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Abstract

The recently proposed Parkinson’s Disease (PD) telediagnosis systems based on detecting

dysphonia achieve very high classification rates in discriminating healthy subjects from PD

patients. However, in these studies the data used to construct the classification model con-

tain the speech recordings of both early and late PD patients with different severities of

speech impairments resulting in unrealistic results. In a more realistic scenario, an early tele-

diagnosis system is expected to be used in suspicious cases by healthy subjects or early

PD patients with mild speech impairment. In this paper, considering the critical importance

of early diagnosis in the treatment of the disease, we evaluate the ability of vocal features in

early telediagnosis of Parkinson’s Disease (PD) using machine learning techniques with a

two-step approach. In the first step, using only patient data, we aim to determine the patient

group with relatively greater severity of speech impairments using Unified Parkinson’s Dis-

ease Rating Scale (UPDRS) score as an index of disease progression. For this purpose,

we use three supervised and two unsupervised learning techniques. In the second step, we

exclude the samples of this group of patients from the dataset, create a new dataset consist-

ing of the samples of PD patients having less severity of speech impairments and healthy

subjects, and use three classifiers with various settings to address this binary classification

problem. In this classification problem, the highest accuracy of 96.4% and Matthew’s Corre-

lation Coefficient of 0.77 is obtained using support vector machines with third-degree poly-

nomial kernel showing that vocal features can be used to build a decision support system for

early telediagnosis of PD.

Introduction

Parkinson’s disease (PD) is one of the most frequently seen neurodegenerative disorders

affecting the human central, peripheral, and enteric nervous systems [1]. In a recent study that

synthesized studies on the prevalence of PD, meta-analysis of the worldwide data showed that

PD prevalence increases steadily with age from 41/100000 in 40 to 49 years to 1903/100000 in

older than 80 years [2]. The standardized incidences reported in previous studies ranged from

16 to 19 per 100000 per year [3]. Many studies have reported that PD incidence also rises
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steadily with age to a peak occurring at the age of 70 to 79 years [4]. However, it is also noted

that this may be because of the difficulty in identifying very elderly patients [3]. These findings

show that aging of general population will bring about a dramatic increase in in the number of

people diagnosed with PD [5]. Therefore, there is an increasing need to build reliable telemedi-

cine systems that alleviates the burden of frequent physical visits to the clinic and uncompen-

sated medical expenditures [6–9]. Although there is no cure for the disease, some symptoms of

the Parkinson’s disease can be suppressed by pharmacological or surgical intervention [10].

Thus, early diagnosis is of critical importance as it enables the early introduction of treatment

that can improve the quality of life and extend the life span of the patients.

Unified Parkinson’s Disease Rating Scale (UPDRS) is the most commonly used rating tool

to follow the PD progression and evaluate the results of surgical, medical, and other interven-

tions of the disease [11–13]. The UPDRS is composed of three main components: first is the

“mentation, behavior and mood”, which consists of 4 sections; second is the “activities of daily

living” which consists of 13 sections and assesses whether a PD patient can fulfill daily tasks

without any assist; and the third is “Motor” which consists 27 sections and evaluates muscular

control [14, 15]. The effect of speech shows up in two components: primarily in the 5th section

of component 2 for assessing whether the patient’s vocal output is apprehensible and secondly

in the 18th section of component 3 for evaluating whether the patient’s vocal output is expres-

sive during a conversation. The UPDRS is highly used due to its various strengths: (i) it

assesses both motor disability (second component) and motor impairment (third component),

(ii) a teaching-videotape is used to standardize the practical application and this enhances the

inter-rater reliability [10, 16] (iii) its reliability and validity has been assessed many times due

to its clinometric scale evaluation ability. Its reliability was examined in literature in terms of

internal consistency [8, 11, 17, 18], inter-rater reliability 11, 17], intra-rater reliability [19],

test–retest reliability in elderly patients with parkinsonian signs (but not necessarily PD) [19]

and test–retest reliability in patients with early, mild PD [12]. The results have demonstrated

that although there are some items focused on the same aspect of the construct, UPDRS is one

of the most valid and reliable scale that can be used to follow the course of PD. However, as the

patients live longer, even some of the symptoms are treated; it is becoming more and more dif-

ficult for the patients to come to visits in hospital for diagnosis, monitoring, and treatment.

Therefore, tele-monitoring of signs can complement traditional clinical examinations [20] and

decrease the number of physical visits to clinics. Consequently, the life of PD patients and their

relatives may be easier and the workload of clinicians may reduce.

Vocal impairment is one of the most important signs of PD since it is seen in approximately

90% of the patients in the earlier stages of the disease [8, 18]. Therefore, there is an increasing

interest in building PD diagnosis and telemonitoring systems based on vocal features. The

tele-diagnosis systems aim to discriminate PD patients from healthy subjects [8, 21–25] and

the telemonitoring systems aim to predict the clinical evaluation metrics in order to track

the sign progression of the disease [8, 14, 26]. Most of the telediagnosis studies use an online

available Parkinson voice dataset which consists of 195 voice recordings belonging to 23 PD

patients and 8 healthy subjects [8]. In a recent study, clustering based feature weighting and

complex valued artificial neural network were combined to discriminate healthy subjects from

PD patients and 99.52% classification accuracy was achieved on this dataset [22]. Similar stud-

ies that address the telediagnosis problem have obtained similar classification performances by

combining feature selection and classification algorithms [21, 24, 25].

