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Abstract

Background

We consider a general class of global optimization problems dealing with nonlinear dynamic

models. Although this class is relevant to many areas of science and engineering, here we

are interested in applying this framework to the reverse engineering problem in computa-

tional systems biology, which yields very large mixed-integer dynamic optimization (MIDO)

problems. In particular, we consider the framework of logic-based ordinary differential equa-

tions (ODEs).

Methods

We present saCeSS2, a parallel method for the solution of this class of problems. This

method is based on an parallel cooperative scatter search metaheuristic, with new mecha-

nisms of self-adaptation and specific extensions to handle large mixed-integer problems.

We have paid special attention to the avoidance of convergence stagnation using adaptive

cooperation strategies tailored to this class of problems.

Results

We illustrate its performance with a set of three very challenging case studies from the

domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic

signaling pathway and has 84 continuous and 34 binary decision variables. A second case

study considers the dynamic modeling of signaling in liver cancer using high-throughput

data, and has 135 continuous and 109 binaries decision variables. The third case study is

an extremely difficult problem related with breast cancer, involving 690 continuous and 138

binary decision variables. We report computational results obtained in different infrastruc-

tures, including a local cluster, a large supercomputer and a public cloud platform. Interest-

ingly, the results show how the cooperation of individual parallel searches modifies the

systemic properties of the sequential algorithm, achieving superlinear speedups compared
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to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving

(above a 60%) the performance with respect to a non-cooperative parallel scheme. The

scalability of the method is also good (tests were performed using up to 300 cores).

Conclusions

These results demonstrate that saCeSS2 can be used to successfully reverse engineer

large dynamic models of complex biological pathways. Further, these results open up new

possibilities for other MIDO-based large-scale applications in the life sciences such as meta-

bolic engineering, synthetic biology, drug scheduling.

Introduction

Global optimization is being increasingly used in engineering and across most basic and

applied sciences [1–4], including areas from life sciences such as bioinformatics and computa-

tional systems biology [5–9]. In the case of chemical and biological processes, during the last

decade there has been a growing interest in modelling their dynamics [10], i.e. developing

kinetic models which are able to encapsulate the time-varying nature of these systems. As a

consequence, many research efforts are now being invested in exploiting those dynamic mod-

els by mathematical optimization techniques. These formulations belong to the class of

dynamic optimization problems (or open loop optimal control). The most general formulation

is that of mixed-integer dynamic optimization (MIDO), where part of decision variables are

discrete (binary or integer) [11].

Although many dynamic optimization problems consider how to extract useful operating

policies and/or designs from a dynamic model, such formulations can also be applied to the

model building process itself, i.e. to the so-called reverse engineering problem [12–19], which

is known to be extremely hard [10].

Here we consider this general problem of reverse engineering in computational biology by

means of mixed-integer nonlinear dynamic optimization (MIDO). Our goal is to be able to

handle large-scale nonlinear kinetic models, so we focus on the solution of this class by means

of suitable global optimization methods. Broadly speaking, MIDO problems can be solved

using deterministic or stochastic global optimization methods. In the case of deterministic

methods, many advances have been made in recent years (see [11, 20–22] and references

therein). Although these deterministic methods can guarantee global optimality in some cases,

unfortunately they suffer from lack of scalability, i.e. the associated computational effort

increases very rapidly with problem size.

Alternatively, although stochastic algorithms for global optimization cannot offer guaran-

tees of global optimality, they usually reach a region near to the global solution in acceptable

execution time, at least for small and medium scale problems. However, for larger problems

the computational cost of purely stochastic methods can be very large [5, 23]. Several hybrid

approaches [24–28] have tried to benefit from the best of both approaches by combining global

stochastic methods with efficient (local) deterministic optimization methods. In this context,

metaheuristics (i.e. guided heuristics) have been particularly successful, ensuring the proper

solution of these problems by adopting a global stochastic optimization approach, while keep-

ing the computational effort under reasonable values thanks to efficient local optimization

solvers [29, 30].
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Here we consider the general MIDO problem as described above. We present a new parallel

method based on extensions of an enhanced scatter search metaheuristic [30, 31] which has

shown good performance in simpler non-linear programming and optimal control problems.

We formulate the reverse engineering problem as a MIDO using the framework of logic-based

ordinary differential equations (ODEs) [32, 33]. In this framework, the logic components need

to be estimated along with the continuous parameters in order to describe the dynamic behav-

ior defined by the structure of the system of ODEs. The resulting problem is very hard due to

its multimodal, non-linear and highly constrained nature.

Our contribution resides at the interface between computational systems biology and

computer science (high performance computing), with an emphasis on using the latter to help

the former. The merits of the logic-based ODEs framework have been illustrated previously

[32, 33]. But, as already recognized in Henriques et al [33], more work was needed regarding

the computational efficiency of the optimization methods. This has been precisely our main

objective here: how to improve the robustness and efficiency of the numerical solution of these

problems by developing a better algorithm and its corresponding high-performance comput-

ing implementation.

In order to be able to handle these more complex MIDO problems in realistic times, we

have focused on developing a parallel cooperative strategy that scales up well with problem

size. Parallel strategies for metaheuristics have been a very active research area during the last

decade [34, 35]. In the area of computational biology, parallel methods have already shown

promising results in non-linear optimization problems ([36, 37]). For the case of mixed-inte-

ger nonlinear programming, a few researchers have considered the development of parallel

methods [38–40], but there is a lack of studies in the case of the mixed-integer nonlinear

dynamic optimization problems considered here.

The aim of this paper is to explore this direction further considering extensions of a recent

parallel self-adaptive implementation of the enhanced Scatter Search algorithm [41] so it can

handle general MIDO problems of realistic size. It should be noted that there are several key

differences and important novel aspects with respect to our previous work:

• we extend and generalize the formulation considered in Henriques et al [33] by adopting a

generic mixed-integer optimal control approach, without using relaxations and/or transfor-

mations of the original problem during the solution strategy

• we present a new solution strategy based on a parallel cooperative optimization method with

specific extensions to handle large mixed-integer problems, and new mechanisms of self-

adaptation tailored to this class of problems

• we illustrate the performance of our approach by considering a set of very challenging case

studies, obtained in different high-performance computing infrastructures, including tradi-

tional parallel machines and a public cloud-computing platform. In particular, we show how

our new method can successfully exploit cloud computing resources

The organization of this paper is as follows. In the Background section we present the gen-

eral mixed-integer dynamic optimization formulation and we outline the solution strategy,

which is based on the control vector parameterization direct method. This solution approach

transforms the problem into a master mixed-integer nonlinear programming problem with an

inner initial value problem. We solve the outer problem by means of an improved parallel

metaheuristic, which is described in the following section. We then evaluate this approach

considering several challenging reverse engineering case studies. We evaluate the performance

of the proposal using these cases on a local cluster, a large supercomputer and in the cloud

(using Microsoft Azure), demonstrating its good efficiency and scalability, as discussed in the
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Results and Discussion Section. Finally, in the Conclusions Section we summarize the main

contributions of this work.

Background

In this section we present the general statement of the class of problems considered. Next, we

describe the numerical approach used to solve it, based on the so-called control vector parame-

terization direct method. We then describe the background regarding the scatter search meta-

heuristic which will used as the basis for the parallel method presented in the following

section.

