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Abstract

How neural correlates of movements are represented in the human brain is of ongoing inter-

est and has been researched with invasive and non-invasive methods. In this study, we ana-

lyzed the encoding of single upper limb movements in the time-domain of low-frequency

electroencephalography (EEG) signals. Fifteen healthy subjects executed and imagined six

different sustained upper limb movements. We classified these six movements and a rest

class and obtained significant average classification accuracies of 55% (movement vs

movement) and 87% (movement vs rest) for executed movements, and 27% and 73%,

respectively, for imagined movements. Furthermore, we analyzed the classifier patterns in

the source space and located the brain areas conveying discriminative movement informa-

tion. The classifier patterns indicate that mainly premotor areas, primary motor cortex,

somatosensory cortex and posterior parietal cortex convey discriminative movement infor-

mation. The decoding of single upper limb movements is specially interesting in the context

of a more natural non-invasive control of e.g., a motor neuroprosthesis or a robotic arm in

highly motor disabled persons.

Introduction

Understanding how the human brain encodes movements is essential for the development of

an intuitive and natural control of a motor neuroprosthesis or a robotic arm. Neuroprostheses

based on functional electrical stimulation (FES) [1] can be already used to restore movement

function of spinal cord injured (SCI) persons [2]. These neuroprostheses often rely on a shoul-

der joystick as a control signal, and end users with SCI need to learn to control movements,

such as grasping, with contralateral shoulder movements. However, this control would have a

more natural feel for the end user if the movement intention is decoded with a brain-computer

interface (BCI), and subsequently translated into a control signal for a neuroprosthesis or

robotic arm. It has been shown with tetraplegic human subjects that invasive BCIs allow the

control of a robotic arm with up to 10 degrees of freedom (DoF) [3–6]. Invasive BCIs have a

better signal-to-noise ratio than non-invasive BCIs, but require extensive surgery, and the suit-

ability for long-term use is still unclear due to neural tissue response. Non-invasive BCIs based

on electroencephalography (EEG) signals on the other hand do not require surgery and are

easier to setup. They often rely on power modulations of sensorimotor rhythms (SMR)
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accompanying movement imagination (MI) (see also event-related (de)synchronization [7])

but other brain rhythms can also be exploited [8,9]. These power modulations can act as the

control signals for a neuroprosthesis [2,10–12]. Using an SMR-based BCI, our group has

already shown the restoration of the lateral grasp of a tetraplegic (C4/5 ASIA A) user with MI

of both feet [12]. In a later study, we demonstrated the switching between different lateral

grasp phases in a person with SCI (C5 ASIA A) with an SMR-based BCI and the Freehand sys-

tem [10]. Recently, Rohm et al. and Kreilinger et al. [11,13] restored not only hand but also

elbow functions of a tetraplegic end user (a review can be found in Rupp et al. [2]). However,

SMR-based BCIs can usually only detect spatially well separated patterns in the EEG as elicited

by, for example, right hand MI vs left hand MI, although recent research suggests more spa-

tially specific detections [14,15]. Furthermore, SMR-based BCIs usually require repetitive MI

of movements. This often requires BCI users to learn unnatural MI commands, such as using

repetitive left hand MI to control right hand functions [16]. However, for a more natural con-

trol the imagined movement should be as close as possible to the actual neuroprosthesis move-

ment. In this context, continuous decoding of movement trajectories from the time-domain of

the EEG has been investigated. Bradberry et al. showed in an offline study the decoding of 3D

hand velocities [17], later our group showed the decoding of 3D positions in a continuous

movement task [18] and the decoding of imagined movement trajectories [19]. Furthermore,

Agashe et al. decoded hand joint angular velocities [20], and also hand movement directions

were decoded non-invasively [21]. The current state of the art allows decoding of movement

trajectories and directions from EEG, however the low correlation with the real or intended

movement prevents a reliable and accurate control.

Another possibility to make neuroprosthesis or robotic arm control more natural is to

decode additional information about the type or quality of an imagined movement, which has

been done in the time-domain as well as in the frequency-domain of EEG. Gu et al. found that

the speed of imagined wrist movements is encoded in the time-domain in motor-related corti-

cal potentials (MRCPs) [22–24], and Yuan et al. found such a relationship in the mu and beta

rhythm with executed/imagined hand movements [25]. Jochumsen et al. [26] decoded from

MRCPs movement force and speed during executed and imagined grasping movements in

healthy persons, and attempted movements in stroke patients. Also MIs related to the same

limb were classified based on EEG power modulations in the frequency domain: Edelman

et al. [15] classified repetitive imagined hand flexion/extension and forearm supination/prona-

tion, Yong and Menon showed the classification of repetitive imagined grasp and elbow move-

ments [14]. Based on these findings, the natural control experience can be enhanced if, e.g. an

imagined repetitive supination of the arm is used to control the supination of, e.g. a robotic

arm. Furthermore, detecting different MIs related to the same limb increases the number of

control possibilities compared to classical SMR-based BCIs, which often only detect left/right

hand and foot MI. However, repetitive MIs are also not optimal since one usually does not exe-

cute repetitive hand/arm movements when manipulating objects. Of special interest are there-

fore sustained MIs, such as single supination. Vučković and Sepulveda showed the

classification of sustained wrist extension/flexion and forearm pronation/supination MIs from

the frequency-domain of the EEG in the delta and gamma band [27,28]. Gu et al. classified

imagined wrist extension and wrist rotation based on power-modulations in the mu and beta

band and the rebound rate of MRCPs but did not find any statistical difference in the rebound

rate of MRCPs [23].