The PD tele-monitoring studies based on speech recordings of PD patients aim to map the

vocal features to a clinical evaluation system used to describe how the signs of Parkinson’s dis-

ease progress. Since UPDRS is the most widely used scale, many researches are trying to esti-

mate the whole or a part of the UPDRS score using data that is retrieved by teleprocessing. In a
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study conducted at University of California, data collected with an at-home testing device

recording both motor and speech data was used with linear regression to estimate UPDRS

score [20]. Khan et. al [27] extracted 13 features, including the cepstral separation difference

and Mel-frequency cepstral coefficients, from 240 running speech samples recorded from 60

PD 20 healthy controls and predicted UPDRS Motor Examination of Speech with 85% accu-

racy by using SVM. In another recent study, Bayestehtashk et al. [14] has collected a relatively

large cohort of 168 subjects remotely from three different clinics and obtained mean absolute

error of 5.5 in predicting the UPDRS score.

As mentioned above, although there have been many studies aiming at building PD tele-

diagnosis and telemonitoring systems based on vocal features, the ability of vocal features in

early telediagnosis of PD have not been investigated yet in the literature. Many literature stud-

ies that propose telediagnosis systems based on speech disorders reported very high classifica-

tion rates in discriminating healthy subjects from PD patients [21–24]. However, in these

studies the data used to build the classification model contain the speech recordings of both

early and late PD patients with different severities of speech impairments. In a more realistic

scenario, the telediagnosis system is expected to be used in suspicious cases by healthy subjects

and patients with mild motor system disorders. In the literature, it has been found that speech

disorders have the potential to be the early indicators of PD. In [28], using disease duration as

an index of disease progression, the association between disease duration and various UPDRS

subscores is examined, and the findings revealed that activities of daily living (ADL) subscore

and motor subscore, each including a speech part, are strongly associated with disease dura-

tion. In this paper, considering the critical importance of early diagnosis in the treatment of

the disease, we investigate the usefulness of vocal features in early telediagnosis of Parkinson’s

Disease (PD) using machine learning techniques. We address this problem with a two-step

approach. In the first step, the aim is to identify the patient group with comparably greater

severity of speech impairments using Unified Parkinson’s Disease Rating Scale (UPDRS) score

as an index of disease progression [29]. We utilize three supervised learning approaches to

determine this patient group. We also apply two unsupervised approaches to validate the

results obtained with the classification procedure. Then, in the second step of our approach,

we exclude the samples of this group of patients with severe speech disorders from the dataset

and create a new dataset consisting of the samples of PD patients with mild speech disorders

and healthy subjects. We feed this dataset to three different classifiers and present the results

in detail. Thus, we aim to analyze the usefulness of vocal features in discriminating the PD

patients with early signs of speech disorders and healthy subjects. The highest accuracy of

96.4% and Matthew’s Correlation Coefficient of 0.77 obtained using SVM with third-degree

polynomial kernel show that vocal features are effective in discriminating healthy subjects and

PD patients with mild speech disorders and can be used for early telediagnosis of the disease.

Materials and methods

Dataset description

In the first step of our approach, we use a Parkinson’s Disease (PD) telemonitoring dataset

consisting of speech recordings of 42 PD patients, which was collected under the supervision

of six U.S. medical centers within the context of Tsanas et al.’s study [8] and is available online

at UCI machine-learning archive [30]. As described in [8], the data were collected remotely at

the patient’s home and transmitted over the internet [8]. The PD patients were diagnosed

within the previous five years at trial onset if he/she had at least two of the following symptoms:

rest tremor, bradykinesia or rigidity, without evidence of other forms of parkinsonism. The

patients’ ages ranged from 36 to 85 years (mean age 64.4 ± 9.24) [8]. More detailed description
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of the data collection process can be found in [8]. The feature set extracted from the voice

recordings consists of 16 features which are shown in Table 1 [8, 30, 31]. The statistical param-

eters of these features are given in Table 2. The feature set includes several measures of funda-

mental frequency, several measures of variation in amplitude, noise-to-harmonics and

harmonics-to-noise ratios, nonlinear dynamical complexity measure, signal fractal scaling

exponent, and pitch period entropy. The PD patients were monitored for a six-month period,

and remained un-medicated during the duration of the study [8]. The voice recordings of the

subjects were obtained at weekly intervals for the six-month duration of the study whereas

motor and total UPDRS were assessed only three times by the medical staff: at baseline (onset

of trial), and after three and six months. The missing weekly UPDRS estimates corresponding

to the weekly voice recordings were obtained using linear interpolation [8]. During the six

months data collection period, in each trial, six sustained phonations of the vowel /a/ were

recorded summing up to 5875 voice recordings. The motor UPDRS score of the PD patients

Table 1. Definitions of vocal features.

Vocal Feature Description

Jitter(%) Average absolute difference between consecutive periods, divided by the

average period.

