

-2.96, P< 0.01), but not between the 4th and the 5th (Z1,26 = -1.83, P = 0.16), or the 5th and the

6th positions (Z1,26 = -1.13, P = 0.49). The interaction effect was not significant (F2,26 = 1.72,

1144, P = 0.20, ηp
2 = 0.12) (Fig 5D). However, considering only the random sequence type, a

planned one-tailed t-test did not reveal larger CM in the 6th than that in the 4th target serial

position (t26 = 0.02, P = 0.25). Therefore, the results here could not directly distinguish

between the temporal preparation and the repetition suppression hypothesis. As the exact iso-

luminant colors were harder to remember compared with the exact digits or orientations, one

possible explanation was that temporal preparation might rely on unambiguous memory of

the target stimulus.

It is intriguing as to why the sequence type main effect in Experiment 3 showed a disparate

pattern from Experiments 1 and 2. One possibility is that color stimuli are inherently robust

in saliency so as not mitigated by repetition, rendering the saliency difference between the tar-

get and the reference negligible. Another possibility is that the color stimuli differ from one

another by more than one psychological dimension (hue and saturation here, unlike shape or

orientation only in the previous two experiments). Analogous to the failure for conjunctive

features to pop out in visual search, the oddball paradigm here can be regarded as a temporal

version of visual search that is substantially harder. That is, either way, the brain may not have

an advantage to spot an oddball among colors based on saliency. Future studies can 1) examine

whether our conclusion in Experiments 1 and 2 holds for other stimulus dimensions, and 2)

further explore the idea of saliency in temporal visual search, just as in the oddball paradigm,

to fully discover the properties of spatio-temporal saliency.

General discussion

Isolating top-down attention

Since the initial report of the oddball chronostasis phenomenon [2], the attention [2, 9] and

the repetition suppression hypotheses [10–13] have been separately proposed but never

directly contrasted in the same experiment. Starting from theoretical analysis, we have decom-

posed these two hypotheses into four putative factors, and then regrouped them into three test-

able categories—top-down attention, saliency/adaptation, and prediction error. Empirically,

our Experiments 1 and 2 together have shown that top-down attention and saliency/adapta-

tion are the two necessary and equal contributing underlying factors of oddball chronostasis.

Experiment 3 has shown that top-down attention alone is a sufficient cause. In sum, our find-

ings suggest that top-down attention is an inherent factor underlying oddball chronostasis.

The additional contribution from saliency or adaptation depends on the stimulus dimension.
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In other words, oddball chronostasis occurs at least partly because the oddball is a target,

which has nothing to do with its being odd in the context.

Saliency vs. adaptation

Among the three remaining hypotheses- saliency, adaptation, and prediction error, prediction

error has been consistently ruled out both in our study and Cai et al. [10]. In our Experiments

1 and 2, there was no significant difference between the ordered and the random sequence

conditions, which applied to higher-level stimuli such as digits, as well as lower-level properties

such as orientations. Although in our Experiment 3, there was not an ordered condition, the

insignificant difference between the repeated and the random conditions still suggested that

prediction error has no role for color stimuli. In experiment 3 of Cai et al. [10], there was no

significant difference between the expected and unexpected digit conditions either. Therefore,

in this sense, the ‘surprise’ element is not a critical factor.

The evidence so far may favor the saliency over the adaptation account, but does not entirely

rule out the latter one. The results of Experiment 3 can be easily explained by saliency rather

than adaptation (see Results for details). This is supported by the discovery of Schindel et al. (see

experiment 2 of [13]) that given the luminance of standards was fixed, a dimmer oddball elicited

stronger chronostasis than a brighter oddball, which was against the prediction of the adaptation

hypothesis. On the other hand, the results in experiment 4 of Cai et al. [10] showed that only

when a bar is presented at the original location with the same orientation, chronostasis occurs,

which is more consistent with the adaptation hypothesis. Either way, our experiment results

have isolated the top-down attention factor, and narrowed down the uncertainty between atten-

tion and repetition suppression to a bottom-up source, be it saliency, adaptation, or both.