In this work we hypothesize that executed and imagined sustained movements from the

same limb can be decoded from low-frequency time-domain signals (< 3 Hz). We applied a

multiclass classification comprising of 6 movement classes: elbow flexion/extension, forearm

supination/pronation, and hand open/close. Additionally, these movements were classified
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against a rest class. We measured 15 healthy subjects in two separate ME and MI sessions. To

the best of our knowledge, this high number of different sustained movements of the same

limb has not been studied before using low-frequency time-domain EEG signals. Furthermore,

we show for the first time for EEG-based movement decoding the classifier patterns [29] in the

source space, which allows the estimation of the brain regions exploited by the classifier. Gen-

erally, the purpose of this work is to get a better understanding if and how single sustained

upper limb movements are encoded in the time-domain of low-frequency EEG signals.

Methods

Subjects

We recruited 15 healthy subjects aged between 22 and 40 years with a mean age of 27 years

(standard deviation 5 years). Nine subjects were female, and all the subjects except s1 were

right-handed. The subjects received payment for their participation. Written informed consent

was obtained from all subjects, and the study was conducted in accordance with the protocol

approved by the ethics committee of the Medical University of Graz (approval number 28–108

ex 15/16).

Paradigm

Subjects sat on a chair and their right arm was fully supported by an exoskeleton with anti-

gravity support (Hocoma, Switzerland) to avoid muscle fatigue, see Fig 1A (the individual in

this figure has given written informed consent, as outlined in PLOS consent form, to publish

these case details).

We measured each subject in two sessions on two different days, which were not separated

by more than one week. In the first session the subjects performed ME, and MI in the second

session. The subjects performed six movement types which were the same in both sessions and

comprised of elbow flexion/extension, forearm supination/pronation and hand open/close; all

with the right upper limb (see Fig 1B). All movements started at a neutral position: the hand

half open, the lower arm extended to 120 degree and in a neutral rotation, i.e. thumb on the

inner side. Additionally to the movement classes, a rest class was recorded in which subjects

were instructed to avoid any movement and to stay in the starting position. In the ME session,

we instructed subjects to execute sustained movements. In the MI session, we asked subjects to

perform kinesthetic MI [30] of the movements done in the ME session (subjects performed

one ME run immediately before the MI session to support kinesthetic MI).

The paradigm was trial-based and cues were displayed on a computer screen in front of the

subjects, Fig 2 shows the sequence of the paradigm. At second 0, a beep sounded and a cross

popped up on the computer screen (subjects were instructed to fixate their gaze on the cross).

Afterwards, at second 2, a cue was presented on the computer screen, indicating the required

task (one out of six movements or rest) to the subjects. At the end of the trial, subjects moved

back to the starting position. In every session, we recorded 10 runs with 42 trials per run. We

presented 6 movement classes and a rest class and recorded 60 trials per class in a session.

Recording

The EEG was measured from 61 channels covering frontal, central, parietal and temporal areas

using active electrodes and four 16-channel amplifiers (g.tec medical engineering GmbH, Aus-

tria). Reference was placed on the right mastoid, ground on AFz. We used an 8th order Cheby-

shev bandpass filter from 0.01 Hz to 200 Hz and sampled with 512 Hz. Power line interference

was suppressed with a notch filter at 50 Hz. In addition we measured the arm joint angles for
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the exoskeleton using customized software and finger positions with a 5DT Data Glove (5DT,

USA) for determining movement onsets. Prior to each session, we measured the electrode

positions with a CMS 20 EP system (Zebris Medical GmbH, Germany). The individual elec-

trode positions were used for source imaging.

Fig 1. Experimental setup and movements. a: Subjects sat in a chair and executed/imagined movements according to cues presented on a computer

screen in front of them. b: Subjects executed/imagined: elbow flexion, elbow extension, forearm supination, forearm pronation, hand close, and hand

open.

https://doi.org/10.1371/journal.pone.0182578.g001
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Movement onset detection

To detect movement onsets in ME sessions we used sensor data from the exoskeleton and the

data glove. The elbow and wrist sensors (exoskeleton) were used to detect elbow flexion/exten-

sion and forearm pronation/supination onsets, respectively. For opening/closing onsets we per-

formed a principal component analysis on the data glove sensor data and used only the first

principal component for further processing. A movement was detected when the absolute differ-

ence between the sensor data and the preceding time average (from -1 s to -0.5 s) crossed a

threshold. Thresholds were chosen dependent on each sensor to ensure timely detection of

movement onsets and to minimize false positive detections (typically, movements were detected

not more than 80 ms later than a human expert would detect them when visually inspecting the

sensor data). In order to account for systematic detection time differences between the classes

(e.g. different sensor thresholds and different inertiae of limb parts), we time-shifted the mean

value of the detection times of each class toward the mean value of all classes. Thus, on average

the movement onsets (wrt. to the cue) of the movement classes were all the same. For the classes

without overt movements (i.e., the rest class and the MI classes), we assumed a virtual movement

onset. This virtual movement onset was individually calculated for each subject as the average

movement onset of the movement classes. In this manner, all classes were still comparable.