Mixed integer dynamic optimization problem

The general mixed-integer dynamic optimization problem (MIDO), also called mixed-integer

optimal control (MIOC) problem [21], is usually formulated as finding the set of discrete (inte-

ger or binary), time-dependent (stimuli or controls) and time-independent parameters, to

optimize (minimize or maximize) a pre-defined cost function (which in optimal control is

generically called performance index), while satisfying a set of dynamic and algebraic con-

straints. In mathematical form, it is usually formulated as follows:

Find u(t), i(t), p and tf so as to minimize (or maximize):

J ¼ Gtf
ðx;u; i;p; tfÞ þ

Z tf

t0

FðxðtÞ;uðtÞ; iðtÞ;p; tÞdt ð1Þ

subject to:

fð _xðtÞ; xðtÞ; uðtÞ; iðtÞ; p; tÞ ¼ 0; xðt0Þ ¼ x0 ð2Þ

gðxðtÞ; uðtÞ; iðtÞ; p; tÞ � 0; l ¼ 1;me þmi ð3Þ

uL � uðtÞ � uU; ð4Þ

iL � iðtÞ � iU; ð5Þ

pL � p � pU; ð6Þ

where x(t) 2 X� Rnx is the vector of state variables, u(t) 2 U� Rnu is the vector of real valued

control variables, i(t) 2 I 2 Zni is the vector of integer control variables, p 2 P� Rnp is the vec-

tor of time-independent parameters, tf is the final time of the process,me,mi represent the

number of equality and inequality constraints, f is the set ordinary differential equations

describing the dynamics of the system (plus the corresponding initial conditions), g is the set

of state constraints (path, pointwise and final time constraints), and uL, iL, pL, uU, iU, pU corre-

spond to the lower and upper bounds for the control variables and the time-independent

parameters. In the formulation above, known as the general Bolza problem, Gtf
is a terminal

cost function, and F is an integral cost function.

The MIDO formulation above can be used to solve problems from widely different areas,

including aeronautics, chemical engineering, mechanical engineering, transport, medicine,

systems biology, synthetic biology and industrial biotechnology [11, 20, 33, 42–50]. In the par-

ticular context of reverse engineering complex biological networks [33], our aim is to use the

above framework to simultaneously identify the underlying network topology, its regulatory

structure, the time-dependent controls (e.g. stimuli) and time-invariant model parameters,
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consistent with existing experimental data (time-series). An alternative would be to carry out

parameter estimation based on real-values for each individual and possible model structure,

but this option becomes prohibitively expensive for any realistic case.

Solution strategy

Methods for the numerical solution of dynamic optimization (optimal control) problems can

be broadly classified under three categories: dynamic programming, indirect and direct

approaches. Dynamic programming [51, 52] suffers form the so called curse of dimensionality,
so the latter two are the most promising strategies for realistic problems. Indirect approaches

were historically the first developed, and are based on the transformation of the original opti-

mal control problem into a multi-point boundary value problem using Pontryagin’s necessary

conditions [53, 54]. Direct methods are based on discretization of the control (sequential strat-

egy [55]), or both the control and the states (simultaneous strategy [56]).

Here, our strategy uses a direct approach and consists of a first (transformation) step, (tran-

scribing the original MIDO problem into a mixed-integer nonlinear programming problem,

MINLP), followed by a second (numerical solution) step (the actual solution of the MINLP by

the novel cooperative scatter search metaheuristic). We have chosen the control parameteriza-

tion approach [11], that consists in discretizing the control variables (u(t) and i(t)) into a num-

ber of elements, and then approximating the controls in each element by means of certain basis

functions. The control variables are, thus, parameterized using wu 2 Rρ and wi 2 Zρ, which

become time-invariant decision variables. With this approach, the original problem is trans-

formed from an infinite dimensional problem into a finite dimension mixed-integer non-linear

programming outer problem, that can be solved using a suitable MINLP solver. Note that, as a

consequence, the evaluation of the objective function and constraints requires the solution of

an inner problem (the system dynamics), by a suitable initial value problem (IVP) solver.

In summary, our strategy results in a numerical optimization problem composed of:

• an outer mixed-integer nonlinear programming (MINLP) problem: due its non-convexity,

we need to use global optimization methods, as already mentioned in the introduction.

Based on our previous experiences with different stochastic global methods and their hybrids

with local solvers [24, 26, 30, 31, 41, 57, 58], here we decided to extend a metaheuristic based

on scatter search, combining it with a efficient local MINLP solver [59], as described below.

• an inner initial value problem (IVP), i.e. the nonlinear dynamics that need to be integrated

for each evaluation of the cost functional and constraints. Here we solve the IVP using the

state-of-the-art solvers for numerical integration of differential equations included in the

SUNDIALS package [60]. It should be noted that local optimization methods to be used

require the numerical computation of gradients of the objective and/or constraints with

respect to the decision variables. If this is the case, an efficient procedure is to use first order

parametric sensitivities to compute such information [61]. The sensitivity equations can be

obtained by a chain rule differentiation of the system defined in Eq 2 with respect to the deci-

sion variables. They can be efficiently solved in combination with the original system. Here

we have used SUNDIALS [60], which includes CVODES, an efficient sensitivity solver.

We now proceed to detail the parallel metaheuristic method developed for solving this

problem.

Scatter search and recent extensions

Scatter Search (SS) [62] is one of the most popular metaheuristics to solve global optimization

problems. It can be regarded as a population-based algorithm that creates new solutions
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through iterative steps of diversification, improvement, combination and population update.

Compared to other metaheuristics, SS uses a low number of population members.

The SS strategy involves 5 steps, illustrated in Fig 1(a): (1) SS begins by producing an initial

population of solutions within the search space; (2) the initial Reference Set is then created with

Fig 1. Schematic representation of sequential algorithms.

https://doi.org/10.1371/journal.pone.0182186.g001
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a set of representative solutions of the population; (3) a generation method selects a subset of

solutions from the reference set; (4) the solutions in this subset are combined to obtain new

solutions; (5) finally, an improvement procedure is applied to the previous solutions. The

update method (step 2) creates again the reference set for the next iteration, and this procedure

is repeated until the end of the search.

A recent implementation of this procedure, named enhanced Scatter Search (eSS) [30, 31],

presents a straightforward yet effective design that helps to beat well known issues in nonlinear

dynamic systems optimization such as flat areas, noise, nonsmoothness, and/or discontinui-

ties. Fig 1(b) graphically shows the main functionalities of the eSS. Novel mechanisms,

highlighted in green in the figure, are included to achieve a good trade-off between intensifica-

tion (local search) and diversification (global search):

• A rather small population size is used, even for large-scale problems. However, more search

directions are allowed than in the original SS by means of a new combination scheme. The

diversity in the search is preserved while the number of evaluations required is not

increased.

• A new intensification mechanism in the global phase exploits the promising directions

defined by a pair of solutions in the reference set.

• A heuristic local search method accelerates the convergence, specially for large-scale

problems.

• It makes use of memory to infer whether a solution become stagnant in a local optimum or

whether it is alongside of already visited solutions.