Jitter(Abs) Average absolute difference between consecutive periods which gives

information about the cycle-to-cycle variation of fundamental frequency given

in seconds.

Jitter:RAP Relative Average Perturbation (RAP), which is the average absolute

difference between a period and the average of it and its two neighbours,

divided by the average period.

Jitter:PPQ5 Five-point Period Perturbation Quotient, computed as the average absolute

difference between a period and the average of it and its four closest

neighbours, divided by the average period.

Jitter:DDP Average absolute difference between consecutive differences between

consecutive periods, divided by the average period.

Shimmer Average absolute difference between the amplitudes of consecutive periods,

divided by the average amplitude.

Shimmer(dB) Average absolute base-10 logarithm of the difference between the amplitudes

of consecutive periods, multiplied by 20. It gives information about the

variability of the peak-to-peak amplitude in decibels.

Shimmer:APQ3 Three-point Amplitude Perturbation Quotient, the average absolute difference

between the amplitude of a period and the average of the amplitudes of its

neighbours, divided by the average amplitude.

Shimmer:APQ5 Five-point Amplitude Perturbation Quotient, the average absolute difference

between the amplitude of a period and the average of the amplitudes of it and

its four closest neighbours, divided by the average amplitude.

Shimmer:APQ11 11-point Amplitude Perturbation Quotient, the average absolute difference

between the amplitude of a period and the average of the amplitudes of it and

its ten closest neighbours, divided by the average amplitude.

Shimmer:DDA Average absolute difference between consecutive differences between the

amplitudes of consecutive periods.

Noise to Harmonics Ratio

(NHR)

Amplitude of noise relative to tonal components. It quantifies the noise which

occurs due to turbulent airflow, resulting from incomplete vocal fold closure in

speech pathologies.

Harmonics to Noise Ratio Amplitude of tonal relative to noise components. It has the same aim as NHR.

Recurrence period density

entropy

Addresses the ability of the vocal folds to sustain stable vocal fold vibrations,

quantifying the deviations from exact periodicity

Detrended fluctuation

analysis

Quantifies the self-similarity of the noise present in the speech caused by the

turbulent air flow

Pitch period entropy Measures the impaired control of stable pitch during sustained phonations

https://doi.org/10.1371/journal.pone.0182428.t001
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monitored in this study range from 5 to 40. The control group dataset used in the second step

of our analysis is a part of another PD dataset which was collected by Little et al. [23] and is

also online available at UCI machine-learning archive [32]. It contains 48 samples belonging

to 8 healthy subjects. We refer the reader to [23] for more detailed description of the dataset

containing the healthy subjects.

Determination of UPDRS threshold

Binary classification. In our two-step approach, first we aim to determine the optimal

motor UPDRS threshold value that can be discriminated with the lowest possible error rate

using vocal features. This threshold value represents the level of disease as determined by

UPDRS, after which dysphonia or change in voice quality becomes apparent. For this purpose,

we discretize the UPDRS scores of PD patients into two classes, “Below threshold” and “Above

threshold”, for various motor UPDRS threshold values. The interval of the UPDRS threshold

value that has been evaluated is determined so that each of the classes contains at least 10% of

the total number of samples. For each possible optimum threshold value, we apply a binary

classification procedure to discriminate the PD patients having UPDRS values below the deter-

mined threshold, labeled “negative”, and above the determined possible threshold, labeled

“positive [29].

The features are fed to Support Vector Machines (SVM), Extreme Learning Machines

(ELM), and k-nearest neighbors (k-NN) classifiers for each of the binary classification prob-

lems obtained with various UPDRS threshold values. Although we present the results in terms

of accuracy and Matthew’s Correlation Coefficient (MCC) evaluation metrics, since the binary

classification problem obtained according to the determined UPDRS threshold value may

result in imbalanced datasets in which sample from one class is in higher number than other,

we take the MCC metric into account to determine the maximally predictable UPDRS thresh-

old value. The MCC metric is a balanced measure which can be used even if the classes are of

very different sizes. It gets a value between –1 and +1. The formulation of MCC metric is given

Table 2. Statistical parameters of vocal features.

Vocal Feature Minimum Maximum Median Mean Std. Dev.

Several measures of variation in fundamental frequency Jitter(%) 0.0008 0.1000 0.0049 0.0062 0.0056

Jitter(Abs) 0 0.0004 0 0.0000 0.0001

Jitter:RAP 0.0003 0.0575 0.0022 0.0030 0.0031

Jitter:PPQ5 0.0004 0.0696 0.0025 0.0033 0.0037

Jitter:DDP 0.0010 0.1726 0.0067 0.0090 0.0094

Several measures of variation in amplitude Shimmer 0.0031 0.2686 0.0275 0.0340 0.0258