Preprocessing

We used EEGLAB to detect and remove noisy channels (1.4 channels per subject on average)

based on the joint probability of each channel. We downsampled the data to 256 Hz to save

computation time. Thereafter we marked artefacts by band-pass filtering (0.3 Hz—70 Hz, 4th

order zero-phase Butterworth filter) the data and using EEGLAB[31] to find (1) values above/

below thresholds of -200 μV and 200 μV, respectively, (2) trials with abnormal joint probabili-

ties, and (3) trials with abnormal kurtosis. The methods (2) and (3) used as threshold 5 times

the standard deviation of their statistic to detect artefact contaminated trials. The artefact con-

taminated trials were only marked for removal but not yet removed. Afterwards, we filtered

the original (unfiltered) 256 Hz EEG data with a zero-phase 4th order Butterworth filter

between 0.3 Hz and 3 Hz and re-referenced the data to a common average reference. Subse-

quently, we discarded the trials previously marked as artefact contaminated.

Fig 2. Trial sequence. At second 0, a cross appeared together with a beep sound; at second 2, the cue was presented and subjects executed/imagined a

sustained movement or avoided any movement, respectively. After the trial, a break with a random duration of 2 s to 3 s followed.

https://doi.org/10.1371/journal.pone.0182578.g002
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Classification

The preprocessed signals were classified with a shrinkage regularized linear discriminant anal-

ysis (sLDA) classifier [32,33] which was embedded in the discriminative spatial pattern (DSP)

[29] framework described in the next section.

We conducted two types of classifications: first, we classified all 6 movement classes against

each other. Second, we aggregated all movement classes into one class and classified it against

the rest class. We refer to these classification types as mov-vs-mov and mov-vs-rest classifica-

tions, respectively. In the mov-vs-rest classification we randomly removed trials from the

aggregated movement class to ensure equal trial numbers in both classes. As mov-vs-mov was

a multiclass classification comprising of 6 classes, we applied an 1-vs-1 classification strategy

yielding 15 binary classifiers. To validate the classification we employed a 10x10-fold cross-

validation.

We employed two classification approaches using EEG data from: (1) single time points

and (2) time windows with different lengths (0.2–1 s). Single time point classification gives a

higher time resolution of the accuracy course and is more suitable to analyze the information

distribution over time. Furthermore, the corresponding classifier patterns can be readily

obtained with the DSP method described in the next section. The time window based classifi-

cation, on the other hand, is expected to increase the classification accuracy. Because every

method has its benefits, we analyzed both approaches in this work and refer to them as “single

time point” and “time window” based classifications.

Classifier patterns

We calculated the classifier pattern based on the discriminative spatial pattern (DSP) method

[29]. This method allows the calculation of an (s)LDA classifier and the corresponding pat-

terns simultaneously. An LDA can be formulated as an optimization problem of Fisher’s’ crite-

rion and consecutively as a generalized eigenvalue problem. When this generalized eigenvalue

problem is solved for the eigenvector corresponding to the largest eigenvalue one obtains the

LDA weight vector. DSP also solves this generalized eigenvalue problem for the remaining

eigenvectors and one obtains a weight matrix. This weight matrix can then be inverted to

obtain the pattern.

Let x(t) be a vector of the EEG channels at time t with dimension [channels x 1], wt the

computed LDA weight vector at time t with dimension [channels x 1], and the scalar y(t) the

projection of the original EEG channels to the LDA space. Then the LDA can be formulated as

xðtÞT � wt ¼ yðtÞ ð1Þ

and wt corresponds to the eigenvector with the largest eigenvalue. With DSP we get a weight

matrix instead where the first column (when sorted by the eigenvalue) corresponds to the

LDA solution:

xðtÞT �Wtð:; 1Þ ¼ yðtÞ ð2Þ

This weight matrix can be inverted to obtain the pattern at corresponding to the LDA

weights:

At ¼W � 1

t ð3Þ

at ¼ Atð1; :Þ ð4Þ
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In fact, we obtained an sLDA weight vector because we calculated the within-class scatter

matrix (a factor in the Fisher’s criterion) using shrinkage regularization. We calculated the pat-

terns for every time step in the time window from -0.4 s to 0.4 s relative to the movement

onset (indicated by the subscript t).

In general terms, a pattern explains how a source, e.g. a specific brain area or independent

component, is projected on the channels. Noteworthy, “source” can refer to two different con-

cepts: first, the sources constituting a classifier (manifesting as a pattern) in channel space (i.e.

scalp potential distribution), second, the brain sources found with source imaging methods,

i.e. voxels. This section refers solely to patterns and the next section shows how source imaging

was applied to transform this pattern to the source (voxel) space. Each element in a pattern

vector shows with what impact a source is projected on the associated channel. It is important

to bear in mind that a pattern itself does not have any physical representation, i.e. it has no

physical unit. However, a common physical unit would be a necessity when averaging and

interpreting patterns. If we multiply (scale) a source with its pattern, we get the projection to

the channel space in the same physical unit as the source, e.g. if the source corresponds to

Volt, the resulting scaled pattern corresponds to Volt too. In the case of LDA, however, we do

not have a single source but two classes in the channel space projected into an one dimensional

LDA space. Thus, we are interested in the distance between the two classes in the LDA space.

In our scaling approach we use the distance between the two class means in the LDA space as a

scaling factor for at. Let μ0,t and μ1,t be vectors with dimension [channels x 1] representing the

class means of the two classes in the channel space, then the scaled pattern can be calculated as:

ascaled;t ¼ ðm
T
0;t � wt � mT

1;t � wtÞ � at ð5Þ

With this scaling we get a pattern which has the same physical unit as the original channel

space. The pattern shows the differences of the class means in the original space as exploited

by the LDA classifier. We then transformed this pattern from the channel space into the source

space using standardized low-resolution brain electromagnetic tomography (sLORETA) [34],

see the next section for more details.

