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Abstract

A rigorous understanding of brain dynamics and function requires a conceptual bridge

between multiple levels of organization, including neural spiking and network-level popula-

tion activity. Mounting evidence suggests that neural networks of cerebral cortex operate at

a critical regime, which is defined as a transition point between two phases of short lasting

and chaotic activity. However, despite the fact that criticality brings about certain functional

advantages for information processing, its supporting evidence is still far from conclusive,

as it has been mostly based on power law scaling of size and durations of cascades of activ-

ity. Moreover, to what degree such hypothesis could explain some fundamental features of

neural activity is still largely unknown. One of the most prevalent features of cortical activity

in vivo is known to be spike irregularity of spike trains, which is measured in terms of the

coefficient of variation (CV) larger than one. Here, using a minimal computational model of

excitatory nodes, we show that irregular spiking (CV > 1) naturally emerges in a recurrent

network operating at criticality. More importantly, we show that even at the presence of

other sources of spike irregularity, being at criticality maximizes the mean coefficient of vari-

ation of neurons, thereby maximizing their spike irregularity. Furthermore, we also show that

such a maximized irregularity results in maximum correlation between neuronal firing rates

and their corresponding spike irregularity (measured in terms of CV). On the one hand,

using a model in the universality class of directed percolation, we propose new hallmarks of

criticality at single-unit level, which could be applicable to any network of excitable nodes.

On the other hand, given the controversy of the neural criticality hypothesis, we discuss the

limitation of this approach to neural systems and to what degree they support the criticality

hypothesis in real neural networks. Finally, we discuss the limitations of applying our results

to real networks and to what degree they support the criticality hypothesis.

Introduction

Having fundamental principles underlying neural dynamics and function entails a unifying

theory that captures various universal features of cortical activity at different levels. One of the

most prevalent features of single-neuron spiking in cerebral cortex is irregular spiking [1],

which is characterized by mean coefficient of variation (CV) being larger than one. On the
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other hand, collective behavior of neural systems is characterized by complex spatiotemporal

patterns of activity, including scale-free activity [2–10]. This scale invariance is manifested by

the power law distributed cascades of activity, or the so-called neuronal avalanches, and is pre-

dicted to occur for a network at a critical state; a state of balanced propagation at the transition

between two phases of short lasting and chaotic activity [11–13]. These observations at two

adjacent levels of brain organization raise the question to what extent the network state con-

trols the variability of single-neuron spiking?

Theoretical studies have linked the prevalence of irregular spiking to the fluctuations of syn-

aptic inputs at the sub-threshold regime [14, 15]. It has also been shown that balanced net-

works of leaky integrate-fire neurons may naturally generate irregular spiking (CV> 1) when

the mean synaptic strength goes above a critical value [16]. However, none of those scenarios

has been directly linked to the scale free nature of cortical activity. On the other hand, the prev-

alence of scale free network activity with certain critical exponents supports the hypothesis

that cortical networks operate at a directed percolation (DP) phase transition [17]. These two

findings beg the question whether these two separate universal features, irregular spiking of

single neurons and scale free population activity, both can possibly be explained based on a

unified theory.

To address this question, using a computational model we provide an alternative scenario,

by which the onset of irregular spiking can simply emerge at a DP critical transition between

two phases of short lasting activity and chaos. Further, we show that criticality could enhance

the spike irregularity even at the presence of other mechanisms for irregular spiking (CV> 1),

thereby leading to maximized CV. Moreover, we hypothesize that such maximum irregularity

occurs as a result of the onset of (large) recurrent activity near criticality. Thereafter, using our

model we verify our hypothesis by showing that neurons with higher in-degree connections

tend to show higher irregularity. As a result, in addition to spike irregularity, we show that crit-

icality also predicts maximum (positive) correlation between a number of single-neuron prop-

erties such as their CV’s and firing rates. Our findings provide us with robust measures of

critical dynamics, which not only could further our understanding about the implications of

criticality on network dynamics, but at the same time could be used as hallmarks of criticality

at the single-unit level. Finally, we discuss the limitations of this picture when it comes to the

presence of inhibition, arguing that our model predictions could break down in the regime of

synchronized irregular (SI) activity, when the inhibition is suppressed and the network shows

synchronization and irregular spiking simultaneously [18–20]. However, the question whether

there exists a critical point/line along which real neural networks could show a DP phase tran-

sition is still unknown.