Shimmer(dB) 0.0260 2.1070 0.253 0.3110 0.2303

Shimmer:APQ3 0.0016 0.1627 0.0137 0.0172 0.0132

Shimmer:APQ5 0.0019 0.1670 0.0159 0.0201 0.0167

Shimmer:APQ11 0.0025 0.2755 0.0227 0.0275 0.0200

Shimmer:DDA 0.0048 0.488 0.0411 0.0515 0.0397

Two measures of ratio of noise to tonal components in the

voice

Noise to Harmonics Ratio 0.0003 0.7483 0.0184 0.0321 0.0597

Harmonics to Noise Ratio 1.6590 37.875 21.92 21.6795 4.2911

A nonlinear dynamical complexity measure Recurrence period density

entropy

0.1510 0.9661 0.5423 0.5415 0.1010

Signal fractal scaling exponent Detrended fluctuation analysis 0.5140 0.8656 0.6436 0.6532 0.0709

A nonlinear measure of fundamental frequency variation Pitch period entropy 0.0220 0.7317 0.2055 0.2196 0.0915

https://doi.org/10.1371/journal.pone.0182428.t002
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below:

MCC ¼
TP� TN � FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p ð1Þ

where TP and TN represents the number of correctly classified positive and negative examples,

respectively, and FP and FN represents the number of incorrectly classified positive and nega-

tive examples, respectively. MCC gets the value of +1 when the classifier makes perfect predic-

tions, –1 when the predictions and actual values totally disagree, and 0 when the classification

is no better than a random prediction.

Principal component analysis visualization. Principal Component Analysis (PCA) is an

unsupervised dimensionality reduction method which projects the samples onto a series of

orthogonal axes while preserving as much as possible of the variation present in the dataset

[33]. The reduced space consists of the linear combinations of the interrelated variables. We

apply PCA to the Parkinson’s disease dataset and projected samples onto the PCA subspace

with 3 dimensions. We visualize the distributions of the samples for different UPDRS thresh-

olds to see how well the samples above and below these thresholds are discriminated in this

reduced space.

Clustering analysis. We perform an additional cluster analysis to validate the optimal

UPDRS threshold results obtained with the binary classification approach. For this purpose,

we use spectral clustering method which uses eigen-values of similarity matrix of the data to

reduce the dimension as a pre-processing step before clustering [34]. In this method, each

sample is represented with several components in the corresponding eigen-vectors of the simi-

larity matrix and this reduced space is fed to another clustering algorithm. In this study, we

construct the k-nearest neighbors similarity graph of the samples and feed this similarity

matrix to k-means clustering method. We divide the samples into two clusters and analyze the

UPDRS scores of the patients in each cluster for various UPDRS threshold values.

Feature ranking based on determined optimal UPDRS threshold

We aim to quantify the relevance of each vocal feature with the discretized UPDRS score using

Mutual Information (MI) [35]. Thus, the vocal features which significantly change with respect

to the level of motor systems disorders as determined by UPDRS will be identified. The MI

approach used in this study is a filter method which aims to rank the features according to

their relevance with the target variable without involving any classifier/regressor for evaluation

[36–38].

The mutual information is a measure of mutual dependence of the two variables which can

also capture non-linear relations. It is based on Shannon’s entropy [35] which is a measure of

the uncertainty of a random variable X and thus, it quantifies how difficult it is to predict that

variable. The definition of Shannon’s entropy can be written as an expectation:

HðXÞ ¼ � E½logPðXÞ�j ¼ �
X

x

½pðxÞlogðpðxÞÞ� ð2Þ

where p(x) = P(X = x) is the probability distribution function of X. Hence the Shannon’s

entropy represents the uncertainty removed after the actual outcome of X is revealed. MI is a

measure of mutual dependence of the two variables based on the entropy:

IðX; YÞ ¼ HðXÞ þHðYÞ � HðX;YÞ ð3Þ

Vocal features in early telediagnosis of Parkinson’s disease
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MI is also the KL divergence of the product P(X)P(Y) of the two marginal probability distri-

butions from the joint probability distribution, P(X,Y).

IðX; YÞ ¼ DKLðPðX;YÞjjPðXÞ � PðYÞÞ ¼
X

x

X

y

pðx; yÞlogð
pðx; yÞ

pðxÞ � pðyÞ
Þ

� �

ð4Þ

where p(x,y) = P(X = x, Y = y). As described in Materials and methods, the features of the PD

dataset are continuous. Therefore, to compute the MI scores between the features and the dis-

cretized UPDRS, we discretize the features to 9 discrete levels [36, 38]. For discretization, for

each feature, we use its mean μ and its standard deviation σ as in [37]. The feature values

between μ–σ/2 and μ+σ/2 are converted to 0. The 4 intervals of size σ to the right of μ+σ/2

are converted to discrete levels from 1 to 4 and the 4 intervals of size σ to the left of μ−σ/2 are

mapped to discrete levels from −1 to −4. Very large positive or negative feature values are trun-

cated and discretized to ±4 appropriately.

Discrimination between healthy subjects and patients with UPDRS

below threshold

After determining the optimal UPDRS threshold value that can be discriminated using the

vocal features, we exclude the samples of the patients whose motor UPDRS score is above this

threshold and created a new dataset consisting of the samples of PD patients whose UPDRS

score is below this threshold and 8 healthy subjects. The aim of this analysis is to evaluate the

effectiveness of speech features in discriminating the early stage PD patients and healthy sub-

jects. We use SVM, ELM, and k-NN classifiers and present the accuracy and MCC of each clas-

sifier for different parameter values and kernel types.