As we applied an 1-vs-1 classification strategy, we obtained several binary classifiers and

therefore also several patterns (e.g. a supination vs pronation pattern). To obtain the final clas-

sifier patterns we grouped the patterns according to the two classification types: movement vs

movement patterns (mov-vs-mov) and movement vs rest patterns (mov-vs-rest). Patterns

belonging to a group were averaged using their absolute values. We took the absolute values

because a pattern expresses the difference between two classes and its signs depend on the

order of the classes and should therefore not be considered. Finally, we averaged the patterns

over non-overlapping 100 ms time segments located between -0.4 s and 0.4 s relative to the

movement onset, i.e. yielding 9 patterns per classification type for each session and subject.

Additionally, we time averaged over the whole -0.4 s to 0.4 s period. Fig 3 summarizes the

procedure.

Source space

EEG source imaging methods allow to infer from the EEG (i.e. scalp potential distribution) the

underlying sources in the brain. The EEG signals are attributed to the “channel space”, whereas

the inferred brain sources are attributed to the “source space” and are often estimated (normal-

ized) current densities [35].

We transformed the LDA patterns (obtained from single EEG time-points) from the chan-

nel space into the source space to increase the spatial resolution of the patterns obtained. For

this purpose, we used the software Brainstorm [36]. A desirable property of scaled LDA
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patterns compared to LDA weights is that they correspond to measured scalp potentials and

can be subjected to source imaging methods similar as EEG channels. Boundary element head

models were calculated based on subject individual electrode positions and the ICBM152 tem-

plate head model (ICBM152 is a head model based on a non-linear average of 152 subjects).

We estimated the full noise covariance matrices based on the EEG data from the period 0.5 to

2 s after trial start and applied shrinkage regularization [37]. Finally, we computed 15002 brain

sources, i.e. voxels, with sLORETA [34] (the dipole orientations were unconstrained).

Classifier pattern statistics

Group level statistics was done by nonparametric permutation testing [38,39] of the classifier

patterns in the source space. The statistical testing was done separately for each ME/MI and

mov-vs-mov/mov-vs-rest pattern. Beside the actual classifier patterns, we calculated random

classifier patterns by shuffling class labels once for each subject. As a test statistic, we used the

difference between the actual classifier patterns and the random classifier patterns averaged

over all subjects. We obtained the permutation distribution of the test statistic by enumerating

all 215 = 32768 actual/random classifier pattern combinations. For that, we used the maximum

of the voxels in each enumeration step to account for multiple comparisons (in case of 100 ms

time segments, we used the maximum of the whole -0.4 s to 0.4 s period). We then established

a threshold corresponding to α = 0.05. All voxels with a test statistic exceeding the threshold

were considered significant.

Results

Classification accuracies

Single time point classification. The ME classification accuracies are shown in Fig 4A (mov-vs-

mov) and Fig 4B (mov-vs-rest). The mov-vs-mov average classification accuracy over all sub-

jects reached a maximum of 42% (9% standard deviation) at 0.13 s after movement onset and

the mov-vs-rest average classification accuracy reached a maximum of 81% (7% standard devi-

ation) at movement onset (0.0 s). Accuracies were calculated from -2 s to 2 s relative to the

movement onset with a time resolution of 1/16 s. Classification accuracies are statistically sig-

nificant above 24% (mov-vs-mov) and 65% (mov-vs-rest) for a single subject, and above 18%

(mov-vs-mov) and 54% (mov-vs-rest) for the average (α = 0.05, adjusted wald interval [40,41],

Bonferroni corrected for the length of the analyzed time window). We calculated the

Fig 3. Calculation of a mov-vs-mov pattern. Patterns are calculated from each 1-vs-1 classifier; subsequently scaled and transformed into the source

space; we then calculated the absolute value and averaged over patterns. Finally, we averaged over non-overlapping time segments. The same

processing pipeline applies to the mov-vs-rest pattern.

https://doi.org/10.1371/journal.pone.0182578.g003
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significance levels based on the average number of trials available after artefact removal. In

mov-vs-mov and mov-vs-rest all subjects reached a significant classification accuracy, see

Table 1 which shows the individual maximum classification accuracies. The mov-vs-mov aver-

aged classification accuracy becomes significant at -0.94 s and stays significant until the end of

the analyzed time window (2 s); the mov-vs-rest averaged classification accuracy is significant

between -1.0 s and 1.69 s, see Fig 4A and 4B.

Confusion matrices are shown in Fig 4C (mov-vs-mov) and Fig 4D (mov-vs-rest). They

correspond to the timepoints when the average classification accuracies reached a maximum.

The confusion matrices show relative numbers, i.e. the occurrences sum up to 100%. If a

Fig 4. ME classification results for the single time point classification. a: mov-vs-mov classification accuracies of all 15 subjects and the average (thick

black line). Time point 0 s corresponds to the movement onset. b: mov-vs-rest classification accuracies. The horizontal solid line in a and b is the chance level;

the horizontal dashed line is the significance level for the average. c: mov-vs-mov confusion matrix (occurrences sum to 100%) with classes elbow flexion

(Fle), elbow extension (Ext), forearm supination (sup), forearm pronation (pro), hand close (Clo), and hand open (Opn). d: mov-vs-rest confusion matrix.