Origin of the serial position effect

Our data also contribute to resolving a side issue—the serial position effect, where a later odd-

ball appears to last longer in a sequence. In the literature, two separate theories were proposed.

The repetition suppression hypothesis [12] explains the effect by the number of same items

before the target, while the temporal preparation hypothesis [16] explains the effect by the

accumulative anticipation of the target onset in a sequence. However, a decisive hypothesis

testing has not been performed earlier. Specifically, the repetition suppression hypothesis

would predict the same CM no matter the serial position if the sequence were a non-repeated

one (such as ordered or random). On the other hand, the temporal preparation hypothesis

predicts larger CM with later serial positions no matter the sequence type. In our study, by

manipulating target serial order orthogonally to sequence type, the interaction effect was not

significant across all three experiments. Specifically, non-repeated sequences still showed sig-

nificant target serial position effect in Experiments 1 and 2, but not in Experiment 3. There-

fore, part of the evidence in our study directly supports the temporal preparation hypothesis. It

is conceivable that temporal preparation could dominate the serial position effect when the

specific stimulus items (such as digits and orientations) are natural and easy to remember,

while repetition suppression could prevail when the specific stimulus items are more unfamil-

iar to the participants. Future studies may pursue whether that is really the case. In sum, our

study has systematically teased apart three separate sources of oddball chronostasis—top-

down attention, saliency/adaptation, and temporal preparation.

Relation to other types of chronostasis

Our finding that top-down attention may be an inherent component in oddball chronostasis is

closely related to all types of chronostasis, such as chronostasis elicited by the first item, the last
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item [1], gaze shift (e.g., [4]), and action preparation [5]. If researchers were to identify the

contributing factors underlying each type of chronostasis, it is beneficial to isolate the top-

down attention part first and let it serve as a baseline, such as the role of the random sequence

condition in our experiments (c.f. [22]).

Alternative interpretations

Although the explicit prediction error component has been excluded, there may still be room

for expectation or predictive coding (in the likelihood prediction sense). In a few oddball

chronostasis studies, when multiple oddball types are interleaved, the higher likelihood oddball

type could positively [10] or negatively [16] modulate chronostasis. Similar mixed results were

found in other contexts. With a two-stimulus paradigm, Ulrich, Nitschke, and Rammsayer

[23] found that a lower likelihood target elicited stronger chronostasis; by contrast, Matthew

and colleagues [24–25] found that lower likelihood novel target induced less or no chronosta-

sis. Since likelihood manipulation is not our main theoretical concern, we will leave this for

future investigations.

Schindel and colleagues [13] have advocated the predictive coding view to explain oddball

chronostasis and proposed that attention is only drawn toward the oddball because of its lower

likelihood of being presented. However, our main finding that a random sequence with 100%

certainty target still elicited substantial chronostasis refutes this claim. Top-down attention

may operate independently of predictive coding in perceived duration. Needless to say, our

discovery resonates with how attention orienting prolongs time perception in general. For

instance, exogenous (e.g., [26–27]) and endogenous (e.g., [28]) spatial attention orienting, as

well as exogenous and endogenous temporal attention orienting (e.g., [29–30]) both lengthen

time perception.

An alternative to the attention hypothesis is that the target elicits greater arousal than the

other items. Initially, Pariyadath and Eagleman [11] have demonstrated in their experiment

3 that using an emotionally salient stimulus did not make oddball chronostasis stronger.

Although one may argue that it could be due to ceiling effect, in light of the findings of Cai

et al. [10] and our Experiments 1 and 2, the ‘surprise’ element (ordered vs. random, see green

bars vs. blue bars in Figs 3F and 4F), which presumably would also have elevated arousal, did

not in turn modulate CM. Therefore, the arousal hypothesis is overall less likely.