Experimental results

Determination of optimal UPDRS threshold

Binary classification problem. We first normalize the features of the PD dataset so that

each has a zero mean and unit variance. Then, the features are fed into SVM, ELM and k-NN

classifiers for various motor UPDRS threshold values. We use 70% of the samples for training

and the rest for validation. For k-NN classifier, we use Euclidean, city-block, and correlation as

distance metrics, varying the number of nearest neighbors (k) from 1 to 9. We present the k-

NN results only with city-block distance since it performed better than or comparable to the

other distance metrics. For SVM classifier, we use LIBSVM implementation [39] with linear,

polynomial, and Radial Basis Function (RBF) kernels, varying the cost (C) parameter from 0.1

to 10 increasing by 0.2, polynomial degree from 1 to 5, and kernel width (g) from 0.01 to 1

increasing by 0.02. As it is seen in Fig 1, depending on the value of the UPDRS threshold

value, the PD dataset becomes highly imbalanced, and SVM classifier tends to label the sam-

ples as majority class to minimize the error on the training set. We use the "class-weight"

parameter of LIBSVM, w, to address the class imbalance problem. The class weight parameter

of SVM is used to increase the cost of errors made on the samples of minority class during

training. In the implementation of ELM classifier, we vary the number of hidden neurons

from 50 to 200 with sigmoid, sine, RBF, and triangular basis activation functions.

We present the classification performance of k-NN using cityblock distance, ELM with sig-

moid, sine, triangular basis, and RBF activation functions, and SVM with linear and Radial

Basis Functions (RBF) kernels for different UPDRS thresholds. In Figs 2–4, the accuracies and

MCC values obtained with the optimal parameter values of the classifiers are shown. As it is

seen in Figs 2 and 4, the accuracies of both k-NN and ELM classifiers decreases as UPDRS

Vocal features in early telediagnosis of Parkinson’s disease
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threshold increases up to around 23 and then begins to increase. The highest overall accuracies

(~90%) with both of these classifiers are obtained when UPDRS threshold is set to 11 and 32.

However, as it is seen in Fig 1, the binary classification problems obtained by setting UPDRS

threshold to these values are highly imbalanced (e.g. in test set number of positive examples is

1868 whereas number of negative examples is 207 when UPDRS threshold is set to 11), and

using accuracy on such imbalanced datasets may lead to false inferences regarding the success

of classifiers [40, 41]. For example, with the class distribution corresponding to UPDRS thresh-

old of 11, a simple strategy of labeling all the test set examples as positive class gives an accu-

racy of 90.02%. Indeed, it is seen that the accuracy plots of k-NN and ELM classifiers are not in

compatible with their MCC plots. The MCCs of k-NN and ELM increase as UPDRS threshold

increases up to around 15 and thereafter shows a decreasing trend. These results show that k-

NN and ELM tend to label most of the examples as the majority class for the UPDRS thresh-

olds resulted in imbalanced dataset. On the other hand, as seen in Fig 3, the accuracy and

MCC performances of SVM-linear and SVM-RBF classifiers change similarly with respect to

the UPDRS threshold value. These results show that SVM performs more consistently than k-

NN and ELM on imbalanced datasets when the costs of errors made on the training samples of

majority and minority class are tuned well using its class weight parameter.

Fig 1. Number of positive (above threshold) and negative instances (below threshold) with respect to determined UPDRS

threshold.

https://doi.org/10.1371/journal.pone.0182428.g001
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As seen in Fig 2, k-NN performs the highest MCC with k = 7 (city-block distance) when

UPDRS threshold is set to 15. Similarly, SVM and ELM show their best performance with RBF

kernel and sine activation function, respectively, when UPDRS threshold is set to 15. In Fig 5

(left), MCC obtained with the optimal parameter set of each classifier with respect to UPDRS

threshold is shown. These results show that UPDRS value of 15 is the optimal threshold value

that can be used to monitor the progression of the disease as a classification problem. Fig 5

(left) shows the MCC of all classifiers obtained with their best settings with respect to UPDRS

threshold. It is seen that ELM with sine activation function gives the highest MCC (0.5219).

The corresponding test set accuracy of ELM is 83.70%. The highest MCC obtained with

Fig 2. (left) Test set classification accuracies and (right) Matthew’s correlation coefficients obtained

with k-NN classifier under various UPDRS threshold values.

https://doi.org/10.1371/journal.pone.0182428.g002

Fig 3. (left) Test set classification accuracies and (right) Matthew’s correlation coefficients obtained

with SVM classifier under various UPDRS threshold value.

https://doi.org/10.1371/journal.pone.0182428.g003
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SVM-RBF (0.4421) is higher than that of k-NN (0.3439). The corresponding accuracies of

SVM-RBF and k-NN are 77.59% and 78.64%, respectively. In Fig 5, the performance of ensem-

ble classifier obtained by combining the predictions of SVM-RBF and ELM-Sine using hard-

voting combination strategy [42] is also shown. It is seen that while the performance of

SVM-RBF improves when combined with ELM-Sine, ELM-Sine individually performs better

than or comparably to the ensemble of SVM-RBF and ELM-Sine. On the other hand, the ROC

space of the classifiers shown in Fig 5 (right) obtained when UPDRS threshold is set to 15

shows that although MCC of ELM-Sine is higher than that of SVM-RBF, SVM-RBF is more

balanced in correctly classifying the positive and negative instances.

