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Abstract

To determine if a multi-analyte cerebrospinal fluid (CSF) peptide signature can be used to

differentiate Alzheimer’s Disease (AD) and normal aged controls (NL), and to determine if

this signature can also predict progression from mild cognitive impairment (MCI) to AD,

analysis of CSF samples was done on the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) dataset. The profiles of 320 peptides from baseline CSF samples of 287 subjects

over a 3–6 year period were analyzed. As expected, the peptide most able to differentiate

between AD vs. NL was found to be Apolipoprotein E. Other peptides, some of which are

not classically associated with AD, such as heart fatty acid binding protein, and the neuronal

pentraxin receptor, also differentiated disease states. A sixteen-analyte signature was iden-

tified which differentiated AD vs. NL with an area under the receiver operating characteristic

curve of 0.89, which was better than any combination of amyloid beta (1–42), tau, and phos-

pho-181 tau. This same signature, when applied to a new and independent data set, also

strongly predicted both probability and rate of future progression of MCI subjects to AD, bet-

ter than traditional markers. These data suggest that multivariate peptide signatures from

CSF predict MCI to AD progression, and point to potentially new roles for certain proteins

not typically associated with AD.

Introduction

CSF biomarkers have been examined for their capacity to classify Alzheimer’s Disease (AD)

disease state since they reflect the biochemical changes that occur in the AD brain. Three CSF

biomarkers in particular, total tau (t-tau), phosphorylated tau (p-tau) and amyloid beta 42

(Aβ42), are believed to have high diagnostic accuracy for early AD diagnosis and have been
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used as research criteria for the diagnosis of AD [1–3]. A number of studies have found signifi-

cantly reduced CSF Aβ42 levels in AD patients compared to normal controls with few excep-

tions (See [3] and [4] for meta-review and meta-analyses respectively; see [5,6] for exceptions).

In comparison to Aβ42 levels, studies have consistently found increased CSF t-tau and p-tau

levels in AD patients compared to normal controls (See [7] and [4] for meta-review and meta-

analyses respectively). Furthermore, elevated levels of t-tau and p-tau have also been observed

in MCI patients that developed AD compared to stable MCI patients and normal controls

[8,9]. Given the possibility that a variety of other pathological processes may be simultaneously

ongoing in the AD brain (e.g., oxidative stress, inflammation and synaptic dysfunction), apart

from these three core CSF biomarkers, other biomarkers could reflect pathogenesis of AD and

reveal new biomarkers for AD [10].

Proteomic approaches permit large-scale assessment of the involvement of hundreds of

proteins and/or peptides in complex biological processes, and may generate hypotheses both

about disease mechanisms and potential therapeutic targets. This type of approach has been

used extensively to develop biomarkers and shape development of scientific hypotheses in the

cancer literature [11–13]. One challenge to investigators utilizing proteomic approaches is the

sheer mass of data that are obtained using these methods, both in terms of extraction of coher-

ent trends in the data and in terms of the potential for spurious associations identified via mul-

tiple comparisons. We and others have addressed these potential problems by using machine

learning algorithms to develop peptide “signatures” corresponding to disease state, and by

employing strict criteria to avoid the potential for false discovery [14–18]. Increasingly, proteo-

lytic fragments, rather than whole proteins, are being used for disease classification because of

the expansion in the complexity of the signatures available [19–22]. Therefore, in the current

report we explore the use of a proteomic technique applied to proteolytic fragments in the CSF

for the classification and prediction of disease progression in AD.

Protein profiling of the CSF using advanced proteomics techniques such as 2D gel elec-

trophoresis, mass spectrometry, and liquid chromatography-mass spectrometry could help

identify novel AD biomarkers. While studies using proteomics techniques have identified a

number of additional AD candidates (e.g., neuronal pentraxin receptor (NPTXR) and heart-

type fatty acid binding protein (FABPH) [23–28]), many of these studies have been done on

small cohorts [25,29] involving small arrays of CSF markers, using less powerful computa-

tional approaches and did not validate the markers in an independent cohort. To circumvent

these issues, we performed cross sectional analysis of CSF samples obtained from large and

well characterized populations of AD, MCI, and age-matched normal control (NL) subjects

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. We analyzed a diverse

array of peptides to determine if single or multi-analyte CSF peptide signatures could be used

to (i) distinguish patients with AD from NL (disease state classification) and (ii) predict future

conversion from MCI to AD in a separate population of patients (prediction of future

progression).

Methods

Data were obtained from the ADNI database (adni.loni.usc.edu). ADNI was launched in 2003

as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The

primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), pos-

itron emission tomography (PET), other biological markers, and clinical and neuropsychologi-

cal assessments can be combined to measure the progression of MCI and early AD. For up-to-

date information, see www.adni-info.org. This study was conducted across multiple clinical

sites and was approved by the Institutional Review Boards of all of the participating

A novel CSF proteomic biomarker for the diagnosis and prediction of progression of Alzheimer’s Disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0182098 August 3, 2017 2 / 18

(Department of Defense award number W81XWH-

12-2-0012). ADNI is funded by the National

Institute on Aging, the National Institute of

Biomedical Imaging and Bioengineering, and

through generous contributions from the following:

AbbVie, Alzheimer’s Association; Alzheimer’s Drug

Discovery Foundation; Araclon Biotech; BioClinica,

Inc.;Biogen; Bristol-Myers Squibb Company;

CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals,

Inc.; Eli Lilly and Company; EuroImmun; F.