Neurophysiological and computational implications

Resolving the debate over attention vs. repetition suppression and over temporal preparation

vs. repetition suppression (see all likely scenarios in Fig 2) is critical to identifying the roles of

underlying neural mechanisms. Qualitatively, our study has experimentally dissociated three

separate factors that give rise to oddball chronostasis—top-down attention, saliency/adapta-

tion, and temporal preparation. Quantitatively, the relative contribution ratio of top-down

attention to saliency/adaptation is essential to computational modeling of perceived duration.

We have demonstrated that it could be close to 1:1 or 1:0 depending on the stimulus dimen-

sion (digits, orientations, or color). The experimental design can thus be utilized in future neu-

ral imaging studies to pin down the neural correlates of each source. Since many flavors of

neural models have been proposed (for an overview, see [31]), it remains to be seen whether

these three top-down and bottom-up sources of human duration perception modulators con-

verge onto the same network node to determine perceived duration. If this were the case, the

sensory cortex neural response amplitude hypothesis advocated by Eagleman and colleagues

[10, 12, 17, 32] might be one interesting possibility. If not, a core timing network which con-

sists of the supplementary motor area and the basal ganglia along with other context-
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dependent nodes [33] could be separately regulated by these three disparate factors. The

answers await future investigations.

Conclusions

1. This is the first study that directly contrasts the attention with the repetition suppression

theories, and the temporal preparation with the repetition suppression accounts. The dis-

coveries are crucial to understanding the mechanisms underlying how time is perceived in

a context.

2. Our experiments tested three categories of theoretical components to resolve the contro-

versy between the attention [2, 9] and the repetition suppression theories [10–13] of oddball

chronostasis: top-down attention, saliency/adaptation, and prediction error.

3. Results suggest that top-down attention is sometimes sufficient (to isoluminant colors) and

the other sometimes necessary (to digits and orientations) to explain oddball chronostasis.

In the latter case, it explains about half of the effect; saliency/adaptation explains the other

half. Prediction error does not play a critical role.

4. Between the temporal preparation [16] and the repetition suppression hypothesis [12, 17],

the data with digits and orientations favor the former because non-repeated (ordered or

random) sequences still exhibit target serial position effects. In this case, prior repetitions

are not crucial to render a later target appear lasting longer.

5. Therefore, oddball chronostasis has two important underlying contributors unrelated to

event oddness or unexpectedness—top-down attention and temporal preparation; some-

times bottom-up saliency/adaptation co-contributes.

Acknowledgments

We thank Daw-An Wu for his input on refining the visual stimuli and comments on the

manuscript.

Author Contributions

Conceptualization: Yong-Jun Lin, Shinsuke Shimojo.

Data curation: Yong-Jun Lin.

Formal analysis: Yong-Jun Lin.

Funding acquisition: Shinsuke Shimojo.

Investigation: Yong-Jun Lin.

Methodology: Yong-Jun Lin, Shinsuke Shimojo.

Project administration: Yong-Jun Lin, Shinsuke Shimojo.

Resources: Shinsuke Shimojo.

Software: Yong-Jun Lin.

Supervision: Shinsuke Shimojo.

Validation: Yong-Jun Lin.

Visualization: Yong-Jun Lin.

Duration perception regulating mechanisms

PLOS ONE | https://doi.org/10.1371/journal.pone.0182639 August 8, 2017 15 / 17

https://doi.org/10.1371/journal.pone.0182639


Writing – original draft: Yong-Jun Lin.

Writing – review & editing: Yong-Jun Lin, Shinsuke Shimojo.