Despite the success of the strategies included in the eSS, for large-scale problems involving

dynamic systems, it still requires significant computation times. Besides, the eSS method needs

the tuning of a number of configuration settings that may have a great impact in the algorithm

performance, thus requiring a number of initial exploratory runs and, therefore, further

increasing the computation times. With the aim of solving these issues, we recently developed

a parallel method named self-adaptive Cooperative enhanced Scatter Search (saCeSS) [41] and

demonstrated its advantages for the solution of hard parameter estimation problems involving

nonlinear dynamic models. Essentially, the saCeSS method is a novel parallel metaheuristic

that follows an island-model strategy where a set of independent eSS threads (islands) exchange

information (solutions and settings) among them to improve the convergence through cooper-

ation, effectively implementing a self-tuning mechanism of the algorithm. Several key func-

tionalities have been included in saCeSS in order to overcome the limitations of eSS:

• a coarse-grained parallelization following a master-slave model, where the master manages

the control of the cooperation between slaves (islands), since an excessive of cooperation

results in adverse impacts on diversity

• an exchange of information handled taking into account the quality of the solutions obtained

by each individual process, as an alternative to time elapsed, to achieve more effective coop-

eration between processes

• an asynchronous communication protocol to tackle the exchange of information between

processes, avoiding inactive processes when they are waiting for information exchanged

from other processes

• a self-adaptive mechanism in the master process that performs a scoreboard used to dynami-

cally tune the settings of the islands based on their individual progress

A parallel metaheuristic for large MIDO problems, with applications in computational biology
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A parallel cooperative scatter search for mixed integer optimization

Since the saCeSS method described above has demonstrated its potential for solving very chal-

lenging non-linear programming (NLP) problems, there was an interest in extending this

method so it can be applied to large mixed-integer nonlinear programming and mixed-integer

dynamic optimization problems. As a result, we present here a new method, saCeSS2, resulting

from modifications and extensions of the original saCeSS method along three main directions:

1. addition of an efficient local solver for mixed-integer optimization problems

2. changes to the self-adaption mechanisms in order to avoid premature stagnation of the

convergence

3. addition of new mechanisms to ensure diversity while keeping parallel cooperation

Regarding the local solver, we have incorporated a trust region sequential quadratic pro-

gramming solver, calledMixed-Integer Sequential Quadratic Programming (MISQP) [59, 63].

It assumes that the model functions are smooth: an increment of a binary or an integer variable

can produce a small change of function values, though it does not require the mixed-integer

function to be convex or relaxable, i.e. the cost function is evaluated only with discrete values

in the integer or boolean parameters.

The preliminary tests applying the previous saCeSS algorithm to mixed-integer problems

using the MISQP local solver brought to light a problem of premature convergence due to a

quick lose of diversity in the islands. Although both eSS and saCeSS algorithms include their

own mechanisms to maintain the desired diversity during the algorithm progress, we observed

that in mixed-integer problems a promising incoming solution in an island acted as an

attractor for the members of the RefSet, bringing them fast to the vicinity of this new value.

Thus, we introduced two new strategies in the saCeSS2 method to allow for a dynamic break-

out from local optima, and to further preserve the diversity in the search for these problems,

avoiding prematurely stagnation:

• first, we needed to avoid the premature convergence observed in MINLP problems (cooper-

ation between islands decreases too fast as the algorithm converges, since many of them stag-

nate). Thus, the criteria used in the original saCeSS method to trigger the reconfiguration

(tuning) of those islands that are not progressing in the search should be accommodated for

MINLP problems, relaxing the adaptive conditions to allow for an earlier escape from the

stagnated regions.

• Second, we observed that in mixed-integer problems, when an island stagnates, most of the

times is due to the lost of diversity in the RefSet. Thus, we decided to further promote diver-

sity by a modified strategy: once an island requests a reconfiguration, most of the members

of the RefSet, except for two solutions, are randomly initialized again.

Fig 2 summarizes the new saCeSS2 method for MINLP/MIDO problems. The master pro-

cess is in charge of the control of the cooperation and the scoreboard for the islands’ tuning.

At the beginning of the algorithm, both at master and at slaves, a local variable BestKnownSol
is set to monitor the best solution shared in the cooperation among slaves. The master process

also sets the initial communication threshold � and initiates the scoreboard to monitor the

progress of each slave. Then, a loop is carried out until a stopping criteria is reached, where the

master waits for the messages coming from the slaves. In the cooperation stage the master

manages the appearance of good solutions received from slaves. Then, with the aim of control-

ling the cooperation between slaves, only when the incoming candidate solution significantly

improves the current BestKnownSol, this variable is updated and broadcasted. The master

A parallel metaheuristic for large MIDO problems, with applications in computational biology
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Fig 2. Schematic representation of saCeSS2 algorithm.

https://doi.org/10.1371/journal.pone.0182186.g002
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process is able to self-tuning the cooperation threshold based on the number of incoming solu-

tions that are refused with the current criterion. Besides, when a new incoming solution

deserves to become a cooperative solution spread to the rest of the slaves, there is an increment

on the score of the slave that achieved that solution. The master process also manages the

slaves adaptation requests. To accurately identify those islands that are not progressing in the

search, the master process would need additional information from slaves. The solution imple-

mented is that each slave resolves whether it has stagnated or not. If promising cooperative

solutions are arriving from the master but the island cannot improve its local best known solu-

tion, it will ask the master for a reconfiguration. Then, the master will communicate to that

island one of the configuration settings of the islands on the top of the scoreboard. Finally, if

the master receives a termination message from one of the slaves, it broadcast the termination

request to the rest.

The slaves perform the classic steps of the sequential eSS. Additionally new steps are

included to implement cooperation and self-tuning. First, a reception memory buffer retains

the messages arriving from the master that have not been processed yet, thus, the communica-

tions are all done in a non-blocking asynchronous way. The slave inspects its reception mem-

ory buffer looking for new best solutions from the master. When new solutions have arrived,

the slave checks whether the new solutions improve the local BestKnownSol or not. If a new

solution improves the local one, this new solution upgrades to BestKnownSol. Then, the slave

also checks the reception of new reconfiguration settings. Note that, as already explained, all

the communications between slaves and master are asynchronous, thus, the request for a

reconfiguration is also a non-blocking operation. This means that the slave goes on with its

execution until the message with the reconfiguration settings arrive. Besides, in the reception

step, the slave also checks the arrival of termination messages from the master. If a termination

message arrives, the slave finishes its execution.

After the reception step, the slave checks if its best local solution improves in, at least, an �

the BestKnownSol. If so, BestKnownSol is updated with the best local solution and the slave

sends the promising result to the master. The � used in the slaves is different from the � used in

the master process. The slaves use a smaller � so that many promising solutions are sent to the

master. The master has to make a decision on which of those incoming solutions should be

spread to the rest of the slaves. This decision is based on the quality of the incoming solutions.

Thus, the � used by the master begins with high value and decreases as long as the number of

refused solutions get larger and no incoming solution overcomes the current �.

To conclude the iteration, an adaptive step is accomplished. Each slave decides if it is pro-

gressing in the search based on:

• Number of evaluations performed since its last cooperation:

Neval > Npar � 500

where Neval is the number of evaluations performed by this process since its last cooperation

with the master and Npar is the number of parameters of the problem.

• Balance between the received and sent solutions:

recvSolutions > ð4� sendSolutionsÞ þ 10

adaptation is requested when the number of received solutions is significantly greater than

the number of solutions sent (with a minimum value of 10, to avoid requests at the begin-

ning of the process), that is, if other slaves are cooperating much more than itself.
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In summary, if a process recognizes that it has stagnated, it sends a request for reconfigura-

tion to the master process. In response to these requests, the master sends to those slaves the

most encouraging settings, i.e., those that are on the top of the scoreboard. In order to inject

further diversity into those reconfigured islands, most of the members of their RefSet are ran-

domly re-initialized.

The saCeSS2 algorithm repeats the external loop until the stopping criterion is met. Three

different stopping criteria (or any combination among them) may be used in current saCeSS2

implementation: maximum number of evaluations, maximum execution time and a value-to-
reach (VTR). While the VTR is usually known in benchmark problems, for a new problem, the

VTRwill be, in general, unknown.

Applications in computational systems biology

The aim of reverse engineering in biological systems is to infer, analyze and understand the

functional and regulatory mechanisms that govern their behavior, using the interplay between

mathematical modeling with experiments. Most of this models need to explain dynamic

behavior, so they are usually composed of different types of differential equations. However,

reverse engineering in systems biology has to face many pitfalls and challenges, especially

regarding the ill-conditioning and multimodality of these inverse problems [10]. Below we

consider several cases related with cell signalling processes and show how these issues can be

surmounted with the methodology presented here.

