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Abstract

In the current precision medicine era, more and more samples get genotyped and

sequenced. Both researchers and commercial companies expend significant time and

resources to reduce the error rate. However, it has been reported that there is a sample mix-

up rate of between 0.1% and 1%, not to mention the possibly higher mix-up rate during the

down-stream genetic reporting processes. Even on the low end of this estimate, this trans-

lates to a significant number of mislabeled samples, especially over the projected one billion

people that will be sequenced within the next decade. Here, we first describe a method to

identify a small set of Single nucleotide polymorphisms (SNPs) that can uniquely identify a

personal genome, which utilizes allele frequencies of five major continental populations

reported in the 1000 genomes project and the ExAC Consortium. To make this panel more

informative, we added four SNPs that are commonly used to predict ABO blood type, and

another two SNPs that are capable of predicting sex. We then implement a web interface

(http://qrcme.tech), nicknamed QRC (for QR code based Concordance check), which is

capable of extracting the relevant ID SNPs from a raw genetic data, coding its genotype as a

quick response (QR) code, and comparing QR codes to report the concordance of underly-

ing genetic datasets. The resulting 80 fingerprinting SNPs represent a significant decrease

in complexity and the number of markers used for genetic data labelling and tracking. Our

method and web tool is easily accessible to both researchers and the general public who

consider the accuracy of complex genetic data as a prerequisite towards precision medicine.
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Introduction

Genomic data is being accumulated at an incredible rate. It is projected that approximately

one billion people will be whole genome sequenced within the next decade[1]. With a cost eas-

ily below $100, genotyping arrays that target single nucleotide polymorphisms (SNPs) will

increase this rate exponentially. Many studies, such as the UK biobank project[2] in United

Kingdom, the VA million Veteran program[3] in United States, the China Kadoorie Study[4]

in China and United Kingdom, have taken advantage of these cost-effective arrays to genotype

samples up to ~500,000. These large cohorts are not anomalies, with the Kaiser Perch Program

on Genes, Environment, and Health[5] and the and TOPMed[6], building cohorts of similar

size. Outside of the research field, direct-to-consumer genetic testing has exploded, with com-

panies claiming to have genotyped more than a million individuals (for example, http://www.

23andme.com).

However, with this plethora of genetic data comes errors. Hu et al. report an average rate of

error for sample mix-up between 0.1% to 1%,[7] suggesting that between 500 to 5,000 samples

are probably mislabeled for a large study such as the UK Biobank Study. A significant amount

of research has been devoted to reducing these errors and improving the quality control. These

strategies range from devoted and detailed outlines of quality control procedures[8] to match-

ing sets of significant markers for sample tracking. All of these methods require a significant

amount of expertise and time to implement, making them a drain on limited resources.

Individual identifications by SNP analysis require generation of a panel of SNPs that

together give an extremely remote probability that two individuals would have the same DNA

profile. Previously, a universal panel of 92 SNPs was developed for individual identification[9].

Another panel used 75 SNPs for Eastern Asian populations[10]. A recent simulation study

showed that only 60 optimized SNPS are required to differentiate individuals in the global

population[7]. In this study, we describe a solution that is accurate, unique, and easy to use.

Our proposed solution uses 80 identified SNPs that are shared across widely used genome-

wide genotyping arrays. To increase the accessibility and easiness of use, we develop on online

platform to extract the genetic data and encode it as a quick response (QR) code. QR codes

have the advantage of being a robust method for encoding information and can be read with

any image capture devise such as a smart phone. Liu et al. previously compared 53 different

types of one-dimensional and ten two-dimensional barcode symbologies and found that the

QR code has the largest coding capacity and relatively high compression rate, allowing for

easy expansion if necessary[11]. Our website, nicknamed QRC (for QR code based Concor-

dance check), provides an easy to use web based interface for extracting the 80 markers from

uploaded genotype data, encoding the markers as a QR code, and comparing the concordance

of multiple QR codes. This methodology can easily be expanded to be used by professionals in

the genetic field.