Materials and methods

Binary probabilistic network model

We simulated a model network consisting of excitatory binary probabilistic model neurons

with sparse connectivity and external inputs. The model has been studied both numerically

and analytically [21–23], and is in fact the most natural extension of a branching process to a

recurrent network. Network size ranged from 5000 to 20000 model neurons. The strength of

the connection from neuron j to neuron i is quantified in terms of the transition probability

Pij, which is the probability that a spike in neuron j causes a spike in neuron i in the next simu-

lation time step. For a network of N neurons and an average connectivity K, each neuron is

connected to N − 1 other neurons with probability K/N. For each (on average) K(N − 1) con-

nections among neurons a Pij is assigned by drawing a random number from uniform distri-

bution in the interval 0 2

K

� �
. With a sufficiently large N, this yields a network with a normally
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distributed connectivity with average K and a transition matrix Pij with maximum (absolute

value) eigenvalue of 1. In order to push the network toward the sub-critical (super-critical)

regime, we can simply multiply all Pij’s by a factor smaller(greater) than one. At each time step,

the state of all neurons are updated synchronously according to the following probability:

Piðt þ 1Þ � Pðitþ1jJðtÞÞ ¼ 1 � ð1 � ZiðtÞÞ
Y

j2JðtÞ

ð1 � PijÞ ð1Þ

where P(it + 1|J(t)) denotes the probability of neuron i spiking at time t + 1 given that the set of

neurons j 2 J(t) spike at the previous time-step t, where ηi(t) is the probability of neuron i spik-

ing only due to external input, and J(t) denotes the set of all neurons that spike at time t. It

should be noted that this equation is valid when the spikes of all neurons in j 2 J(t) can be

assumed as independent with a good approximation. In other words, it entails a locally tree-

like propagation of activity, which has been shown to be a good approximation for a wide

range of connectivities [22]. At the large size limit (N� 1) and assuming that Pij inversely

scales with N (Pij �
1

K) the above equation can be approximated as follows:

Piðt þ 1Þ ¼ 1 � 1 � ZiðtÞ � ð1 � ZiðtÞÞ
X

j2JðtÞ

Pij

 !

þOðP2
ijÞ ð2Þ

Ignoring the higher order terms in Eq (2) leads to obtaining an update rule as follows:

Xiðt þ 1Þ ¼ Y ð1 � ZiðtÞÞ
X

j

PijXjðtÞ þ ZiðtÞ � xiðtÞ

" #

ð3Þ

where the binary state Xi(t) of neuron i denotes whether the model neuron spikes (Xi(t) = 1) or

does not spike (Xi(t) = 0) at time t. Here, ξ(t) is a random number in [0 1] drawn from a uni-

form distribution, and Θ is the step function. In addition to the update rule (3), a refractory

period of two time-steps was implemented. The external input ηi(t) was chosen to be smaller

than the transition probability Pij, which itself is small for large networks, Pij * 1/K. The maxi-

mum eigenvalue λ of the transition probability matrix Pij describes the network state at the

infinite-size limit: λ� 1 denotes the critical regime, whereas λ< 1 (λ> 1) denotes subcritical

(supercritical) regime. However, for finite-sized networks we evaluate the critical point based

on the peak of average population coupling (see below). The Pij values were drawn from a uni-

form distribution and rescaled afterwards to reach the desired maximum eigenvalue λ.

The external input was simulated in three different ways. For random external drive, ηi(t)
can be modeled either as a constant or to better emulate natural stimuli, it can be modeled as

random asynchronous stimuli. The asynchronous input was simulated as a binary Poisson

process followed by smoothing with a Gaussian filter with an arbitrary width of 20 time steps

and multiplied by an amplitude factor η0 between 0 and 1. The reason for using a Gaussian fil-

ter is to give the external drive a smooth temporal structure, making it more naturalistic. The

synchronous input was simulated with replicating a single binary Poisson process smoothed

with a Gaussian filter with a width of 100 time-steps. In order to impose some variability

among the stimuli received by different neurons each smoothed Poisson process was multi-

plied by a (arbitrary) factor of η0 + �z(t) where η0 = � = 0.2 and z(t) was drawn from a normal

distribution.

Statistical measures

We analyzed the simulated spike trains with respect to different statistical measures: neuronal

avalanches, coefficient of variation, population coupling, and change in the mean response.
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Following commonly-used procedures [2], a neuronal avalanche was defined as an episode of

continuous (each time step) network spiking, framed by time steps of no spikes. Avalanche

size was taken as the number of spiking neurons during each avalanche. However, it should be

noted that the avalanche analysis in this study is mostly for the sake of illustration, as the net-

work model has been already studied rigorously and is known to exhibit power law distributed

avalanches at the critical point of λ = 1 [21, 22].