Fig 5. A summary of results obtained with the best settings of classifiers (left) Matthew’s correlation

coefficients of the classifiers obtained with their best settings (right) ROC space of the classifiers

obtained when UPDRS threshold is set to 15.

https://doi.org/10.1371/journal.pone.0182428.g005

Fig 4. (left) Test set classification accuracies and (right) Matthew’s correlation coefficients obtained

with ELM classifier under various UPDRS threshold values.

https://doi.org/10.1371/journal.pone.0182428.g004
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Principal component analysis visualization. We apply principal component analysis

(PCA) and reduce the dimensionality of the dataset to visually validate the results obtained

with the designed binary classification problem. Fig 6 shows the scatter of PD data on the first

three principal components with various UPDRS threshold values. As seen in Fig 6, the projec-

tions of the samples belonging to the patients with lower UPDRS score than 15 form a cluster

in a region of the PCA subspace. Although they mostly overlap with the other group with

UPDRS score higher than 15, it is seen that there is a distinct set of samples with UPDRS score

above 15 that does not overlap with the other group. However, with increasing UPDRS thresh-

old, it is seen that number of overlapping samples from the two groups increases. Fig 6 also

shows that when UPDRS threshold is set to 25, none of the groups form a separate cluster in

any specific region of the PCA subspace. These results validate the findings explored with the

binary classification problem.

Clustering analysis results. We apply spectral clustering with the settings described in

Materials and methods to divide the dataset into two groups in an unsupervised manner. The

aim is to compare the UPDRS values of the patients that fall into these two groups. For this

purpose, we divide the samples into two clusters by constructing the k-nearest neighbors simi-

larity graph of the samples and feeding this similarity matrix to k-means clustering method.

Then, we analyze the UPDRS scores of the patients in each cluster for various UPDRS thresh-

old values.

The clustering algorithm groups 4307 of the speech recordings in cluster 1 and the rest

(1586 recordings) in cluster 2. After obtaining the cluster indexes, for each cluster we compute

the ratio of the number of patients whose UPDRS score is below the corresponding threshold

to the number of all patients in that cluster. Fig 7 shows the absolute difference between the

Fig 6. Scatter of PD data on the first three principal components with UPDRS threshold value of (top)

(left) 15 (right) 20 (bottom) (left) 25 (right) 30.

https://doi.org/10.1371/journal.pone.0182428.g006

Vocal features in early telediagnosis of Parkinson’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0182428 August 9, 2017 11 / 18

https://doi.org/10.1371/journal.pone.0182428.g006
https://doi.org/10.1371/journal.pone.0182428


ratios of cluster 1 and cluster 2 for various UPDRS thresholds. It is seen that the highest differ-

ence is obtained for UPDRS threshold value of 17 which is very close to the UPDRS threshold

of 15 determined with binary classification problem and PCA analysis.

Feature ranking based on optimal UPDRS threshold

After determining the optimal UPDRS threshold value and converting the UPDRS prediction

problem to a binary classification problem using the optimal threshold, we quantify the rele-

vance of each vocal feature with the discretized UPDRS score to reveal which vocal features are

related with the severity of UPDRS score. For this purpose, we calculate the Mutual Informa-

tion (MI) between each of the vocal feature and the discretized UPDRS value.

The ranking of vocal features based on their MI score with the target variable is shown in

Table 3. As seen, Detrended Fluctuation Analysis (DFA) which represents the signal fractal

scaling exponent is the most effective feature in discriminating the patients with severe motor

systems disorders from those who have relatively less severe motor system disorders. DFA is

followed by Pitch Period Entropy (PPE), Recurrence Period Density Entropy (RPDE), and

Harmonics to Noise Ratio (HNR), respectively. We should note PPE is found as one of the

most relevant vocal features in discriminating the healthy subjects from PD patients in [21] on

Fig 7. Absolute difference between the ratio of the number of patients whose UPDRS is below the corresponding threshold to the

number of all patients in cluster 1 and cluster 2.

https://doi.org/10.1371/journal.pone.0182428.g007
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a PD dataset consisting of speech recordings of 23 patients and 8 healthy subjects. However,

the findings in [21] show that Jitter:DDP, Shimmer, Shimmer(dB), and Shimmer:APQ5 are

more important in healthy subject/PD patient discrimination problem than DFA, RPDE, and

HNR.