References
1. Rose D, Summers J. Duration illusions in a train of visual stimuli. Perception. 1995; 24(10):1177–1187.

https://doi.org/10.1068/p241177 PMID: 8577576

2. Tse PU, Intriligator J, Rivest J, Cavanagh P. Attention and the subjective expansion of time. Percept

Psychophys. 2004; 66(7):1171–1189. PMID: 15751474

3. Hodinott-Hill I, Thilo KV, Cowey A, Walsh V. Auditory chronostasis: Hanging on the telephone. Curr

Biol. 2002; 12(20):1779–1781. PMID: 12401174

4. Yarrow K, Haggard P, Heal R, Brown P, Rothwell JC. Illusory perceptions of space and time preserve

cross-saccadic perceptual continuity. Nature. 2001; 414(6861):302–305. https://doi.org/10.1038/

35104551 PMID: 11713528

5. Hagura N, Kanai R, Orgs G, Haggard P. Ready steady slow: Action preparation slows the subjective

passage of time. Proc R Soc B. 2012; 279(1746):4399–4406. https://doi.org/10.1098/rspb.2012.1339

PMID: 22951740

6. Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat

Rev Neurosci. 2005; 6(10):755–765. https://doi.org/10.1038/nrn1764 PMID: 16163383

7. Wiener M, Turkeltaub P, Coslett HB. The image of time: A voxel-wise meta-analysis. Neuroimage.

2010; 49(2):1728–1740. https://doi.org/10.1016/j.neuroimage.2009.09.064 PMID: 19800975

8. Grondin S. Timing and time perception: A review of recent behavioral and neuroscience findings and

theoretical directions. Atten Percept Psychophys. 2010; 72(3):561–582. https://doi.org/10.3758/APP.

72.3.561 PMID: 20348562

9. New JJ, Scholl BJ. Subjective time dilation: Spatially local, object-based, or a global visual experience?

J Vis. 2009; 9(2):4.1–11.

10. Cai MB, Eagleman DM, Ma WJ. Perceived duration is reduced by repetition but not by high-level expec-

tation. J Vis. 2015; 15(13):19.1–17.

11. Pariyadath V, Eagleman D. The effect of predictability on subjective duration. PLoS One. 2007; 2(11):

e1264.1–6.

12. Pariyadath V, Eagleman DM. Subjective duration distortions mirror neural repetition suppression. PLoS

One. 2012; 7(12):e49362.1–4.

13. Schindel R, Rowlands J, Arnold DH. The oddball effect: Perceived duration and predictive coding. J Vis.

2011; 11(2):17.1–9.

14. Nakayama K, Mackeben M. Sustained and transient components of focal visual attention. Vis Res.

1989; 29(11):1631–1647. PMID: 2635486

15. Remington RW, Johnston JC, Yantis S. Involuntary attentional capture by abrupt onsets. Percept Psy-

chophys. 1992; 51(3):279–290. PMID: 1561053

16. Kim E, McAuley JD. Effects of pitch distance and likelihood on the perceived duration of deviant auditory

events. Atten Percept Psychophys. 2013; 75(7):1547–1558. https://doi.org/10.3758/s13414-013-0490-

5 PMID: 23801322

17. Sadeghi NG, Pariyadath V, Apte S, Eagleman DM, Cook EP. Neural correlates of subsecond time dis-

tortion in the middle temporal area of visual cortex. J Cogn Neurosci. 2011; 23(12):3829–3840. https://

doi.org/10.1162/jocn_a_00071 PMID: 21671739

18. Peirce JW. PsychoPy—Psychophysics software in Python. J Neurosci Methods. 2007; 162(1–2):8–13.

https://doi.org/10.1016/j.jneumeth.2006.11.017 PMID: 17254636

19. Goldstone S, Lhamon WT, Sechzer J. Light intensity and judged duration. Bull Psychon Soc. 1978; 12

(1):83–84.

20. van Wassenhove V, Buonomano DV, Shimojo S, Shams L. Distortions of subjective time perception

within and across senses. PLoS One. 2008; 3(1):e1437.1–13.

21. Seifried T, Ulrich R. Does the asymmetry effect inflate the temporal expansion of odd stimuli? Psychol

Res. 2010; 74(1):90–98. https://doi.org/10.1007/s00426-008-0187-x PMID: 19034503
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