Methods

Identification of ID SNPs

To generate our list of fingerprinting SNPs, we first obtained a list of bi-allelic autosomal SNPs

that overlap in eight widely used genotyping arrays: three Affymetrix arrays including Axiom

Biobank Array, Axiom UK biobank Array, and the newly announced Axiom Precision Medi-

cine Research Array (PMRA) (http://www.affymetrix.com/catalog); three Illumina arrays

including infinium-omniexpress-24-v1-2-a1 array, Illumina HumanExome-12v1-2 array, and

the newly announced Global Screening array (GSA) (http://www.illumina.com/techniques/

microarrays), as well as two direct-to-consumer (DTC) arrays (23&Me and Genes for Good).

Checking genotype concordance through comparing QR codes

PLOS ONE | https://doi.org/10.1371/journal.pone.0182438 September 19, 2017 2 / 9

generate one’s own list of ID SNPs. 3. A smart-

phone based application is in development and will

be released on this website once it is available.

Funding: A portion of this research was conducted

using the Linux Cluster for Genetic Analysis

(LinGA-II) funded by the Robert Dawson Evans

Endowment of the Department of Medicine at

Boston University School of Medicine and Boston

Medical Center. The research is supported by NIH

grants R01HG006292, R01 HL129132, and

UL1TR001111.

Competing interests: The authors have declared

that no competing interests exist.

http://www.23andme.com
http://www.23andme.com
http://www.affymetrix.com/catalog
http://www.illumina.com/techniques/microarrays
http://www.illumina.com/techniques/microarrays
https://doi.org/10.1371/journal.pone.0182438


The resulting list is then selected again to ensure at least moderate frequencies across global

populations. Specifically, we select SNPs with minor allele frequency (MAF) over 0.25 in each

of the five global sub-populations presented in the 1000GP project, so that the selected are not

only available in major genotyping arrays, but are also common in global populations. The five

sub-populations are: European (EUR), African (AFR), Native American (AMR), Eastern

Asian (EAS), and Southern Asian (SAS). The MAF is based on data from the 1000 genomes

project (1000GP)[12] (freezing date 20130502) and the Exome Aggregation Consortium

(ExAC)[13] (release 0.3.1). The former includes whole genome sequencing data from 2,504

individuals of diverse ancestry while the latter whole exome sequencing data from over 60,000

individuals.

The results are further pruned by removing A/T and C/G SNPs and SNPs annotated as

pathogenic or likely pathogenic as reported by ClinGen database[14]. The final selection pro-

cess limits to those SNPs that are not marginally dependent with each other, i.e., are in linkage

disequilibrium (LD). To be very conservative, we pick only one SNP from any 10MB region

on the genome. The SNP for a given region was selected as having the highest overall MAF

over the remaining SNPs. Across the whole genome this resulted in 74 SNPs that satisfy our fil-

tering criteria. This number slightly exceeds the theoretical number of 60 required to uniquely

distinguish the global population[7]. To make this panel verifiable on its own when there is

only one genetic dataset, we added four single nucleotide variants (SNVs) that are commonly

used to predict ABO blood type: (1). exon-6 deletion rs8176719 for O1 type; (2). rs41302905

for O2 type; (3). rs8176746 for B type[15, 16]; (4). rs56392308 for A2 subtype[17]. We further

added two SNPs that are capable of predicting sex: rs12743401, rs12734338. These two SNPs

are aligned to both chromosomes 1 and Y, therefore, heterozygosity in male is actually a detec-

tion of two regions, one on chromosome 1 and the other on chromosome Y [18, 19]. The

resulting total number of 80 SNPs were tested to confirm that they could uniquely label a large

cohort. We used the UK Biobank (N ~150,000) as our test cohort. The genotypes of finger-

printing SNPs was extracted and tested for uniqueness using PLINK[20].

Comparing the concordance of ID SNPs through QR codes

We then developed a web based application (http://qrcme.tech) that can extract the genotypes

for these fingerprinting SNPs from raw genotype datasets such as those from 23&Me and then

generate QC codes. To create a QR code, we first generate a string in the format of “1AA2AC3

—”, where 1,2,3 are the index of 80 SNPs and the two digit letters are the genotype of SNPs at

that position. Missing data is represented by “-”. Then, this string, without indices, is encoded

into a QR code using the open source Zebra Crossing barcode image processing library

(https://github.com/zxing/zxing/). This same library is used to decode a QR image back to the

original text string. To compare QR Codes, we first decode both images, and compare the 80

SNPs values from the decoded strings. A match includes five scenarios: (1) a perfect match

such as “AG” vs. “AG”, (2) a permuted match such as “AG” vs. “GA”, (3) an opposite strand

match such as “AG” vs. “TC”; (4) an “AC” vs.”TG” match (all permutations); (5) an “AG” vs.