The single-neuron spike train variability was quantified using the coefficient of variation

CV� σisi/μisi, defined as the ratio of the standard deviation σisi and the mean μisi of the inter-

spike-interval (ISI) distribution for a given neuron. We managed simulation times to be suffi-

ciently long to ensure stable CV values.

The coordination within the network was quantified using the population coupling, which

is defined as the zero-lag cross-correlation between the spike train Xi(t) of neuron i and the

remaining network activity Ni(t) = ∑j 6¼ i Xj(t) from all other spike trains. The cross-correlation

could be simply measured as “Pearson correlation coefficient”, i.e., ci ¼
hðXiðtÞ� hXiðtÞiÞðNiðtÞ� hNiðtÞiÞi

sXsN
,

where the angled brackets indicate a time average [24]. However, in certain instances it would

be more useful to exploit “Spearman correlation coefficient”, as it more accurately measures

how two quantities are predictive of each other.

Averaging the population coupling over many neurons within a large network yields the

average population coupling, which represents a measure of the overall level of coordination

within the network. The change in mean response was computed as the difference in the mean

spike counts over many trials of ongoing activity followed by evoked activity. In our simula-

tions, the ongoing activity is simulated with an arbitrarily chosen external input of η = 1/(5N),

whereas the evoked activity is simulated with η = 2/N.

Results

To explore the impact of critical dynamics on the statistics of single-neuron spiking, we used a

minimal network model consisting of excitatory binary probabilistic neurons with sparse con-

nectivity and external inputs (see Fig 1A and Materials and methods). This model, which is

analytically tractable, permits the use of the maximum eigenvalue λ of the transition probability
matrix Pij as a control parameter to tune the network at or out of the critical point; λ = 1 indi-

cates the critical point at infinite-size limit, whereas λ< 1 (λ> 1) represents sub-criticality

(super-criticality) [22, 23]. As a result, the model is the most natural extension of a branching

process to recurrent networks, which is also known to be in the same universality class of

directed percolation (see (Fig 1B–1D)).

To investigate the hypothesized impact of the network state on the statistics of neuronal

spiking, we simulated the network activity for different values of λ and quantified the single-

neuron spiking statistics using mean CV of the inter-spike-interval distributions (Fig 1E). The

CV is defined as the ratio of the standard deviation and the mean of the inter-spike-interval

distribution for a given neuron. The irregular spiking is basically characterized by CV> 1,

whereas CV = 1 is considered as Poisson spiking. Simulations of large network sizes reveals

that near the critical network state (λ� 1) and at the presence of slow drive (see Materials and

methods) the CV values are distributed around a mean greater than one, thus indicating irreg-

ular spiking.

In contrast, small deviations of the network state towards either the subcritical or the super-

critical regime resulted in CV values distributed around a mean of 1 or less. In summary,

when tuning the network from the subcritical to the supercritical state, the mean CV peaks

near but slightly above λ = 1 (Fig 1F). Moreover, with increasing network size, the peak moves

closer towards λ = 1 and becomes narrower as well. This observation suggests that, at the
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large-size limit, the irregular spiking becomes an emergent property of recurrent networks

operating at the critical point (λ = 1).

To further test whether the deviation of the peak from λ = 1 is indeed due to the finite size

effect, we looked at two major characteristics of criticality, that are maximum pair-wise corre-

lations and mean response to external stimuli. In order to see how the average correlation

among neurons peaks in terms of the control parameter λ, we computed a commonly-used

measures of coordinated network activity, namely average population coupling. This quantity

represents a measure of the overall level of correlated fluctuations within the network [24],

which is known to be maximized at criticality (see Materials and methods). Comparing mean

Fig 1. Irregular spiking emerges in a recurrent network operating at criticality. A: The model network consists of binary probabilistic model neurons

with sparse connectivity (black) and weak external inputs (gray) to a fraction of the neurons. B-D: Schematic illustration of avalanche statistics. Simulated

spike trains (black raster), neuronal avalanches (gray), and corresponding avalanche size distributions (for 5 × 105 simulation time-steps) for a network of