Confusion matrices were calculated at the time point with the highest average classification accuracy (mov-vs-mov: 0.13 s; mov-vs-rest: 0.0 s).

https://doi.org/10.1371/journal.pone.0182578.g004
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movement was wrongly predicted, it was often predicted as a movement involving the same

joints, see Fig 4C. In other words, movements involving different joints (e.g. open vs prona-

tion) are better distinguishable than movements involving the same joints (e.g. open vs close).

Fig 5 shows the MI classification accuracies. The mov-vs-mov average classification accuracy

over all subjects reached a maximum of 23% (3% standard deviation) at -0.13 s; the mov-vs-rest

average classification accuracy reached a maximum of 68% (8% standard deviation) at 0.06 s.

Accuracies are significant above 24% (mov-vs-mov) and 65% (mov-vs-rest) for a single subject,

and above 18% (mov-vs-mov) and 54% (mov-vs-rest) for the average (α = 0.05, adjusted wald

interval, Bonferroni corrected for the length of the analyzed time window). Ten subjects reached

a significant classification accuracy in mov-vs-mov and 15 subjects in mov-vs-rest, see Table 2.

The mov-vs-mov average classification becomes significant between -0.56 s and 0.81 s; the mov-

vs-rest average classification is significant between -0.69 s and 0.81 s, see Fig 5A and 5B.

The averaged maximum mov-vs-mov accuracies are 1.8 times higher for ME than for MI,

the averaged maximum mov-vs-rest accuracies are 1.2 times higher for ME than for MI (cf.

Table 1 and Table 2). The ME and MI accuracies are significantly different for mov-vs-mov

and mov-vs-rest (p< 5�10−4, two-sided Wilcoxon signed rank test).

MI confusion matrices are shown in Fig 5C (mov-vs-mov) and Fig 5D (mov-vs-rest). They

qualitatively show similar patterns as in ME, i.e. MI involving different joint are better discrim-

inable than MI involving same joints.

Time window classification. Beside classifying on single time points, we also classified time

windows of the EEG. The analyzed time windows ranged from 200 ms to 1 s, and features

were taken in 100 ms time intervals within these time windows (see Table 3). Fig 6 shows the

subjects’ averaged ME/MI classification accuracies for the different window lengths as well as

single time-point classification (relative to the movement onset) for comparison. The maxi-

mum averaged classification accuracies, the respective time points and standard deviations can

be read from Table 4 (ME) and Table 5 (MI), respectively. Accuracies are significant above

18% (ME/MI mov-vs-mov) and 54% (ME/MI mov-vs-rest) (α = 0.05, adjusted wald interval,

Bonferroni corrected for the length of the analyzed time window).

A one-way repeated measures ANOVA was conducted to compare the effect of the window

length on the classification accuracy (at the time point of maximum average classification

accuracy). There was a statistically significant effect for the window length for ME mov-vs-

mov [F(5,70) = 59.2, pGG = 7.0e-11], ME mov-vs-rest [F(5,70) = 7.1, pGG = 0.002], MI mov-vs-

mov [F(5,70) = 21.6, p = 5.0e-13], and MI mov-vs-rest [F(5,70) = 3.5, pGG = 0.02]. Mauchly’s

test indicated that the sphericity assumption had been violated for ME mov-vs-mov, ME mov-

vs-rest and MI mov-vs-rest (p< 0.05), and a Greenhouse-Geisser correction was applied in

these cases. Post hoc tests with Dunn & Šidák’s method were performed between groups and

results are shown in Fig 7.

Motor-related cortical potentials

The grand-average MRCPs for all movements and the rest condition are shown in Fig 8 (ME)

and Fig 9 (MI). MRCPs are aligned to the movement onset for ME and the virtual movement

Table 1. Maximum ME classification accuracies for the single time point classification.

ME s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 avg

mov-vs-mov [%] 51 51 39 60 36 38 36 40 49 50 39 43 42 54 40 44 ± 7

mov-vs-rest [%] 85 81 83 94 87 93 78 81 83 80 79 86 91 88 81 85 ± 5

Included is the average and standard deviation over subjects. Significant classification accuracies are bold.

https://doi.org/10.1371/journal.pone.0182578.t001
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onset for MI, respectively. We show the grand-average MRCPs for channels FCz, C3, Cz, and

C4, here Laplace filtered to increase the spatial resolution, the preprocessing was otherwise the

Fig 5. MI classification results for the single time point classification. a: mov-vs-mov classification accuracies of all 15 subjects and the average (thick

black line). Time point 0 s corresponds to the movement onset. b: mov-vs-rest classification accuracies. The horizontal solid line in a and b is the chance level;

the horizontal dashed line is the significance level for the average. c: mov-vs-mov confusion matrix (occurrences sum to 100%). d: mov-vs-rest confusion

matrix. Confusion matrices were calculated at the time point with the highest average classification accuracy (mov-vs-mov: -0.13 s; mov-vs-rest: 0.06 s).

https://doi.org/10.1371/journal.pone.0182578.g005

Table 2. Maximum MI classification accuracies for the single time point classification.