“TC” match (all permutations). All other conditions are considered a mismatch, with missing

data reported separately.

For those who are interested in deriving their own list of ID SNPs, we have also made it

easy to accomplish through our QRC website. It takes a list of SNPs in CHR:POS format and

compares it with a reference file that includes allele frequencies of 1,388,180 biallelic variants

existing in both 1000GP and ExAC. Then it generates a list of independent SNPs with high

allele frequencies across all major sub-populations, based on user specified MAF cutoff and

region size threshold.

Checking genotype concordance through comparing QR codes
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Results

Identification of ID SNPs

Through a series of selections, we have identified 74 SNPs across the whole genome that

uniquely identify an individual across the global population. To make this list of SNPs more

informative and unique, we further included four SNPs for predicting ABO blood type and

two SNPs for predicting sex. Therefore, there is a total of 80 SNPs are included. Table 1 shows

the overlapping of SNPs across eight major genotyping arrays. The upper diagonal numbers

are the numbers of overlapping SNPs for each corresponding pair. The lower diagonal num-

bers (shown in italicized font with an underline) are the cumulative numbers of overlapping

SNPs for each corresponding pair. For example, there are 865,720 SNPs in Axiom PMRA

array, among which 272,701 are also present in Axiom UK Biobank array. Among the 272,701

SNPs, 172,088 are also in Axiom Biobank array. And among the 172,088 SNPs, 39,292 are also

on Illumina GSA array. Eventually, 3,239 SNPs are shared across all eight arrays and 74 are

independent. The details for these 74 fingerprinting SNPs are listed in Table 2. The reference

allele and reference allele frequency (RAF) was based on the human reference genome15.

These 74 SNPs span 20 autosomes, excluding chromosomes 15 and 21. They overall MAF is all

greater than 0.3, based on the 2,504 multi-ethnical individuals in 1000GP. There is at least

10MB separating SNPs with the average distance being 37.4MB reducing the possibility of

linkage between SNPs. Additionally, these SNPs have no reported pathogenic or likely patho-

genic association according to the ClinGen database meaning these SNPs reveal no informa-

tion regarding disease risk. Fig 1 shows the RAF between 1000GP and ExAC for these 74

SNPs.

Comparing the concordance of ID SNPs through QR codes

As shown in Fig 2A, our web tool allows users to do three things: 1. Generate one or more QR

codes from one or more raw genotype datasets and save the QR codes locally; 2. Compare two

QR codes to get a report on the concordance of the underlying genotype datasets; 3. Generate

one’s own ID SNPs. This is primarily for those savvy users including researchers who prefer to

generate their own ID SNPs instead of using the 80 SNPs that we derived. Fig 2B shows a

Table 1. Cross tabulation of bi-allelic autosomal SNPs across eight arrays.

Axiom

PMRA

Axiom UK

Biobank

Axiom

Biobank

Illumina

GSA

Omni

Express

23&Me Genes for

Good

Exome

Array

Axiom PMRA 865,720 272,701 207,468 128,503 82,373 70,227 61,240 21,941

Axiom UK

Biobank

272,701 800,194 359,529 289,548 103,360 91,747 103,139 65,910

Axiom Biobank 172,088 172,088 629,487 105,807 77,132 65,734 232,406 185,863

Illumina GSA 39,292 39,292 39,292 733,348 185,489 113,481 192,333 54,913

Omni Express 15,905 15,905 15,905 15,905 693,518 303,948 253,917 18,683

23&Me 10,478 10,478 10,478 10,478 10,478 510,550 128,062 15,684

Genes for Good 8,385 8,385 8,385 8,385 8,385 8,385 540,551 233,277

Exome Array 3,239 3,239 3,239 3,239 3,239 3,239 3,239 238,468

The numbers highlighted in grey along the diagonal line are for each individual SNP panel. The upper diagonal numbers are the numbers of overlapping