N = 500 neurons with 10% connectivity and external inputs η = 1/(10N) to all neurons. Simulations were performed for three different network states:

subcritical ((B) λ = 0.9, blue), critical ((C) λ = 1.0, red), and supercritical ((D) λ = 1.1, green). E: Inter-spike-interval CV distributions of simulated spike

trains from a network of N = 5000 neurons with 3% (arbitrary) connectivity and external inputs η = 1/(5N) to all neurons. Simulations were conducted for

the subcritical (λ = 0.9, blue), critical (λ = 1.02, red), and supercritical (λ = 1.06, green) network states. It should be noted that to better account finite-size

effect, the critical point λ = 1.02 is estimated based on the peak for population coupling F: The average CV as a function of the maximum eigenvalue λ of

the transition probability matrix Pij for three network sizes. Connectivity was (arbitrarily) chosen to be 3% and external input was 1/(5N) to all neurons.

The curves were based on 13 values of λwithin the range shown and were smoothed using Matlab spline. G: The average population coupling and the

change in mean response as a function of λ for a network of N = 5000 neurons with 3% connectivity and external inputs of strength η = 1/(5N) applied to

all neurons. The use of spline is only to better illustrate the shift of the peaks. To compute the change in mean response, we increased the external input

strength by a factor of 10 half-way through the simulation, i.e., from η = 1/(5N) to η = 2/N.

https://doi.org/10.1371/journal.pone.0182501.g001
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CV and average population coupling reveals that they both peak similar to the change in mean

response (close to λ = 1; see Fig 1G). This demonstrates that with a finite-sized network, the

peak for mean CV coincides with the critical point, therefore, it could be regarded as a hall-

mark of criticality.

The observed onset of irregular spiking near criticality (Fig 1F) has an intuitive explanation

in the extreme limits of connection strength. In the limit of weak connections (λ< 1), due to

short lasting nature of neural activity, whenever a cascade of activity is initiated or passed from

a single neuron, the chance of recurring spikes becomes negligible, as the activity does not last

enough for the same neuron to receive recurrent activity during the same cascade. Therefore

single neuron spiking is largely driven by the Poisson external input alone, thus resulting in

Poisson like spiking (hCVi = 1). On the other hand, neurons become mostly active leading to

more regular spiking in the limit of very strong connections (λ> 1), as the network activity

becomes saturated; most neurons tend to spike all the time unless it is bounded by their refrac-

tory period. But it is at criticality (λ� 1) that the onset of long (power law distributed) cascades

of activity leads to more recurrence of spiking during each cascade, thereby resulting in more

variability in single neuron spiking. As a result, the scale-free fluctuations in network activity

translate to single-neuron irregular spiking (hCVi> 1).

Assuming that spike irregularity arises due to the onset of large (sporadic) recurrent activ-

ity, one should expect that neurons who receive more input from the network show more

variability in their spiking activity. One major factor that determines the amount of net-

work-to-neuron input is a neuron’s in-degree, i.e., the number of input connections to a

neuron. Therefore, our conjecture predicts a positive correlation between neurons’ in-degree

and their CV.

To test whether such a correlation exists, we took advantage of the distribution of in-

degrees provided by a model network and looked into the relation between neuron’s in-

degree and their CV. It turned out that even for a random network at criticality (λ� 1), a

neuron’s CV tends to increase with increasing in-degree (Fig 2A). Importantly, this correla-

tion between a CV and its connectivity (in-degree) changed drastically when tuning the net-

work state away from criticality. In the subcritical regime only weak correlation was found

and in the supercritical regime the relation reversed, i.e., a neuron’s CV tended to decrease

with increasing in-degree (Fig 2B). These results could be understood by considering the fact

that at the sub-critical regime, the role of external drive becomes more dominant (compared

to network recurrent activity), thus the correlation between CV and in-degree vanishes. To

the contrary, at the highly super-critical regime neurons with higher in-degree receive more

input and their firing rates become more saturated. As a result, they spike more regularly,

leading to anti-correlation between neuron’s CV and in-degrees. Accordingly, when tuning

the network state through the critical regime, the relation between a neuron’s CV and its in-

degree transforms from small correlation in the subcritical regime (λ< 1), to maximized

correlation at the critical point (λ� 1), and subsequently to anti-correlation in the supercrit-

ical regime (λ> 1), (Fig 2C).