Discrimination between healthy subjects and patients with UPDRS

below threshold

The supervised learning problem (binary classification) has been designed to determine the

UPDRS value after which speech disorders begin to emerge. The unsupervised approaches

(PCA analysis and spectral clustering) results have validated the determined UPDRS threshold

value. In the second step, we exclude the samples of the patients whose motor UPDRS score is

above this threshold and include the samples of healthy subjects. Thus, we create a new dataset

consisting of all speech recordings of the healthy subjects and 1607 speech recordings of the

PD patients. Then, we apply k-NN, SVM and ELM classifiers with various settings using 70%

of dataset for training and the rest for validation to evaluate the effectiveness of vocal features

in discriminating the early stage PD patients and healthy subjects. For statistical significance,

this procedure is repeated 100 times with random training/test partitions. We present the aver-

age and standard deviation of the accuracies of these runs for each classifier in Table 4. The

Table 3. Ranking of the vocal features based on their mutual information with UPDRS level discre-

tized according to the determined optimal threshold that can be discriminated by machine learning

methods.

Ranking Dysphonia Measurement MI Score

1 DFA 0.0413

2 PPE 0.0302

3 RPDE 0.0287

4 HNR 0.0277

5 NHR 0.0202

6 Jitter:PPQ5 0.0189

7 Jitter(%) 0.0189

8 Jitter(Abs) 0.0163

9 Shimmer:APQ11 0.0163

10 Jitter:DDP 0.0155

11 Jitter:RAP 0.0154

12 Shimmer(dB) 0.0120

13 Shimmer 0.0112

14 Shimmer:APQ3 0.0084

15 Shimmer:DDA 0.0084

16 Shimmer:APQ5 0.0081

https://doi.org/10.1371/journal.pone.0182428.t003

Table 4. Accuracies and MCC values obtained with various settings of k-NN, SVM, and ELM on the dataset consisting of the samples of PD

patients whose UPDRS is below this threshold and 8 healthy subjects.

k-NN (k = 3) SVM ELM

Distance Accu. (%) MCC Kernel Accu (%) MCC Kernel Accu. (%) MCC

Cosine 94.69±0.01 0.63±0.10 Linear 89.38±0.02 0.58±0.06 Sigmoidal 90.07±0.02 0.51±0.09

Correlation 94.99±0.01 0.65±0.11 Polynomial 96.43±0.01 0.77±0.09 Sine 91.93±0.02 0.56±0.09

Cityblock 93.30±0.01 0.40±0.14 RBF 91.86±0.02 0.63±0.07 RBF 91.93±0.02 0.41±0.16

https://doi.org/10.1371/journal.pone.0182428.t004
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best results obtained with k-NN, SVM and ELM are given in Table 5 along with the p-values of

paired t-test for each pair of classifiers. As it is seen, the accuracy (96.43%) and MCC (0.77) of

SVM with third-degree polynomial are significantly higher than that of the other methods. It

is also seen that correlation distance based k-NN significantly outperformed ELM in terms of

MCC which shows that it has produced more balanced success rates on positive and negative

instances. On the other hand, the lowest accuracy is obtained with liner kernel SVM which is

the only linear classifier used in this study. We should also note that healthy subjects and

patients with UPDRS score lower than 15 are better discriminated with vocal features than the

patients with below and above determined UPDRS score are.

Conclusions

Considering that PD mostly targets the elderly people whose physical visits to the clinic are

inconvenient and costly, there is an increasing motivation to develop PD telemonitoring and

telediagnosis systems which are self-administrated and do not require the patient’s visit to the

clinic. Since the vocal impairments are one of the most commonly seen PD signs in the early

stages of the disease, the PD telediagnosis and telemonitoring systems based on speech tests

result in reliable diagnosis and motor UPDRS tracking systems. However, the patient data

used in the existing telediagnosis systems include speech recordings of not only early PD

patients with mild speech impairments but also PD patients with moderate and severe speech

impairments who already suffer from some other symptoms and presumably have been diag-

nosed before. In this paper, we aim to assess the effectiveness of vocal features for early tele-

diagnosis of PD in a more realistic scenario. First, as a preprocessing step, we first determine

the group of patients with relatively greater speech impairments using Unified Parkinson’s

Disease Rating Scale (UPDRS) as an index of disease progression. For this purpose, we

discretize the UPDRS scores of PD patients into two classes, “Below threshold” and “Above

threshold”, for various motor UPDRS threshold values, and for each case apply a binary classi-

fication procedure to discriminate the PD patients having UPDRS values below the deter-

mined threshold, labeled “negative”, and above the determined possible threshold, labeled

“positive”. The UPDRS value resulting the highest classification performance is chosen as the

UPDRS threshold value, after which the speech disorders are more significantly seen in the

patients. We validate the determined threshold value with two unsupervised approaches: prin-

cipal component analysis (PCA) and spectral clustering. The experimental results show that

speech disorders are more significantly seen in the PD patients whose UPDRS exceeds 15.