SNPs for each corresponding pair. The lower diagonal numbers (shown in italicized font with an underline) are the cumulative numbers of overlapping SNPs

for each corresponding pair. For example, for the second column, there are 865,720 SNPs in Axiom PMRA array, among which 272,701 are also present in

Axiom UK Biobank array, among the 272,701, 172,088 are also in Axiom Biobank array, and among the 172,088, 39,292 are also on Illumina GSA array,

etc; and eventually, 3,239 are shared across all eight arrays.

https://doi.org/10.1371/journal.pone.0182438.t001
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example report. It is based on genotype datasets for two different individuals, therefore, the

concordance is low. The report includes the number of missing SNPs and the overlap of non-

missing SNPs and the type of matches.

Discussion

Short tandem repeat (STR) markers have been routinely used for genetic fingerprinting foren-

sic settings, because of the large number of alleles within various populations[21]. However,

Table 2. List of fingerprint SNPs.

# Chr Pos (b37) rsID Ref Alt RAF # Chr Pos (b37) rsID Ref Alt RAF

1 1 7,202,190 rs970973 T C 0.539 38 8 1,514,009 rs2301963 C A 0.477

2 1 34,071,525 rs1874045 C T 0.571 39 8 30,973,957 rs1800392 G T 0.446

3 1 110,998,854 rs7514102 G A 0.435 40 8 121,228,679 rs4870723 A C 0.512

4 1 161,479,745 rs1801274 A G 0.479 41 8 143,761,931 rs2294008 C T 0.306

5 1 183,542,387 rs2274064 T C 0.489 42 9 4,576,680 rs301430 T C 0.364

6 1 203,194,186 rs2297950 C T 0.303 43 9 15,784,631 rs1539172 A G 0.478

7 1 225,534,219 rs7527925 T C 0.476 44 9 116,136,198 rs1043836 C T 0.615

8 1 248,039,713 rs3811445 A G 0.608 45 9 133,927,878 rs10901333 A G 0.459

9 2 26,804,247 rs935172 T C 0.547 46 10 6,001,696 rs3136618 C T 0.507

10 2 101,638,888 rs3739014 A G 0.607 47 10 30,316,208 rs2185724 T C 0.373

11 2 113,309,473 rs1545133 C T 0.523 48 10 99,498,234 rs3818876 G A 0.53

12 2 138,420,996 rs10206850 A G 0.543 49 10 124,610,027 rs1891110 G A 0.528

13 2 191,301,368 rs9646748 A G 0.485 50 10 134,748,331 rs12781609 C T 0.402

14 2 207,041,053 rs3732083 T C 0.458 51 11 14,246,296 rs1025412 G A 0.515

15 2 237,149,941 rs6756597 C T 0.479 52 11 33,065,394 rs1064005 C T 0.38

16 3 14,755,572 rs6765537 A G 0.391 53 11 73,785,326 rs4453265 T C 0.476

17 3 52,727,257 rs2289247 G A 0.429 54 12 16,397,734 rs1852450 C A 0.489

18 3 100,963,154 rs571391 G A 0.652 55 12 58,162,739 rs703842 A G 0.385

19 3 122,259,606 rs9851180 T C 0.538 56 12 125,467,158 rs11558556 C T 0.361

20 3 193,209,178 rs6788448 T C 0.427 57 13 33,703,656 rs495680 T C 0.585

21 4 42,639,186 rs898500 A G 0.481 58 13 50,141,345 rs4942848 G A 0.616

22 4 79,443,850 rs931606 G A 0.519 59 14 23,299,135 rs1135641 G T 0.464

23 4 187,120,211 rs13146272 C A 0.585 60 14 73,138,189 rs1060570 C A 0.449

24 5 1,065,399 rs737154 C T 0.525 61 14 101,350,298 rs3825569 T C 0.506

25 5 52,193,287 rs1531545 C T 0.554 62 16 4,751,045 rs863980 C T 0.533

26 5 73,339,114 rs285599 C T 0.394 63 16 29,998,200 rs4077410 A G 0.491

27 5 96,503,523 rs160632 C T 0.586 64 16 56,995,236 rs1800775 C A 0.459

28 5 150,943,085 rs2304054 G A 0.465 65 17 14,005,439 rs2159132 G A 0.522

29 5 169,685,163 rs315717 C T 0.508 66 17 33,749,546 rs2586514 A G 0.602

30 6 31,610,686 rs1052486 A G 0.499 67 17 57,963,537 rs1292053 A G 0.446

31 6 129,807,629 rs2229848 C T 0.667 68 17 71,196,809 rs1026128 A G 0.523

32 6 147,680,359 rs9390459 A G 0.532 69 18 60,027,241 rs1805034 C T 0.537

33 6 167,360,389 rs2236313 T C 0.375 70 19 4,288,332 rs888930 A G 0.412

34 7 33,282,577 rs7793096 G A 0.502 71 19 17,394,124 rs2363956 T G 0.486

35 7 99,757,612 rs3823646 G A 0.537 72 19 49,658,367 rs3745298 C T 0.459

36 7 141,672,604 rs10246939 T C 0.476 73 20 52,786,219 rs2296241 G A 0.492

37 7 156,762,248 rs12919 G A 0.515 74 22 19,951,271 rs4680 G A 0.462

The resulting 74 SNPs sorted by chromosome and position as reported by build 37 reference genome. The RAF is based on 1000GP.