The relationship that solely near criticality is the irregular spiking maximally reflective of

the neuron’s in-degree, suggests a novel measure of critical dynamics that could be applicable

for a wide range of problems, including neural systems. It is of practical importance that in a

network dominated by excitatory neurons, a neuron’s firing rate scales with its in-degree

and that this relation is independent of the network state. Thus, spike train recordings from a

population of neurons can be informative about the network state: a maximum correlation

between a neuron’s CV and its firing rate is indicative of a critical network state, whereas

weaker correlation or anti-correlation is indicative of the subcritical or supercritical network

state, respectively (Fig 2D and 2F).
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Similarly, a neuron’s in-degree also scales with its “population coupling”, thereby resulting

in a maximum correlation between CV and “population coupling”. In comparison, the relation

between a neuron’s population coupling (see Materials and methods) and its in-degree turns

out to be less decisive about the network state, as population coupling increases with a neu-

ron’s in degree for all three network states (Fig 2G and 2H). However, this relation is still

prominent for the critical network state (Fig 2I).

Fig 2. Neuron’s CV’s maximally correlates with their in-degrees and firing rates. A-B: The inter-spike-interval CVs from simulated spike trains

versus the neuron’s in degree for a model network in three different states: (A) critical (λ = 1.02), (B) subcritical (λ = 0.9) and supercritical (λ = 1.1). Network

parameters were N = 5000, 3% connectivity, and η = 1/(5N) applied to all neurons. The approximate critical point (λ = 1.02) is obtained in terms of the peak

of population coupling. C: Correlation between CV and in-degree as a function of λ. Other network parameters as in (A), (B). The curves were smoothed

using Matlab spline to better visualize the peak. The colored dots correspond to the distributions in(A) and (B). D-E: CV versus rate for three network

states. Network parameters as in (A), (B). F: Correlation between CV and rate as a function of λ. Other network parameters as in (A), (B). G-H: Population

coupling versus in-degree for three network states. Network parameters as in (A), (B). I: Correlation between population coupling and in-degree as a

function of λ. Other network parameters as in (A) and (B).

https://doi.org/10.1371/journal.pone.0182501.g002
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We have shown so far that irregular spiking could be an emergent property of a critical

recurrent neural network at the presence of constant (stochastic) external drive. In addition,

we have shown that criticality maximizes the correlation between the neuron’s in-degree and

CV. However, the above results could be confounded by the fact that there are numerous

possible mechanisms for generating spike irregularity. Of the most trivial mechanisms is the

existence of some sort of double stochasticity, such as the presence of a synchronous inho-

mogeneous Poisson drive (see Discussion and Fig 3), by which one can easily generate irreg-

ular spiking (CV> 1) even in a sub-critical network (see Fig 3). Regarding such possibilities,

we show that the impact of the network state on the statistics of single-neuron spiking is

robust to the nature of the external drive (Fig 3, S1, S2, S3 and S4 Figs). Furthermore, we also

show that our results are largely robust to several parameters such as the mean network con-

nectivity and refractory period (S4 and S5 Figs).

Discussion

The investigation of criticality in biological networks has a long history and continues to flour-

ish [25–32]. In particular, a wealth of evidence suggests the hypothesis that neural networks of

cerebral cortex operate at criticality [2, 3, 5, 7, 9, 33]. This hypothesis, is largely supported by

the observation of power law distributed avalanche sizes and durations with respective expo-

nents of 1.5 and 2.0. The existence of such critical exponents has led to the idea that the spread

of activity in biological neural networks could be well described by branching processes,

Fig 3. Irregular spiking is maximized at criticality even in the presence of other irregular synchronous drive. A: The temporal structure and

strength of the external drive η(t) to 10% of the neurons in a recurrent model network of 5000 neurons and 1% connectivity. The external input η(t) was

generated from Poisson pulses of rate 10/N, smoothed by a Gaussian filter of width 100 time-steps and amplitude of 0.2(1 + ζ(t)), where ζ(t) is drawn from

a normal distribution (see Materials and methods), though the results are not sensitive to the choice of Gaussian filter width or the 0.2 coefficient for ζ (see

panel D in S4 Fig). This synchronous input was added to a background constant external input of 1/(10N). B: Inter-spike-interval CV distributions of

simulated spike trains for the subcritical (λ = 0.95, blue), critical (λ = 1.02, red), and supercritical (λ = 1.09, green) network state. Although even at the

subcritical state the network shows irregular spiking indicated by a mean CV significantly larger than 1, the spike trains show highest irregularity at the

critical regime, which is indicated by the peak of the CV distribution located near 1.3. C-D: The inter-spike-interval CVs from simulated spike trains versus

the neuron’s in degree (C) and its normalized firing rate (D) for the three network states. E: The population coupling vs a neuron’s CV for the three network

states. F: The Spearman correlation between different pairs of single neuron measures, indicating that neurons’ CV maximally correlate with their in-

degree, firing rate and population coupling.