Reverse engineering of cell signalling

Reverse engineering of cell signaling phenomena is a particularly important area in systems

biology [64]. In complex organisms, signaling pathways play a critical role in the behavior of

individual cells and, ultimately, in the organism as a whole. Cells adapt to the environmental

conditions through the integration of signals released by other cells via endocrine or paracrine

secretion as well as other environmental stimuli. Fundamental cellular decisions such as repli-

cate, differentiate or die (apoptosis) are largely controlled by these signals [65].

Many of the interactions involved in signaling are commonly grouped in pathways. Path-

ways are typically depicted as sequences of steps where the information is relayed upon activa-

tion by an extracellular receptor promoting several downstream post translational

modifications, which will ultimately end by modifying gene expression or some other effector.

These interactions are dynamic, i.e. the behavior of such pathways is known to be highly

dependent on the cell type and context [66], which change with time [67]. Additionally, many

of these pathways interact with each other in ways that are often described as analog to a deci-

sion making process [68]. Further, the dynamics of cell signaling are rather fast processes, spe-

cially if compared with metabolism or even gene expression.

There are at least three good reasons to infer a dynamic model of a signaling pathway. The

first, and perhaps most obvious one, is to find novel interactions. The second is model selec-

tion, defined as the process of using data to select (or exclude) a number of model features

which are consistent with the current knowledge about a given system. This is particularly rele-

vant when comparing different cell types or a specific cell type in its healthy and diseased sta-

tus, such as cancer. The third one is the usage of such a model to predict how the system will

behave in new conditions that have not been tested before.

In order to build a mechanistic dynamic model for a given cell type or tissue, we need values

for its parameters. These are rarely available, and a common strategy is to find them by train-

ing the model to data. The most informative data for signal transduction is obtained upon per-

turbation experiments, where typically a system (assumed to be homeostatic initially) is
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stimulated with different chemicals to which the cell may (or not react), and the variations in

the cell biochemistry are recorded. The resulting time-series of data are then used to reverse

engineer a dynamic model of the signalling process.

Following subsections describe the so called logic-based ordinary differential equations

(ODE) framework, which has been found particularly useful in modeling cell signalling, and

its problem statement as a MIDO. Then, in the results, we present three very challenging case

studies of increasing complexity, which are then solved with the parallel metaheuristic pre-

sented in this study.

Logic-based dynamic models

Logic models were first applied to biological systems by [69] to model gene regulatory net-

works. Since then, applications to multiple contexts have been made [70, 71] and diverse mod-

ifications from the original formalism have been developed [72]. In particular, various

extensions have been developed to accommodate continuous values (e.g. [32, 73–78]).

Amongst these formalisms, logic-based ODEs are one of the best options to handle time series

with precision [33, 77]. The main idea is to convert the logic models into their continuous

ODE-based equivalent but without the need of mechanistic (kinetic information). However,

since it is composed of differential equations, we can use it to carry out dynamic simulations

and e.g. predict dynamic trajectories of variables of our interest. A number of different meth-

ods have been proposed transform Boolean logic models into ODE homologues [74, 75, 77].

Basically, Boolean models describe the flow of information in a biological system using dis-

crete binary states (logic decisions). In other words, each state xi 2 {0, 1} is represented by a

binary variable can be updated according to a Boolean function Bi(xi1, xi2, . . ., xiN) 2 {0, 1} of

its N inputs (xij). A typical simple example is the situation where a protein can be phosphory-

lated in two sites by different kinases, and both interactions are needed to activate the protein.

This can be modeled as a logic AND gate. Alternatively, when two different kinases can phos-

phorylate the same site, independently activating the downstream signaling, we can describe it

as a logic OR gate. In another situation, if a signal inhibits the propagation of another one, we

can describe it with a NOT gate. In summary, logic models can be represented by an hyper-

graph with AND/OR/NOT gates.

In the logic-based ODE formalism, we transform each Boolean update function into a con-

tinuous equivalent �Bi 2 ½0; 1�, where the states �xi 2 ½0; 1� can take continuous values between

0 and 1. Their dynamic behaviour is then modelled as:

_�x i ¼
1

ti
� ð�Bið�x i1; �x i2; . . . ; �x ijÞ � �x iÞ ð7Þ

where τi can be regarded as a sort of life-time of xi.

HillCubes [77] have been developed, based on multivariate polynomial interpolation, for

the above purpose. They include Hill kinetics (which are known to provide a good approxima-

tion of the dynamics of e.g. gene regulation). HillCubes are obtained via a transformation

method from the Boolean update function. An example is shown in Table 1, illustrating how

an OR gate would be transformed by multi-linear interpolation [77] into a BoolCube (�BI):

�BI ð�x1; . . . ; �xNÞ ¼
X1

x1¼0

. . .
X1

xN¼0

Bðx1; . . . ; xNÞ �
YN

i¼1

ðxi�xi þ ½1 � xi�½1 � �xi�Þ

" #

ð8Þ
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Although BooleCubes are accurate homologues of Boolean functions, they fail to represent

the typical sigmoid shape switch-like behavior often present in molecular interactions [79].

The latter can be achieved by replacing the �xi by a Hill function:

f Hð�xiÞ ¼
�xin

�xin þ kn
ð9Þ

or the normalized Hill function:

f Hnð�xiÞ ¼
f Hð�xiÞ
f Hð1Þ

ð10Þ

Further details regarding logic-based ODE models can be found in [77].

Problem statement as a MIDO

In order to find the best logic-based dynamic model to represent the behavior of a given bio-

logical network, we developed a formulation extending previous works that used a Boolean

logic framework [80] or a constrained fuzzy-logic formalism [81]. The idea here is that starting

from a directed graph containing only the interactions and their signs (activation or inhibi-

tion) we can build an expanded hypergraph containing all the possible logic gates.

The problem can be formulated as the following for case studies 1 and 2:

minimize
n;k;t;w

Fðn; k; t;wÞ ¼
Xn�

�¼1

XnO
�

o¼1

XnS
�;o

s¼1

ð~yS
�;o
� yS

�;oÞ
2

subject to Esub ¼ feijwi ¼ 1g; i ¼ 1; . . . ; nhyperedges

Hsub ¼ ðV; E subÞ

LBn � n � UBn

LBk � k � UBk

LBt � t � UBt

_�x ¼ f ðHsub; �x; n; k; t; tÞ

�xðt0Þ ¼ �x0

y ¼ gðHsub; �x; n; k; t; tÞ

ð11Þ

Table 1. Relation between functions B(x1, x2) and �BIð�x1; �x2Þ.

x1 x2 B(x1, x2) �BIð�x1; �x2Þ ¼ . . .