MI s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 avg

mov-vs-mov [%] 29 23 23 29 24 24 24 26 28 23 22 28 27 25 23 25 ± 2

mov-vs-rest [%] 71 72 68 78 77 81 66 85 68 66 77 66 74 73 76 73 ± 6

Included is the average and standard deviation over subjects. Significant classification accuracies are bold.

https://doi.org/10.1371/journal.pone.0182578.t002
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same as for the classification. Laplace filtering was done by subtracting the mean voltage of the

four surrounding orthogonal electrodes from the center electrode [42]. Generally, ME MRCPs

are more pronounced than MI MRCPs (especially on Cz), and the rest condition shows

smaller but otherwise similar shaped responses as the movements. The MRCPs show the larg-

est response on Cz (ME) and on FCz (MI), respectively.

Fig 10 shows the ME MRCPs averaged over all subjects with respect to their joint move-

ments. MRCPs on Cz for forearm supination/pronation and elbow flexion/extension are more

pronounced than for hand close/open. Elbow and forearm pronation/supination movements

have similar MRCPs prior to movement onset and show differences in the latency of their neg-

ative peak (around 50 ms and 300 ms, respectively). Also differences in the MRCPs of move-

ments belonging to the same joint are observable (see S1 Fig). The negative peak at Cz in hand

opening is 0.3 μV larger than in hand closing. Almost no differences in latency or amplitude

can be found between forearm pronation and supination. Elbow flexion leads to earlier

MRCPs at Cz (around 60 ms) and weaker MRCPs (about 0.3 μV) than elbow extension. Such a

detailed and fair comparison of the MI MRCPs between conditions is not reasonable, since the

real imagined movement onset cannot be given.

Classifier patterns

We calculated 9 classifier patterns per subject, per classification type (mov-vs-mov and mov-

vs-rest), and per movement condition (ME, MI), ranging from -0.4 s to 0.4 s relative to move-

ment onset. Additionally, we calculated classifier patterns averaged over this time period. We

subjected these patterns to statistical analysis, as described in the Methods section, and show

them in Fig 11. The figure shows the group averages of the differences between classifier pat-

terns and random classifier patterns (i.e. reference patterns) and only significant voxels are

colored.

Immediately before movement onset (around -100 ms), the ME mov-vs-mov patterns (see

Fig 11A) are prominent on premotor areas (PM). Subsequently (0–100 ms), patterns intensify

on the contralateral primary motor (M1), contralateral somatosensory cortex (S1) and the pos-

terior parietal cortex (PPC). After 300 ms, patterns remain on M1 and S1. Patterns are shortly

observable on an ipsilateral temporal area (100 ms). In the ME mov-vs-rest condition (see Fig

11B) patterns appear at movement onset (0 ms) contralaterally on PM, M1, S1 and PPC. The

pattern on PM vanishes 100 ms after movement onset and the remaining patterns vanish

almost entirely 200 ms after movement onset. S1 Video and S2 Video show the progression of

the mov-vs-mov and mov-vs-rest patterns. The mov-vs-mov MI patterns are below the signifi-

cance threshold (see Fig 11C). The mov-vs-rest MI patterns arise on central motor cortex areas

at movement onset (see Fig 11D).

The time averaged ME patterns of mov-vs-mov and mov-vs-rest are similar and are located

on PM, M1, S1 and PPC (see Fig 11E). The time averaged MI mov-vs-mov patterns are faintly

Table 3. Time windows used for classification.

window length [s] number of time points

fed into the classifier

0 (single time point) 1

0.2 3

0.4 5

0.6 7

0.8 9

1 11

https://doi.org/10.1371/journal.pone.0182578.t003
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located on central areas (see Fig 11G), whereas the mov-vs-rest patterns have a more distinct

representation on M1 and S1.

Discussion

We show in this work for the first time the successful classification of six different movements

of the right arm from low-frequency time-domain EEG. Significant classification accuracies

were reached during movement execution as well as during movement imagination. This

proves that single and non-repetitive movements of the same limb can be decoded from time-

Fig 6. Classification accuracies for different window lengths. Time point 0 s corresponds to the movement onset. The horizontal solid lines are the

chance level; the horizontal dashed lines are the significance levels. a: subject averaged ME mov-vs-mov classification accuracies. b: subject averaged ME

mov-vs-rest classification accuracies. c: subject averaged MI mov-vs-mov classification accuracies. d: subject averaged MI mov-vs-rest classification

accuracies.

https://doi.org/10.1371/journal.pone.0182578.g006
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domain EEG signals and differentiated against each other. However, despite the ME classifica-

tion accuracies being promising, the MI classification accuracies are rather low. This may be

because ME EEG signals were time-locked to the actual movement onset but MI EEG signals

were time-locked to a virtual movement onset (which corresponded to the average ME onset

of each subject). Thus, the ME onset was more accurate, and exact time-locking is important

for classifying in the time-domain as the underlying signals change over time. One could over-

come this issue by defining the virtual movement onset relative to occurring MRCPs [43]

instead as a fixed time delay. Another explanation may be that ME produces more pronounced

brain patterns than MI in the time-domain. This is indicated by studies analyzing MRCPs

[43,44]. Interestingly, Sugata et al. did not find such a dissimilarity in classification accuracy

between ME and MI in a magnetoencephalography (MEG) study using comparable features in

grasping, pinching and elbow flexion [45]. Also Wang et al. obtained more comparable classifi-

cation accuracies between ME and MI in a MEG based study employing a target decoding par-

adigm [46]. Beside that, attempted movements may produce more pronounced brain patterns

than MI and therefore yield higher classification accuracies. They may cause a stronger activa-

tion of the motor system as indicated in Blokland et al. where classification accuracies in tetra-

plegic individuals were higher with attempted movements than MI using spectral features

[47]. Furthermore, extensive user training could improve the expression of distinct brain pat-

terns. User training can be highly beneficial in SMR-based BCIs [12,48], however it is still

unclear if this is also true for time-domain signals in the context of movement decoding.