https://doi.org/10.1371/journal.pone.0182501.g003
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thereby making them belong to the universality class of directed percolation. Theoretical stud-

ies have also lent credence to this idea, as it is shown that the general dynamical equations

describing coarse-grained neural activity could exhibit a DP phase transition [17]. In addition,

it has been shown that being at a critical regime brings about several advantages for informa-

tion processing [18, 19, 21, 34, 35]. However, despite its plausibility, the neural criticality

remains to be controversial due to multiple reasons: First, most of its experimental evidence

has been based on power law scaling of avalanche statistics, which is not sufficient for inferring

criticality. This issue becomes even more serious as it is known that in addition to the critical

exponents for size and duration of avalanches, the same scaling relation between them could

exist even in systems that show no critical phase transition [36]. Secondly, although avalanche

statistics may serve as a statistical signature of critical dynamics, to what degree it predicts cer-

tain universal features of cortical activity has yet to be understood. This demonstrates the need

for having a more in-depth study of the relation between criticality and other elements of neu-

ral activity, as well as having some complementary measures of criticality. Additionally, per-

forming conventional avalanche analysis usually entails some preprocessing and ad hoc

procedures such as applying an optimal time bin of network inter-event interval [2], for which

there has been no solid theoretical underpinning. This has been another source of controversy

and raises the need for some complementary hallmarks of criticality which could be measured

more directly from neural data.

Here, using a minimal model in the DP universality class, we showed that irregular spiking

and its relation to the neuron’s in-degree could result as emergent properties of a recurrent

network operating at criticality. Our results not only provide an insight on some implications

of critical dynamics, but they also suggest new hallmarks of criticality in the general context of

excitatory recurrent networks. Furthermore, these results could be of particular importance in

neuroscience: assuming that at coarse-grained scale cortical networks belong to DP universal-

ity class, our results would relate two universal features of cortical activity; the scale invariant

dynamics at the population level and spike irregularity at the single-neuron level.

A number of separate dynamical, biophysical, and structural mechanisms have been pro-

posed to generate the observed irregular spiking in neural data [37–40]. It has long been

known that a leaky integrate and fire (LIF) neuron residing at the sub-threshold regime can

exhibit Poisson-like spiking CV� 1, during which the membrane potential is just below the

threshold and the spiking activity is mostly driven by current fluctuations [15]. Recently, it has

been also shown that depending on the shape of the single-neuron transfer function and syn-

aptic time scales, balanced networks of leaky integrate and fire LIF neurons are capable of

showing a continuous phase transition [16]. For such transition, it turns out that the mean CV
acts as an order parameter, as the network undergoes a transition from a phase of Poisson

spiking to irregular spiking (CV> 1) when the average synaptic efficacy crosses a critical value

[16]. Therefore, in these models the onset of irregular spiking could be easily achieved for a

large range of parameters. However, whether and under what circumstance these models can

show scale invariant activity, as observed in the cortex, is still unknown.

The significance of our work resides in part in proposing an alternative scenario, in which

irregular spiking simply emerges from the collective behavior of excitatory neurons, without

the need for exploiting any further detailed mechanism at the single neuron level. Indeed,

experimental evidence for the predicted coexistence of irregular spiking and criticality (in the

DP sense) has been already provided in recordings of ongoing cortical activity in vivo [10, 41],

but a universal mechanism underlying such coexistence has been missing. Also, while the

coexistence of irregular spiking and power-law avalanche size distributions has been demon-

strated in more complex model networks [42–45], our work extends qualitatively beyond

these important earlier studies in certain fundamental aspects. First, the choice of a network of
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excitatory probabilistic integrate-and-fire model neurons allows the precise analytic evaluation

of the network state via a single control parameter λ, i.e., the maximum eigenvalue of the trans-

fer probability matrix. This approach avoids the need to rely on the cumbersome and less pre-

cise measures such as avalanche analysis or “branching ratio” (see [2] to evaluate the network

state). Second, we show that spike irregularity and power law avalanches not only coexist, but

they could be two features of the same phenomenon, that is critical dynamics. Finally, our

finding that spike irregularity maximally correlates with firing rate provides an important new

measure of criticality. Consistent with these model results, recent experimental data from in

vivo recordings showed increased population coupling with increasing synaptic inputs [24].