0 0 0 0 � ð1 � �x1Þ � ð1 � �x2Þþ

0 1 1 1 � ð1 � �x1Þ � �x2þ

1 0 1 1 � �x1 � ð1 � �x2Þþ

1 1 1 1 � �x1 � �x2

A truth table helps to understand the relationship between the OR Boolean update function B(x1, x2) and its

continuous homologue �BIð�x1; �x2Þ. For every combination of the Boolean variables x1 and x2, a term is added

to �BIð�x1; �x2Þ) depending on B(x1, x2).

https://doi.org/10.1371/journal.pone.0182186.t001
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where Hsub is the subgraph containing only the hyperedges (Esub), defined by the binary vari-

ables w. Additionally n, k and τ are the continuous variables required for the logic-based ODE

scheme. Upper and lower bounds represent the limits to these parameters. The model dynam-

ics ( _�x) are given by the function f. This set of differential equations varies according to the sub-

graph (and therefore also according to the integer variables vector w). Predictions for the

systems dynamics are obtained by solving the initial value problem given by the ODEs. The

objective function is the mismatch (e.g. norm-2) between the simulated (y) and the experimen-

tal data (~y), and we seek to minimize this metric for every experiment (�), observed species (o)

and sampling point (s). The simulation data y is given by an observation function g of the

model dynamics at time t.
In case study 3 we also consider a model reduction problem where additional decision vari-

ables are used to remove the influence of a regulator �xi from the model. As starting point we

consider a model derived with SELDOM [82], where a mutual information strategy, combined

with dynamic optimization, was used to find an ensemble of dynamic models that can explain

the data from four breast-cancer cell-lines used in the DREAM-HPN challenge [83]. One of

the critical steps in SELDOM was to perform model reduction using a greedy heuristic. Here

we consider instead the application of mixed-integer global optimization with saCeSS2 to the

problem of model reduction. To find a reduced model we use the Akaike information criterion

(AIC), which for the purpose of model comparison is defined as:

AIC ¼ 2K þ 2n � ln
F
n

� �

; ð12Þ

where K is the number of active parameters. The theoretical foundations for the AIC can be

found in [84].

Results and discussion

The new saCeSS2 method described above has been applied to a set of case studies from the

domain of computational systems biology with the goal of assessing its efficacy and efficiency

for solving these very difficult MIDO/MINLP problems. The method has been compared with

both the sequential eSS [31] and with an embarrassingly parallel non-cooperative version of

the eSS called np-eSS. The np-eSS method consists of np separated eSS runs performed in par-

allel but without cooperation among them. The results reported for np-eSS correspond to the

best value achieved in np runs. Diversity is introduced in these np eSS runs by allowing differ-

ent settings to each one of the individual searches. The performance of saCeSS2 was also evalu-

ated considering a different number of processors in order to study its scalability and the

dispersion of results.

The original reported implementation of eSS [31] was coded in Matlab, thus, for a fair com-

parison with saCeSS2, it has been here implemented in F90. In the saCeSS2 algorithm the MPI

library [85] has been employed for the cooperation between islands.

For the experimental testbed different platforms have been used. First, most of the experi-

ments were conducted in a local cluster (NEMO) that consists of three nodes powered with

two deca-core Intel Xeon E5-2650 CPUs with 30GB of RAM connected through a Gigabit

Ethernet network. With the aim of assessing the scalability of the proposal we also performed

some experiments in a larger infrastructure, the cluster from European Bioinformatics Insti-

tute (EBI) [86], that consists of 222 nodes powered with two octa-core Intel Xeon E5-2680

CPUs with 30GB of RAM, connected through a Gigabit Ethernet network. Finally, in order to

evaluate the performance of the proposal in a public cloud, some experiments were conducted

in the Microsoft Azure public cloud.
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The saCeSS2 library has been compiled with the Intel implementations for C, FORTRAN

and MPI library, except in the EBI Cluster, where GNU compilers and openMPI had to be

used. We remark this fact due to the well-known differences in the performance obtained

using different compilers.

The computational results shown in this paper were analyzed both from a horizontal view

[87], that is, assessing the performance by measuring the time needed to reach a given target

value, and from a vertical view [87], that is, evaluating how far a method has advanced in the

search for a predefined effort. Thus, two different stopping criteria were considered in these

experiments: solution quality based on a value-to-reach (VTR), for an horizontal view, and pre-

defined effort using a maximum execution time, for a vertical approach. The VTR used was

the optimal fitness value reported in [33]. Also, due to the natural dispersion in the results of

stochastic methods, each experiment reported in this section has been performed 20 times and

a statistical study was carried out.

Case study 1: Synthetic signaling pathway (SSP)

The synthetic signaling pathway (SSP) [72] case study considers a dynamic model composed

of 26 ordinary differential equations and 86 continuous parameters. It was initially used to

illustrate the capabilities and limitations of different formalisms related with logic-based mod-

els. Although this is a synthetic problem, it was designed to be a plausible representation of a

signaling transduction pathway. The model was used to generate pseudo-experimental data

for 10 combinations of perturbations with two extracellular ligands (TNF and EGF) and two

kinase inhibitors (for PI3K and RAF1). From a total of 26 dynamic states, 6 were observed

(NFKB, P38, AP1, GSK3, RAF1 and ERK) and 5% of Gaussian noise was added to the data.

Following the methodology described in [80], we obtained an expanded version of this

model containing every possible AND/OR logic gate given the initial graph structure. This so-

called expansion procedure generated a nested model comprising 34 additional variables, one

for each hyperedge. Thus, the obtained optimization problem contains 120 parameters, being

86 continuous and 34 binaries. We proceeded by implementing the model and experimental

setup using AMIGO [88] and exporting C code which could be used with the saCeSS2 method

presented here.

Considering saCeSS2, it is important to note that the cooperation between processes

changes the systemic properties of the eSS algorithm and therefore its macroscopic behavior.

The same happens with the self-adaptive mechanism proposed. Table 2 displays for each

method (sequential, parallel non-cooperative, and saCeSS2) the number of processors used

(#np), the mean and standard deviation value of the achieved tolerances (fbest), the mean and

standard deviation number of external iterations (iter) performed, the mean and standard

Table 2. Case study 1 SSP: Performance analysis from a horizontal view.

method #np mean fbest±std mean iter±std mean evals±std mean time±std(s) speedup

eSS 1 9.8±0.3 261±636 345989±829560 54885±131153 -

np-eSS 10 9.5±0.6 35±16 356583±127682 4546±1592 12.0

20 9.8±0.2 29±6 626150±120338 4193±907 13.0

40 9.8±0.1 33±9 876800±228596 2901±765 18.9

saCeSS2 10 9.7±0.2 25±9 246082±68925 3478±1114 15.7

20 9.8±0.1 18±6 402613±120260 2779±870 19.7

40 9.9±0.1 19±8 470746±142702 1602±523 34.2

Performance of the saCeSS2 and scalability analysis when the number of processors grows. Stopping criteria: VTR = 10.

https://doi.org/10.1371/journal.pone.0182186.t002
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deviation number of evaluations (evals) needed to achieve the VTR, the mean and standard

deviation execution time, and the speedup achieved versus the sequential method. As it can be

seen, there is a notable reduction in the execution time required by the parallel methods

against the sequential one, and there is also a significant reduction between the saCeSS2

method and the non-cooperative np-eSS. Note that, in the parallel methods (np-eSS and

saCeSS2), the initial population, and, thus, the computational load, is not spread among pro-

cessors. The population size is the same in the sequential method as in each of the islands in

the parallel methods. That is, the parallel methods allow for a diversification in the search.

Therefore, the speedup achieved versus the sequential method is due to the impact of this

diversification, and the speedup achieved by saCeSS2 over the np-eSS is due to the impact of

the cooperation between different searches, that produces results of higher quality performing

less evaluations and, hence, providing a better performance. In short, these results show the

effectiveness of the cooperative parallel algorithm proposed compared to a non-cooperative

parallel version.

Table 3 shows results for experiments that include as stopping criterion a predefined effort

of maximum execution time of 4000 seconds. This table displays the percentage of executions

(% hit) that achieve a very high quality solution (VTR = 9.0). It can be observed that the

sequential implementation never achieved the VTR in the maximum allowed time, while, for

the parallel implementations, when the number of processes grows the number of the execu-

tions that achieved the quality solution increased. Again, the cooperative proposed saCeSS2

implementation achieved better results than the non-cooperative parallel version when using

the same number of processors.