Table 4. ME classification accuracies for different window lengths.

ME

window length

0 s 0.2 s 0.4 s 0.6 s 0.8 s 1 s

mov-vs-mov

max acc [%] 42 50 53 55 55 55

std dev [%] 9 9 10 10 9 9

time [s] 0.13 0.13 0.13 0.13 0.13 0.25

mov-vs-rest

max acc [%] 81 84 87 86 87 87

std dev [%] 7 6 6 4 6 4

time [s] 0.0 0.06 0.19 -0.13 0.19 0.19

Included is the maximum of the average classification accuracy and the respective standard deviation and time point.

https://doi.org/10.1371/journal.pone.0182578.t004

Table 5. MI classification accuracies for different window lengths.

MI

window length

0 s 0.2 s 0.4 s 0.6 s 0.8 s 1 s

mov-vs-mov

max acc [%] 23 25 26 27 27 27

std dev [%] 2 3 4 3 4 3

time [s] -0.13 -0.13 -0.06 -0.06 -0.13 -0.06

mov-vs-rest

max acc [%] 68 70 73 73 73 72

std dev [%] 8 8 5 7 7 8

time [s] 0.06 0.13 0.0 0.0 -0.06 -0.06

Included is the maximum of the average classification accuracy and the respective standard deviation and time point.

https://doi.org/10.1371/journal.pone.0182578.t005
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Moreover, the obtained confusion matrices indicate that movements involving different joints

(i.e. different muscle groups) are more discriminable than movements involving the same

joints Consequently, for future applications it would be necessary to select the subset of classes

which work best for BCI users but still allow a natural control. Furthermore, a hierarchical

classifier concept may be beneficial: one meta classifier classifies movements of different joints

(e.g. hand movement vs elbow movement), and subjacent classifiers classify movements of the

same joint (e.g. hand open vs hand close).

Fig 7. Post hoc tests with Dunn & Šidák’s method between window lengths. A star indicates a statistically significant difference (p < 0.05) a: ME mov-vs-

mov b: ME mov-vs-rest c: MI mov-vs-mov d: MI mov-vs-rest.

https://doi.org/10.1371/journal.pone.0182578.g007
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A simple approach to improve the classification accuracy is to use more temporal informa-

tion when classifying the EEG. Therefore, we also classified time windows instead of single

time points of the EEG, and analysed the effect of the time window length. The results indicate

that a time window of length 0.6 s is sufficient to reach the maximum possible classification

accuracy (w.r.t. the methods used in this paper), longer time windows don’t improve the classi-

fication performance and increase the computational load. Furthermore, ME classification

profits more from a time window based approach than MI in case of mov-vs-mov. The

improvement in classification performance can be due to the temporal spread of the discrimi-

native information of the underlying signals (i.e. MRCPs) which is better captured with a time

window based classification. Another reason may be that a time window based classification

allows to fine-tune the employed 0.3–3 Hz bandpass filter. An LDA classifier which uses data

from more than one time point is basically a finite impulse response filter with trainable filter

coefficients, and can shrink or enlarge the 0.3–3 Hz passband to maximize the extracted dis-

criminative information.

Fig 8. Grand-average MRCPs and respective standard errors during ME.

https://doi.org/10.1371/journal.pone.0182578.g008
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Earlier, we pointed out some possibilities to boost the MI accuracy. However, a study con-

ducted by Lacourse et al. [49] forments doubts if MI accuracy in healthy subjects is a good pre-

dictor for the performance in SCI subjects. They found that MRCPs during attempted and

imagined hand movements in tetraplegic subjects are more similar than in a abled-bodied con-

trol group (there with executed and imagined movements). Furthermore, they found that

MRCPs between tetraplegic subjects and abled-bodied subjects are different. This challenges

the usefulness of using MI in abled-bodied subjects to predict the classification performance

for SCI subjects. Nevertheless, our results show the general applicability in able-bodied sub-

jects and point out the need for further research in SCI subjects with attempted movements.

Our work adds to the work of Vučković and Sepulveda who have shown that wrist exten-

sion/flexion and forearm pronation/supination can be decoded from the frequency-domain of

EEG [27,28] (especially from the delta band). Here, we show that also the time-domain con-

tains movement information related to individual joint movements. This is in line with previ-

ous research which shows that low-frequency time-domain EEG signals contain information

about movement trajectories, speed and force [17–19,22,23,26]. Electrocorticography (ECoG)

Fig 9. Grand-average MRCPs and respective standard errors during MI.

https://doi.org/10.1371/journal.pone.0182578.g009
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studies support this and indicate that low-frequency time-domain signals contain movement

related information [50–54]. Interestingly, the frequency bands used in classical SMR-based

BCIs, i.e. mu and beta band, contain less information about movement kinematics and muscle

activity than low-frequency bands and the high-gamma band [55–57]. Mu and beta bands are

more suitable to detect a movement intention than the details of the movement. However, our

group recently found that these frequency bands can be separated in two types of large-scale

networks where one network type is modulated by the movement phase of rhythmic finger

movements [9].