https://doi.org/10.1371/journal.pone.0182438.t002
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Fig 1. Reference allele frequency of the selected 80 SNPs. Reference allele frequency across the five major population

groups (African: AFR, European: EUR, Native American: AMR, Eastern Asian: EAS and Southern Asian: SAS) and overall

as reported by 1000GP and ExAC. Y-axis is the RAF in ExAC.

https://doi.org/10.1371/journal.pone.0182438.g001
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STR does have disadvantages, including high mutation rate, lack of high-throughput technolo-

gies, and the need for large amplification products and therefore limits the use of degraded

samples.[22] In this manuscript, we have presented a method for creating a list of identifying

SNPs. This method uses a series of selections, the first being identifying overlapping SNPs

across eight genotyping arrays. The results are further selected by requiring a minimum MAF

value above 0.25 across the five major continental groups. Additional selections result in just

80 SNPs that uniquely identify individuals across the global population. We have confirmed

this uniqueness in the large publicly available genetic database, the UK biobank. This same

procedure can be implemented in other settings to create similar lists that fit a given need.

Our identified list of 80 SNPs, has the practical application of reducing the number of SNPs

used for comparison in the tracking of genetic data through the genotyping pipeline. Genotyp-

ing vendors currently use their own list of SNPs for tracking, with Affymetrix reportedly using

over 300 markers for sample tracking. Our lower number of markers results in faster compari-

sons leading to savings in time and possibly cost, especially over millions of samples as

Fig 2. The QRC website interface. A. The interface allows a user to first upload genetic data to generate a QR

code and save it into his local computer, and then compare any two QR codes for concordance check. Researchers

could also generate their own ID SNPs. B. A sample report, based on genotype datasets for two different

individuals. The report includes the number of missing SNPs and the overlap of non-missing SNPs and the type of

matches.

https://doi.org/10.1371/journal.pone.0182438.g002
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reported by 23&Me. We further implemented the QRC web server (http://qrcme.tech). The

simple and easy to use graphical interface allows a user to upload a genetic data set, which is

parsed for the genotypes at the 80 SNPs. The results are then encoded as a QR code that can be

attached to a data set. QR codes from different data sets can also be compared, leading to a

check across commercial genotyping companies. This feature has already been implemented

in addition to coding and decoding QR codes. This methodology can be easily expanded to be

used by professionals in the genetic field.

It is our goal to come up with a most parsimonious list of SNPs to uniquely identify any sin-

gle person across the globe, through genetic data. However, our purpose is to encode this sub-

set of genetic data into a QR code so that a non-geneticist could use an easy interface to check

the concordance of one data with another, not for purposes such as forensic testing or pater-

nity testing. Therefore, some level of uncertainty is tolerated. We further added SNPs that

could be used to predict ABO blood type and sex, therefore one genotypic data alone could

still provide some useful information for one to validate the data to some extent. It is our hope

that the genetic community will work together to identify a robust method and agree upon an

omnibus list of SNPs that could be used through user friendly interface like what is presented

in QRC.
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