When dealing with stochastic optimization solvers, it is important to evaluate the dispersion

of the computational results. Fig 3 illustrates with beanplots how the parallel algorithms (np-

eSS and saCeSS2) reduce the variability of execution time and obtain less number of outliers

when the number of cores increases. Hybrid violin/boxplot graphs for these results are

included in Fig A in S1 File for a in depth insight. The proposed saCeSS2 method outperforms

significantly the non-cooperative np-eSS method (note the logarithmic scale in axis y). This is

an important feature of the saCeSS2, because it reduces the average execution time.

To better illustrate the goal of saCeSS2 method vs the non-cooperative parallel np-eSS

implementation, Fig 4 shows the convergence curves, which represent the logarithm of the

objective function value against the execution time. Fig 4 illustrates, for both saCeSS2 and np-

eSS methods, the region between the lower and upper bounds of the 20 runs performed for

each experiment, with a strong line representing the median value for each time moment.

In order to evaluate the scalability of the proposed saCeSS2, Fig 5 shows the convergence

curves for those experiments that fall in the median values of the results distribution using 10,

Table 3. Case study 1 SSP: Performance analysis from a vertical perspective.

method #np mean fbest±std mean iter±std mean evals±std mean time±std(s) hits%

eSS 1 20.1±4.5 19±3 27289±4478 4000±0 0%

np-eSS 10 10.6±1.6 26±3 261664±24780 3966±119 10%

20 10.31±0.91 24±3 522194±47322 3862±410 15%

40 9.5±0.7 36±4 964168±99650 3681±510 30%

saCeSS2 10 10.2±1.4 23±4 256872±28063 3822±476 15%

20 9.6±0.7 22±4 471948±82282 3532±706 35%

40 8.9±0.2 32±19 621118±232204 2258±973 85%

Performance of saCeSS2 using as stopping criteria: VTR = 9 and maximum time = 4000 seconds.

https://doi.org/10.1371/journal.pone.0182186.t003
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20 and 40 processors. It can be seen that the saCeSS2 still improves the convergence results

when the number of processors grows. This improvement comes from the cooperation

between islands and the diversification obtained through the exploration in parallel of different

search regions using different algorithm settings.

Case study 2: HepG2

As a second case study, we consider the reverse engineering of a logic-based ODE model using

liver cancer data (a subset of the data generated by [89]). The dataset consists of phosphoryla-

tion measurements from a hepatocellular carcinoma cell line (HepG2) at 0, 30 and 180 min-

utes after perturbation.

To preprocess the network, we used CellNOptR, the R version of CellNOpt [90]. Basically,

the network was compressed to remove as many non-observable/non-controllable species as

possible. Subsequently, we generated all gates that were compatible with the network; for this

we added hyperedges (AND gates) from all pair of inputs (the OR gates are implicit). The

expanded network has 109 hyperedges and 135 continuous parameters. To transform this

model into a logic-based ODE model, we developed a parser that generates a C model file and

Matlab scripts compatible with the AMIGO toolbox [88].

Consequently, in this case the optimization problem to solve contains a total of 244 parame-

ters, being 135 continuous and 109 binaries. Although the time-series data contains only three

sampling time points, it is quite rich from the point of view of information content: it includes

64 perturbations comprising 7 ligands and 7 small-molecule inhibitors. The ligands were cho-

sen to activate inflammation and proliferation pathways, and the inhibitors to block the activ-

ity of specific kinases. We normalized the data by rescaling it to this range. This is required to

as the models are semi-quantitative and hence the data has to be between 0 and 1. There are a

Fig 3. Case study 1 SSP: Bean plots of execution time for np-eSS vs saCeSS2 using 10, 20 and 40 MPI

processors. VTR = 10 and 20 independent runs for each experiment.

https://doi.org/10.1371/journal.pone.0182186.g003
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total of 25 states present in the model, 16 corresponded to observed species. The initial condi-

tions for the other 9 species are not measured and we had to estimate them. To avoid increas-

ing the problem size and multi-modality unnecessarily, the estimated initials conditions were

assumed the same for each of the 64-experiments.

Table 4, similarly to Table 2, displays the performance of the different methods based on

the number of external iterations, function evaluations and total execution time, for a different

Fig 4. Case study 1 SSP: Convergence curves.

https://doi.org/10.1371/journal.pone.0182186.g004
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number of processors. Note that results for the sequential method are not reported due to the

unreasonable amount of time to reach convergence. Again, it can be seen that the saCeSS2

method outperforms, not only the sequential eSS, but also a parallel eSS without cooperation

between islands. The cooperative strategy, along with the self-adaptive mechanism, leads to an

important improvement in the convergence rate and the execution time required.

Table 5 shows results including as stopping criterion a lower VTR and a predefined effort

of 30 hours. Since it is very difficult to reach a point of very high quality in this problem, this

table displays the percentage of hits that achieve a VTR = 30. It can be observed that the

sequential eSS never achieved the VTR in the maximum allowed time, while the parallel imple-

mentations achieve more hits as the number of processors grows. The saCeSS2 method clearly

outperforms the embarrassingly parallel eSS: not only the mean time improves (around a 67%

for 40 processors), but, which is more important, the number of runs that achieve the high

quality VTR is larger (65% versus 35% for 40 processors).

Fig 5. Convergence curves for saCeSS2 using 1, 10, 20 and 40 processors corresponding to the runs

in the median values of the results distribution.

https://doi.org/10.1371/journal.pone.0182186.g005

Table 4. Case study 2 HepG2: Performance analysis from a horizontal view.

method #np mean fbest±std mean iter±std mean evals±std mean time±std(s)

eSS 1 - - - -

np-eSS 10 32.4±0.8 1493±2975 13581782±10598705 230483±365129

20 32.5±0.7 527±381 20267424±12791177 142996±93617

40 32.8±0.1 434±246 22157687±11660663 70221±35565

saCeSS2 10 32.5±0.5 1056±1873 13637565±20933642 167880±242658

20 32.3±0.9 396±496 13196677±15577101 89433±108108

40 32.4±1.0 560±431 11959105±9383238 44037±32346

Performance of the saCeSS2 and scalability analysis when the number of processors grows. Stopping criteria: VTR = 33.

https://doi.org/10.1371/journal.pone.0182186.t004
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Fig 6 shows beanplots comparing the distribution of the execution times in the saCeSS2

method versus the non-cooperative parallel version. The figure illustrates not only the

improvement in the mean execution time, but also the reduction in the variability of the execu-

tion times due to the cooperation and self-adaptive mechanism included in the saCeSS2

method. Hybrid violin/boxplots for this data are also provided in Fig B in S1 File for a thor-

oughly comprehension. Notice that the less the number of cores used the more outliers we

obtain in the distribution.

Finally, Fig 7 shows the convergence curves for the previous experiments. Fig 7 shows the

region between the lower and upper bounds of the 20 runs for each experiment. Fig 8, demon-

strate the scalability of the proposal when the number of processors grows.