However, unless the network state is manipulated and a maximum in the correlation between

the population coupling and the synaptic input is determined, such experimental fact won’t be

informative about the network state.

Despite the applicability of our findings to the general context of network dynamics, there

would be certain limitations when it comes to the presence of inhibition. This goes back to the

fact that contrary to the DP universality class which has a single control parameter (mean syn-

aptic efficacy in this context), having inhibition adds another key parameter, namely the exci-

tation to inhibition (E/I) ratio. This makes the network dynamics more complicated as the

system can behave very differently depending on varying each parameter. Importantly, it is

known that depending on the choice of model parameters, LIF neurons can in general shift to

a phase of synchronized irregular spiking (SI) by distorting the E/I balance [20]. In addition, it

has been shown that performing network disinhibition using perturbation techniques such as

pharmacological manipulations could create more synchronized activity, which could conflict

with our prediction for a DP phase transition [18, 35]. On the other hand, having a constant E/

I ratio leaves open the possibility of a DP transition in which the synaptic efficacy acts as a con-

trol parameter. Even so, such possibility leads to a secondary challenge of experimental verifi-

ability, since contrary to E/I balance, manipulating mean synaptic efficacies would be a great

experimental challenge. Therefore, the issue of relevance to more realistic neurons, in some

sense, boils down to the very question of whether realistic spiking networks are capable of hav-

ing a DP phase transition. In that view, whether and to what degree our results could be appli-

cable to realistic neural networks remains to be an open question that could be the topic of

future studies.

Given the limitations of our model, there are a few points to be mentioned about the merits

and downsides of the model. (i) As stated before, the model is the most natural extension of

branching processes to recurrent networks, which is also at the same time analytically tractable

with a single control parameter. Therefore, given that biological neural networks fit to DP uni-

versality class at the coarse-grained level [17], our predictions (on maximization of spike irreg-

ularity and its relation to neuronal firing rates) provide us with new measures to verify such

hypothesis. (ii) Our results demonstrate that maximum spike irregularity and its correlation

with firing rate are emergent properties of recurrent neural networks at the population level.

This conclusion could not be easily drawn with a biologically plausible model with many free

parameters. (iii) Although the model might sound too simple to account for real neural sys-

tems, under general conditions even real data from excitatory neurons could be mapped to

such a model, as the transfer probabilities can be inferred using either transfer entropy or

Granger causality (for example see [46]). However, it should be noted that the use of such data

driven modeling is contingent on the assumption of tree-like propagation of activity, which

has its own limitations (see Methods). (iv) Our results go beyond the realm of neuroscience, as

they should be applicable to any network of excitatory units.

To avoid some common misconceptions, it is worth to point out that contrary to this study,

in the neuroscience community, the phrase “irregular spiking” is commonly used in a loose
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sense. Mathematically, CV = 1 is a signature of Poisson spiking, by which the distribution of

inter-spike-interval becomes exponential. To the contrary, irregular (regular) spiking is

referred to the case where CV> 1 (CV< 1). That being said, here we refer to “irregularity” in

the strict sense as each three cases of CV> 1, CV = 1 and CV< 1 indicate spike trains with

fundamentally different characteristics. Although the evidence from cortical activity in vivo

is consistent with CV> 1, it is common for many computational models to fail to capture

such distinction between irregular vs Poisson spiking. We believe it is essential to avoid such a

loose language and demand any model of cortical activity to exactly mimic the statistics of real

spike trains, rather than putting any statistics with CV� 1 into the same category of irregular

spiking.

One important future step to build on our study is to see whether the observation that spike

irregularity is maximized at criticality could be derived analytically. Although, we show that

our results are robust to several factors such as the type of the external input, refractoriness,

and connectivity (see S4 and S5 Figs), there is no doubt that having analytical results would

substantiate our results more rigorously and sheds light on the exact relation between the net-

work state and single-neuron spiking.

In conclusion, our study proposes complementary measures of criticality that have certain

advantages to other common measures such as power law scaling, as they are more robust to

subsampling, and are also easy to measure directly from neural data. Moreover, depending on

the validity of the criticality hypothesis, they provide us with an insight on the impact of critical

neural dynamics at the single-neuron level. We believe future studies on possibility of (DP)

critical phase transitions in realistic spike models will shed more light on this matter.