To reliably detect the movement intention is of utmost importance for a neuroprosthesis

control to avoid unexpected and potentially dangerous movements. In accordance with

[26,58], we successfully classified between movements and a rest class based on low-frequency

time-domain EEG. The classification of movement vs rest may be further improved by com-

bining time-domain signals and power modulations in mu and beta bands [59].

Fig 10. Grand-average ME MRCPs grouped with respect to their joint movements and respective standard errors. Shown are the averages of elbow

extension/flexion, forearm supination/pronation and hand opening/closing.

https://doi.org/10.1371/journal.pone.0182578.g010
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MRCPs can be retrieved with similar signal processing methods as low-frequency time-

domain signals. They show a typical negative peak around movement onset like in our results

[24]. Hence, our classification approach is based on MRCPs. Such MRCPs-like signals are also

observable in both ME and MI rest classes, i.e. without any movement intention. It is reported

that voluntary muscle relaxation causes similar potential changes to that of muscle contraction

[24]. This may be an explanation at least for ME if the subjects were already preparing for

some movement before the cue appeared on the screen, and then relaxed after the rest class

cue was presented. This can be an issue for an asynchronous BCI trained with a cue based par-

adigm. An asynchronous BCI must be trained on a rest class which truly corresponds to a

relaxation phase, and this requires a careful design of the training paradigm.

A novelty in the context of EEG-based movement decoding from a single limb is the analy-

sis of the classifier patterns. These patterns show for ME that mainly M1, S1, PM, and PPC

contain movement related information which can be decoded from low-frequency time-

domain EEG signals. This is consistent with the general understanding that PM and PPC are

involved in movement planning while M1 is active during the execution of the movement, and

S1 receives proprioceptive feedback which is eventually integrated with other sensory input at

Fig 11. Classifier patterns. Shown are patterns between -0.4 s and 0.4 s relative to movement onset (a-d) and averaged over this time period (e-h). a and e:

mov-vs-mov patterns during ME. b and f: mov-vs-rest patterns during ME. c and g: mov-vs-mov patterns during MI. d and h: mov-vs-rest patterns during MI.

Only significant voxels are colored. Blue corresponds to zero, red to the maximum value.

https://doi.org/10.1371/journal.pone.0182578.g011
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the PPC [60–62]. The ME mov-vs-mov patterns show also a slight and temporary involvement

of a non-motor related ipsilateral temporal area. However, this lateral pattern cannot be attrib-

uted to movement artefacts as the mov-vs-rest classifier would be more susceptible to move-

ment artefacts but does not have similar pronounced lateral pattern. This lateral pattern can be

a consequence of the usage of a template head model and an incomplete electrode coverage on

temporal sites. Another observation is that mov-vs-mov and mov-vs-rest patterns cover simi-

lar areas. Thus, general (mov-vs-rest) and detailed (mov-vs-mov) movement information can

be decoded from the same brain areas. One can also observe that MI produces less pronounced

patterns than ME, which is consistent with a lower classification accuracy for MI than ME.

The MI patterns are also more centrally located.

We calculated classifier patterns instead of analyzing the weights of the LDA classifier

because the EEG channels are highly correlated in lower frequencies [19] which causes a prob-

lem known as multicollinearity [63] and complicates their interpretation [64]. Classifier pat-

terns were already used as a tool to spatially analyze brain processes [65]. They can be used to

find EEG amplitude differences exploited by the classifier between experimental conditions.

The following limitations of our study can be identified. First, preprocessing filter and clas-

sification time windows were non-causal to avoid time shifts in the obtained results due to sig-

nal processing. However, for an online application causal filter and time windows must

implemented. Second, the movement onsets obtained via external sensors are not as timely as

movement onsets obtained via electromyography. Due to inertia of the body parts, muscle

activity is usually detected before overt movements. Third, we used template head models

instead of individual head models generated from magnetic resonance imaging scans for

source imaging, which can increase the location error of sources and in turn decreases the sen-

sitivity of the obtained patterns.

Future studies need to confirm if details of imagined or attempted movements can also be

decoded from individuals with SCI and if the classifier performance is sufficient to control a

neuroprosthesis or a robotic arm. Specifically, it has to be determined if the classification accu-

racies yielded by attempted movements in individuals with SCI correspond closer to the ME

or MI accuracies reported in this work. The classifier patterns show that PM, M1 and S1

encode information about the details of the movement on the macroscale, and especially these

areas have direct connections to the spinal cord [62,66]. These direct connections are impaired

in SCI users, however, and this could have an influence on the information encoded in the

MRCPs [49]. Further studies also need to analyze the influence of object interactions on the

movement information encoded in low-frequency time-domain EEG signals.

Conclusion

We have demonstrated the successful decoding of single executed and imagined upper limb

movements based on low-frequency time-domain EEG signals. These movements can be the

basis for new mental control strategies aimed at a more natural neuroprosthesis or robotic arm

control. Furthermore, we show that the patterns underlying the classification emerge from

motor related brain areas.

Supporting information

S1 Fig. MRCPs for movements belonging to the same joints. Shown is the average over sub-

jects.

(TIF)
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S1 Video. Progression of the ME mov-vs-mov patterns. Patterns were calculated for single

time points (i.e. not averaged over time) from -1 s to 1 s relative to movement onset. Statistical

analysis was not performed.

(AVI)

S2 Video. Progression of the ME mov-vs-rest patterns. Patterns were calculated for single

time points (i.e. not averaged over time) from -1 s to 1 s relative to movement onset. Statistical

analysis was not performed.

(AVI)
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