Table 5. Case study 2 HePG2: Performance analysis from a vertical view.

method #np mean fbest±std mean iter±std mean evals±std mean time±std(s) hits%

eSS 1 48.3±6.2 342±47 1010744±122417 108000±0 0%

np-eSS 10 34.9±3.7 482±112 8329751±1519410 103847±14515 10%

20 32.9±1.9 418±65 16612721±2292759 103614±14763 10%

40 31.1±1.3 604±180 30606532±8576193 93874±25243 35%

saCeSS2 10 34.7±3.8 403±146 7359986±1468640 103052±12461 10%

20 32.0±4.4 339±163 12057460±4431722 85436±28200 45%

40 30.4±1.2 786±478 20231060±11664025 63153±34832 65%

Convergence of saCeSS2 until a high quality solution is reached. Stopping criteria: VTR = 30 and maximum time = 108000 seconds.

https://doi.org/10.1371/journal.pone.0182186.t005

Fig 6. Case study 2 HePG2: Bean plots of execution time for NP-eSS vs saCeSS2 using 10, 20 and 40

MPI processors in the HePG2 problem. VTR = 33 and the number of runs is equal to 20.

https://doi.org/10.1371/journal.pone.0182186.g006
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Case study 3: Breast cancer network inference challenge

(HPN-DREAM)

We finally consider an extremely difficult problem which has been recently made publicly

available in the context of the DREAM challenges [91]. The DREAM challenges provide a

forum to crowdsource fundamental problems in systems biology and medicine, such as the

inference of signaling networks [83, 92], in the form of collaborative competitions. This data-

Fig 7. Case study 2 HePG2: Convergence curves.

https://doi.org/10.1371/journal.pone.0182186.g007
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set comprised time-series acquired under eight extracellular stimuli, under four different

kinase inhibitors and a control, in four breast cancer cell lines [83].

The HPN-DREAM breast cancer challenge is composed of two sub-challenges: (i) an exper-

imental sub-challenge where the participants were asked to make predictions for 44 observed

phosphoproteins (although the complete data-set was larger); and (ii) an in silico sub-chal-

lenge, where the participants were encouraged to exploit all the prior knowledge they could

use and the experimental protocol along with the real names of the measured quantities, used

reagents, inhibitors, etc. Using different combinations of inhibitors and ligands (on and off),

the organizers if the challenge generated a data-set for several cell-lines. An additional data-set

generated with the help of a fourth inhibitor was kept unknown to the participants, who were

asked to deliver predictions for several possible inhibitors.

Overall, the problem contains a total of 828 decision variables (690 continuous and 138

binaries). Thus, the HPN-DREAM is an extremely challenging problem also from the compu-

tational view, with an enormous expected execution time and an unknown final target value.

In a preliminary step, we carried out different experiments using np = 10, 20, and 40 cores in

our NEMO local cluster to solve this problem. We used the np cores to run in parallel np inde-

pendent eSS searches, without cooperation between them, and we also run a saCeSS2 execu-

tion using np processes. We used as stopping criterion for all the experiments a predefined

effort of 10 days and we studied the convergence curves (shown in Fig 9). The blue region rep-

resents the bounds of the 40 sequential eSS runs, while the blue solid line represents the

median value for each time moment of these 40 runs. The other solid lines represent the con-

vergence curve of a single saCeSS2 performed using 10, 20, and 40 cores. The saCeSS2 method

clearly outperforms the embarrassingly parallel eSS and shows a good scalability when the

number of processes increases. We then performed new experiments using a larger number of

cores in the EBI cluster. Fig 10 show the convergence curves using 100 and 300 cores. Due to

the large amount of resources employed and the cluster policy, the length of the job (and, thus,

Fig 8. Convergence curves for saCeSS2 using 10, 20 and 40 processors corresponding to the runs in

the median values of the results distribution.

https://doi.org/10.1371/journal.pone.0182186.g008
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Fig 9. Case study 3: HPN-DREAM convergence curves in the NEMO local cluster. Convergence curves using 10, 20, 40 and 60

cores.

https://doi.org/10.1371/journal.pone.0182186.g009

Fig 10. Case study 3: HPN-DREAM convergence curves in the EBI cluster. Convergence curves using 100, and 300 cores.

https://doi.org/10.1371/journal.pone.0182186.g010

A parallel metaheuristic for large MIDO problems, with applications in computational biology

PLOS ONE | https://doi.org/10.1371/journal.pone.0182186 August 15, 2017 23 / 32

https://doi.org/10.1371/journal.pone.0182186.g009
https://doi.org/10.1371/journal.pone.0182186.g010
https://doi.org/10.1371/journal.pone.0182186


the stopping criterion used) had to be set to 4 days. Note that, due to the differences between

both infrastructures, it is quite difficult to perform a fair comparison with our local cluster.

Although the convergence rate seems to be slower in the EBI cluster, the results obtained still

demonstrate the good scalability of saCeSS2. The lower convergence rate in the EBI cluster is

due to the architectural and performance differences with respect to our local cluster, and also

to the use of GNU compilers instead of the Intel compilers used in our local cluster. Neverthe-

less, the scalability of saCeSS2 is maintained: the more resources we can use for the cooperative

method, the larger improvement we will obtain versus executing the sequential method with

the same computational resources.

Performance evaluation of saCeSS2 in the Cloud

As it was already demonstrated in previous subsections, though saCeSS2 clearly outperforms

the sequential and the non-cooperative parallel versions of the eSS, it still requires large

computational times to achieve convergence in very hard problems. Additionally, it has been

shown that the diversity introduced by the increase in the number of islands clearly improves

the algorithm convergence rate. However, an increase in the number of islands should be

attended by an increase in the number of computational resources (cores), and this is not

always practicable.

With the advent of Cloud Computing, effortless access to a large number of distributed

resources has become more feasible. However, the scientific computing community has been

quite hesitant in using the Cloud, because traditional programming models do not fit well with

the new paradigm. In the last decade, several researchers have studied the performance of

HPC applications in the cloud environment [93–97]. Most of these studies use classical MPI

benchmarks to compare the performance of MPI on public cloud platforms. These works con-

clude that the lack of high-bandwidth, low-latency networks, as well as the virtualization over-

head, has a large effect on the performance of MPI applications on the cloud. In this section

we explore the use of a cloud platform, the Microsoft Azure public cloud, for deploying

saCeSS2 experiments. The performance was compared to the one obtained in the NEMO local

cluster in terms of computational time. Finally, the cost of cloud resources were also analyzed.

Thus, this study could be useful for those researchers interested in the performance of tradi-

tional parallel metaheuristics in new cloud platforms and its market price.

Some of the previous experiments were deployed in the Microsoft Azure public cloud using

clusters with compute-intensive A9 instances (16 cores, 112GB). These instances are designed

and optimized for compute-intensive and network-intensive applications. Each A9 instance

uses an Intel Xeon E5-2670 @2.6GHz CPUs with 112GB of RAM. Additionally, A9 instances

feature a second network interface for remote direct memory access (RDMA) connectivity.

This interface allows instances to communicate with each other over an InfiniBand network,

operating at QDR rates, boosting the scalability and performance of many MPI applications.

Table 6 shows the performance of the saCeSS2 method for both SSP and HePG2 case stud-

ies in the Azure public cloud. As it can be seen the behavior of the algorithm differs slightly

from the results obtained in the NEMO local cluster and reported in previous subsections. In

particular, results for a small number of processors are better in Azure than in the local cluster.

However, the results obtained in the local cluster outperforms the ones in Azure when the

number of processors grows. In particular, note that the number of function evaluations

required for convergence is larger in the experiments carried out in the local cluster than in

the same experiments carried out in Azure when the number of processors is small (10 cores),

and it is the opposite for the experiments that use 20 and 40 cores. This can be attributed to the

efficiency of the inter-node communications (remember that each Azure instance has 16
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cores). The higher latency in the inter-node communications in Azure leads to a slow propaga-

tion of promising results between islands, that results in a slower convergence.

Besides, it is noteworthy that the dispersion in the distribution of the results is larger for

experiments carried out in the Azure public cloud, specially when the number of cores grows.

Figs 11 and 12 illustrate with beanplots this fact. Note the logarithmic scale in axis y. As it can

be seen, the number of outliers increases with the number of cores in Azure. Notice that this is

exactly the opposite behavior than in the local cluster, and it can be explained by the virtualiza-

tion overhead in Azure and the use of non-dedicated resources in a multi-tenant platform.