Supporting information

S1 Fig. The relation between population coupling and firing rate in the presence of syn-

chronous external drive. A: The temporal structure and strength of the external input η(t) to

10% of the neurons in a recurrent model network of 5000 neurons and 1% connectivity. The

external input η(t) was generated from Poisson pulses of rate 10/N, smoothed by a Gaussian

filter of width 100 time-steps and amplitude of 0.2(1 + zt), where zt is drawn from a normal

distribution (see Materials and methods). This synchronous input was added to a background

constant external input of 1/(10N). B: Inter-spike-interval CV distributions of simulated spike

trains for the subcritical (λ = 0.95, blue), critical (λ = 1.02, red), and supercritical (λ = 1.09,

green) network state. At the critical regime the spike trains show highest irregularity, which is

indicated by the peak of the CV distribution located near 1.3. C-D: The population coupling

from simulated spike trains versus the neuron’s in degree (C) and its normalized rate (D) for

the three network states. E: The population coupling vs a neuron’s CV for the three network

states. F: The Spearman correlation coefficients between CV and in-degree (rate), population

coupling and in-degree (rate), population coupling and CV are all maximized at criticality.

(TIF)

S2 Fig. Irregular spiking at criticality in a recurrent network with asynchronous external

input. A: The temporal structure and strength of the external input η(t) to 10% of the neurons

in a recurrent model network of 5000 neurons and 1% connectivity. The external input η(t)
was generated by independent Poisson pulses of rate 5/N, smoothed by a Gaussian filter of

width 20 time-steps and amplitude η0 = 0.5 (see Materials and methods). B: Inter-spike-inter-

val CV distributions of simulated spike trains for the subcritical (λ = 0.95, blue), critical (λ =

1.02, red), and supercritical (λ = 1.09, green) network state. C-D: The inter-spike-interval CVs

from simulated spike trains versus the neuron’s in degree (C) and its normalized rate (D) for

the three network states. E-F: The population coupling from simulated spike trains versus the
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neuron’s in degree (e) and its normalized rate (f) for the three network states. G: The popula-

tion coupling vs a neuron’s CV for the three network states. H: The Spearman correlation coef-

ficients between CV and in-degree (rate), population coupling and in-degree (rate),

population coupling and CV are all maximized at criticality.

(TIF)

S3 Fig. The mean CV and average population coupling are maximized near network criti-

cality for external inputs of different spatiotemporal structure. A-B: Average CV (A) and

average population coupling (B) vs the control parameter λ for synchronous external inputs

(see S1A Fig, but with different stimulation amplitudes (see panel A in S1 Fig, but with stimu-

lation amplitude η0 = 0.1, 0.2, 0.5; see Materials and methods) for three different network sizes.

C-D Average CV (C) and average population coupling (D) vs the control parameter λ for syn-

chronous external inputs (see panel A in S1 Fig) for a network size of N = 5000 and for three

different stimulus amplitudes. E-F Average CV (E) and average population coupling (F) vs

the control parameter λ for random (asynchronous) external input (see panel A in S2 Fig) for

three different network sizes (see legend in (A)).

(TIF)

S4 Fig. Robustness of maximum irregularity to model parameters. A: CV profiles for differ-

ent refractory periods in networks of 5000 neurons (η = 1/5N). The mean CV clearly shows

a pronounced peak for a range of refractory periods, though with very large refractoriness

(τref � 10) the profile becomes almost flat. B: CV profiles vs constant external drive for net-

works of 5000 neurons with %1 connectivity and τref = 2. It is evident that a separation of time

scales is necessary to have maximum CV at criticality, as increasing η degrades the maximum

CV and at some point breaks down irregular spiking (CV> 1). C: CV profiles vs the parame-

ters of asynchronous drive (η0 and the width of the Gaussian filter; see also Materials and

methods). Similar to the case of constant drive, spike irregularity is degraded by increasing η0,

though it largely persists (CV> 1) for a range of η’s. On top of that, the CV profiles are highly

robust to the choice of Gaussian filter. D: CV profiles vs the parameters of synchronous drive

(� and the width of the Gaussian filter; see also Materials and methods). The spike irregularity

turns out to be insensitive to both parameters.

(TIF)

S5 Fig. Robustness of general results to network connectivity. A: CV profiles for different

connectivities (mean degrees) for random networks of 5000 neurons with external input of

η = 1/5N. It is evident that the results are highly robust to connectivity. B: Similar to A for the

average population coupling (PC).

(TIF)
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