Considering that the motor UPDRS ranges from 0 to 108, relatively low UPDRS threshold of

15 shows that vocal impairments can be used as early indicators of the disease. The highest

Matthew’s correlation coefficient (MCC) is obtained using support vector machines (SVM)

with radial basis functions (RBF) kernel, which also gives higher MCC values than k-nearest

neighbors (k-NN) and SVM with linear kernel for all UPDRS threshold values. Besides, we

should also note that SVM performs more consistently than k-NN and extreme learning

Table 5. Best results obtained with k-NN, SVM and ELM with statistical significance tests.

k-NN (1) SVM (2) ELM (3) Statistical Significance 1–2 Statistical Significance 1–3 Statistical Significance 2–3

Accu. (%) 94.99 96.43 91.93 ** ** *

MCC 0.65 0.77 0.56 * * *

Paired t-test:

** p < 0.01;

* p < 0.05

https://doi.org/10.1371/journal.pone.0182428.t005
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machines classifiers on PD dataset with imbalanced class distribution when the costs of errors

made on the training samples of majority and minority class are tuned well using its class

weight parameter. The mutual information based filter feature ranking analysis show that non-

linear feature extraction methods named as detrended fluctuation analysis and pitch period

entropy are the most effective speech features in discriminating the patients with severe motor

systems disorders from those whose motor system disorders are relatively less severe. The

visual inspection presented using PCA also shows that simple lines or hyperplanes cannot dis-

criminate the two groups from each other. These results strongly indicate the nonlinearity

behavior of the problem and, therefore, it needs to be solved by a nonlinear model.

In the second step, to address the main goal of this paper, we exclude the speech recordings

of the PD patients having higher UPDRS score than the determined threshold in the first step

and create a new dataset consisting of the samples of PD patients whose UPDRS is below the

determined threshold value and healthy subjects. Thus, we assess the PD telediagnosis ability

of vocal features in a more realistic scenario for clinical use. We feed this dataset into three

classifiers and present the detailed results. For best generalization, the complexity of the classi-

fier should match the complexity of the function underlying the data [43]. More complex mod-

els than the underlying function can lead to overfitting in which the model identifies random

noise in the data, rather than a true signal of clinical use (Sachs, 2015), whereas models that are

less complex than the function can lead to underfitting. Therefore, to evaluate the generaliza-

tion ability of the classifiers, the hyperparameters such as the number of nearest neighbors of

k-NN or degree and cost of polynomial kernel-SVM should be optimized on a separate set that

has not been used during training. For this purpose, we train three classifiers with various set-

tings using 70% of dataset for training and use the rest for validation to evaluate the effective-

ness of vocal features in discriminating the early stage PD patients and healthy subjects. For

statistical significance, this procedure is repeated 100 times with random training/test parti-

tions and paired t-test is applied to test the statistical significance of the results. The highest

accuracy of 96.4% and Matthew’s Correlation Coefficient of 0.77 is obtained using SVM with

third-degree polynomial kernel. Lower and higher degree values than this optimal value cause

less accuracies due to the model’s simplicity and overfitting problems, respectively. These

results show that speech features are effective in discriminating PD patients with mild speech

impairment from healthy subjects and can be used as a decision support system for early tele-

diagnosis of the disease. The success of SVM with nonlinear kernels in PD classification prob-

lem is not surprising as it has already been shown in the literature [21, 23, 44]. Considering

that many of the speech signals are noisy [23], we can conclude that, as shown on related audio

processing problems from different domains [45–48], SVM with a non-liner kernel produces

more generalizable models which are robust to noise and outliers compared to many classifica-

tion algorithms such as those used in this study. On the other hand, we should note that the

lowest accuracy is obtained with liner kernel SVM which is the only linear classifier used in

this study. This is mainly because non-linear relationships between the vocal features in

UPDRS prediction are overlooked by a linear method.

We should note that using motor UPDRS score as the index of disease progression instead

of more specific UPDRS subscores representing the severity of speech and other disorders is a

limitation of this study. As a future research direction, a dataset containing UPDRS subscores

may be collected and used as the index of disease progression to better identify the patient

group having mild motor system disorders.

Author Contributions

Conceptualization: Betul Erdogdu Sakar, Gorkem Serbes, C. Okan Sakar.

Vocal features in early telediagnosis of Parkinson’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0182428 August 9, 2017 15 / 18

https://doi.org/10.1371/journal.pone.0182428


Data curation: Betul Erdogdu Sakar, Gorkem Serbes, C. Okan Sakar.

Formal analysis: Betul Erdogdu Sakar, C. Okan Sakar.

Funding acquisition: C. Okan Sakar.

Methodology: Betul Erdogdu Sakar, Gorkem Serbes, C. Okan Sakar.

Project administration: C. Okan Sakar.

Software: Betul Erdogdu Sakar, C. Okan Sakar.

Supervision: C. Okan Sakar.

Validation: Gorkem Serbes.

Writing – original draft: Betul Erdogdu Sakar, C. Okan Sakar.

Writing – review & editing: Betul Erdogdu Sakar, Gorkem Serbes, C. Okan Sakar.

References
1. Braak H., & Braak E. (2000). Pathoanatomy of Parkinson’s disease. Journal of neurology, 247, II3–

II10. https://doi.org/10.1007/PL00007758 PMID: 10991663

2. Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson’s disease: A systematic

review and meta-analysis. Movement disorders. 2014 Nov 1; 29(13):1583–90. https://doi.org/10.1002/

mds.25945 PMID: 24976103

3. Twelves D, Perkins KS, Counsell C. Systematic review of incidence studies of Parkinson’s

disease. Movement disorders. 2003 Jan 1; 18(1):19–31. https://doi.org/10.1002/mds.10305 PMID:

12518297
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