Hybrid violin/boxplots, provided in Fig C in S1 File, contribute to illustrate this issue.

To conclude this evaluation we have found it interesting to carry out a brief study on the

cost of these experiments in the Azure public cloud. Conducting a cost analysis comparing the

cost of relying on cloud computing and that of owning an in-house cluster would be of partic-

ular interest, although is a very difficult task [98]. The acquisition and operational expenses

Table 6. Performance of saCeSS2 for both SSP and HePG2 case studies in azure public cloud.

problem #np mean fbest±std mean iter±std mean evals±std mean time±std(s) mean price

SSP 10 9.8±0.2 23±8 246256±73545 3153±948 1.99 €
20 9.8±0.2 21±9 470857±175723 3057±1177 1.93 €
40 9.8±0.1 31±44 571966±423381 1861±1426 1.18 €

HePG2 10 32.6±0.3 807±782 11790096±10574631 151939±128256 96.10 €
20 32.0±1.2 305±243 10617112±7403497 87802±58619 55.53 €
40 32.8±0.3 731±707 17438937±19853336 68214±77442 43.14 €

Stopping criteria: VTRSSP = 10 and VTRHePG2 = 33.

https://doi.org/10.1371/journal.pone.0182186.t006

Fig 11. Case study 1: Beanplots comparing results in terms of execution time in azure vs local cluster

in the SSP problem.

https://doi.org/10.1371/journal.pone.0182186.g011
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have to be used in estimating the local clusters’ cost. However, the actual cost of local clusters

is related to its utilization level. For a local cluster acquired as one unit and maintained for sev-

eral years, the higher the actual utilization level, the lower the effective cost rate. Besides, labor

cost in management and maintenance should also be included, which could be significant.

Thus, we found unfeasible an accurate estimation of the cost per hour in our local cluster.

Besides, if we take a look to the price of the used instances, we can see that in February 2017

the cost of each A9-instance is 2.2769 EUR/hour. The mean pricing for each experiment is

shown in Table 6. In the view of the obtained results we can conclude that, though our experi-

ments in the cloud demonstrates a slightly poorer performance, in terms of execution time,

the cloud pay-as-you-gomodel can be potentially a cost-effective and timely solution for the

needs of many users.

Conclusions

In this paper, we present a parallel cooperative strategy for the solution of large mixed-integer

dynamic optimization problems. This method, saCeSS2, is based on an parallel enhanced scat-

ter search metaheuristic, with new mechanisms and extensions to handle mixed-integer prob-

lems. Our strategy shown good performance results when applied to a set of challenging case

studies from the domain of computational systems biology. Further, we performed computa-

tional runs in different infrastructures (including a local cluster, a large supercomputer and a

public cloud platforms) in order to evaluate latency and scalability issues.

This contribution extends the recently developed saCeSS method [41], a parallel coopera-

tive strategy for non-linear programming (NLP) problems, so that it can successfully solve

realistic mixed-integer dynamic optimization (MIDO) problems. To this end, the following

features have been included in the new saCeSS2 implementation: (1) an efficient mixed-integer

Fig 12. Case study 2: Beanplots comparing results in terms of execution time in azure vs local cluster

in the HePG2 problem.

https://doi.org/10.1371/journal.pone.0182186.g012
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local solver (MISQP), (2) a novel self-adaption mechanism to avoid convergence stagnation,

and (3) the injection of extra diversity during the adaptation steps, restarting most of reference

set of the reconfigured processes. In the near future, we plan to generalize saCeSS2 one more

level, incorporating additional local MINLP solvers [22], and adopting a hyper-heuristic [99]

framework to choose and coordinate them.

The computational results for case studies show that the proposal significantly reduces the

execution time needed to obtain a reasonable quality solution. Moreover, the dispersion in the

obtained results is narrowed when the number of processors grows. These results confirm that

the method can be used to reverse engineer dynamic models of complex biological pathways,

and indicates its suitability for other applications based on large-scale mixed-integer optimiza-

tion, such as metabolic engineering [28], optimal drug scheduling [100, 101] and synthetic

biology [102].

Finally, although the approach presented here has been developed taking into account the

particular class of logic-based ODE models, it can be applied to any model structure that can

be parametrized, i.e. that can be defined by a finite set of structural and dynamic parameters.

This direction will be explored in future work.

The code and data files needed to reproduce the results reported here at available at:

https://doi.org/10.5281/zenodo.290219.
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Saez-Rodriguez, Julio R. Banga.
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G., Pérez A., Robles V., Machine learning in bioinformatics, Briefings in Bioinformatics 7 (1) (2006)

86–112. https://doi.org/10.1093/bib/bbk007 PMID: 16761367

8. Banga J. R., Optimization in computational systems biology, BMC Systems Biology 2 (1) (2008) 47.

https://doi.org/10.1186/1752-0509-2-47 PMID: 18507829

9. Floudas C. A., Pardalos P. M., Optimization in computational chemistry and molecular biology: local

and global approaches, Springer Science & Business Media, 2013.

10. Villaverde A. F., Banga J. R., Reverse engineering and identification in systems biology: strategies,

perspectives and challenges, Journal of the Royal Society Interface 11 (91) (2014) 20130505. https://

doi.org/10.1098/rsif.2013.0505

11. Chachuat B., Singer A., Barton P., Global methods for dynamic optimization and mixed-integer

dynamic optimization, Industrial & Engineering Chemistry Research 45 (25) (2006) 8373–8392.

https://doi.org/10.1021/ie0601605

12. Gadkar K. G., Gunawan R., Doyle F. J., Iterative approach to model identification of biological net-

works, BMC Bioinformatics 6 (1) (2005) 155. https://doi.org/10.1186/1471-2105-6-155 PMID:

15967022

13. Doyle F. J., Stelling J., Systems interface biology, Journal of the Royal Society Interface 3 (10) (2006)

603–616. https://doi.org/10.1098/rsif.2006.0143

14. Kremling A., Saez-Rodriguez J., Systems biology—an engineering perspective, Journal of Biotechnol-

ogy 129 (2) (2007) 329–351. https://doi.org/10.1016/j.jbiotec.2007.02.009 PMID: 17400319

15. Hasenauer J., Waldherr S., Wagner K., Allgower F., Parameter identification, experimental design and

model falsification for biological network models using semidefinite programming, IET Systems Biol-

ogy 4 (2) (2010) 119–130. https://doi.org/10.1049/iet-syb.2009.0030 PMID: 20232992

16. Jaeger J., Monk N. A., Reverse engineering of gene regulatory networks, Learning and Inference in

Computational Systems Biology (2010) 9–34.

17. Kiparissides A., Koutinas M., Kontoravdi C., Mantalaris A., Pistikopoulos E. N., ’closing the loop’ in bio-

logical systems modeling—from the in silico to the in vitro, Automatica 47 (6) (2011) 1147–1155.

https://doi.org/10.1016/j.automatica.2011.01.013

18. Menolascina F., Siciliano V., Di Bernardo D., Engineering and control of biological systems: a new way

to tackle complex diseases, FEBS letters 586 (15) (2012) 2122–2128. https://doi.org/10.1016/j.

febslet.2012.04.050 PMID: 22580058

19. Sambo F., Montes de Oca M. A., Di Camillo B., Toffolo G., Stutzle T., More: Mixed optimization for

reverse engineering—an application to modeling biological networks response via sparse systems of

nonlinear differential equations, IEEE/ACM Transactions on Computational Biology and Bioinformatics

(TCBB) 9 (5) (2012) 1459–1471. https://doi.org/10.1109/TCBB.2012.56
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