Hoffmann-La Roche Ltd and its affiliated company

Genentech, Inc.; Fujirebio; GE Healthcare; IXICO

Ltd.; Janssen Alzheimer Immunotherapy Research

& Development, LLC.; Johnson & Johnson

Pharmaceutical Research & Development LLC.;

Lumosity; Lundbeck; Merck & Co., Inc.; Meso

Scale Diagnostics, LLC.; NeuroRx Research;

Neurotrack Technologies; Novartis

Pharmaceuticals Corporation; Pfizer Inc.; Piramal

Imaging; Servier; Takeda Pharmaceutical

Company; and Transition Therapeutics. The

Canadian Institutes of Health Research is providing

funds to support ADNI clinical sites in Canada.

Private sector contributions are facilitated by the

Foundation for the National Institutes of Health

(www.fnih.org). The grantee organization is the

Northern California Institute for Research and

Education, and the study is coordinated by the

Alzheimer’s Disease Cooperative Study at the

University of California, San Diego. ADNI data are

disseminated by the Laboratory for Neuro Imaging

at the University of Southern California. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: Funding for this work was

derived in part from the following commercial

sources: Araclon Biotech; BioClinica, Inc.;Biogen;

Bristol-Myers Squibb Company; CereSpir, Inc.;

Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and

Company; EuroImmun; F. Hoffmann-La Roche Ltd

and its affiliated company Genentech, Inc.;

Fujirebio; GE Healthcare; IXICO Ltd.; Janssen

Alzheimer Immunotherapy Research &

Development, LLC.; Johnson & Johnson

Pharmaceutical Research & Development LLC.;

Lumosity; Lundbeck; Merck & Co., Inc.; Meso

Scale Diagnostics, LLC.; NeuroRx Research;

Neurotrack Technologies; Novartis

Pharmaceuticals Corporation; Pfizer Inc.; Piramal

Imaging; Servier; Takeda Pharmaceutical

Company; and Transition Therapeutics. Funding

from these sources does not alter our adherence to

PLOS ONE policies on sharing data and materials.

http://adni.loni.usc.edu
http://www.adni-info.org/
https://doi.org/10.1371/journal.pone.0182098
http://www.fnih.org


institutions. Informed written consent was obtained from all participants at each site. The fol-

lowing individual ethics boards approved the study: Albany Medical College Institutional

Review Board, Boston University Medical Campus Institutional Review Board (BU IRB), But-

ler Hospital Institutional Review Board, Cleveland Clinic Institutional Review Board, Colum-

bia University Institutional Review Board, Dartmouth-Hitchcock Medical Center Committee

for the Protection of Human Subjects, Duke University Health System Institutional Review

Board, Emory University Institutional Review Board Georgetown University Institutional

Review Board, Human Investigation Committee Yale University School of Medicine, Human

Subjects Committee, University of Kansas Medical Center, Indiana University Institutional

Review Board, Research Compliance Administration, Institutional Review Board of Baylor

College of Medicine, Institutional Review Board of the Mount Sinai School of Medicine, Johns

Hopkins University School of Medicine Institutional Review Boards, Lifespan—Rhode Island

Hospital Institutional Review Board, Mayo Clinic Institutional Review Board, Nathan Kline

Institute Rockland Psychiatric Center Institutional Review Board (NKI RPC IRB), New York

University Langone Medical Center School of Medicine, Institutional Review Board Human

Research Program, Northwestern University Institutional Review Board Office, Office of the

Washington University School of Medicine IRB (OWUMC IRB), Oregon Health and Science

University Institutional Review Board, Partners Human Research Committee, Research Ethics

Board Jewish General Hospital, Research Ethics Board Sunnybrook Health Sciences Centre,

Roper St. Francis Institutional Review Board, Rush University Medical Center Institutional

Review Board, Stanford University, Administrative Panel on Human Subjects in Medical Re-

search, The Ohio State University Institutional Review Board, The University of Texas South-

western Medical Center Institutional Review Board, UCLA Office of the Human Research

Protection Program Institutional Review Board, UCSD Human Research Protections Pro-

gram, University Hospitals Case Medical Center Institutional Review Board, University of Ala-

bama at Birmingham Institutional Review Board, University of British Columbia, Clinical

Research Ethics Board (CREB), University of California Davis Office of Research IRB Admin-

istration, University of California Irvine Office Of Research Institutional Review Board (IRB),

University of California San Francisco Committee on Human Research (CHR), University

of Iowa Institutional Review Board, University of Kentucky Office of Research Integrity, Uni-

versity of Michigan Medical School Institutional Review Board (IRBMED), University of

Pennsylvania Institutional Review Board, University of Pittsburgh Institutional Review Board,

University of Rochester Research Subjects Review Board (RSRB), University of South Florida

Division of Research Integrity & Compliance, University of Southern California Health Sci-

ence Campus Institutional Review Board, University of Western Ontario Research Ethics

Board for Health Sciences Research Involving Human Subjects (HSREB), University of Wis-

consin Health Sciences Institutional Review Board, Wake Forest University Institutional

Review Board, Weill Cornell Medical College Institutional Review Board, Western Institu-

tional Review Board and Western University Health Sciences Research Ethics Board.

Patient population

Participants included patients with AD (defined by NINCDS-ADRDA1) and MCI (using

Petersen criteria [30]), and NL from the ADNI study that received clinical, neuropsychologi-

cal, and biomarker assessments which were repeated every 6 months for up to 36 months. NL

individuals were free of memory complaints or depression and had a Mini-Mental State Exam-

ination (MMSE) score above 25 and a Clinical Dementia Rating (CDR) score of 0. MCI indi-

viduals could have MMSE scores of 23 to 30 and required a CDR of 0.5 and an informant-

verified memory complaint substantiated by abnormal education-adjusted scores on the
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Wechsler Memory Scale Revised—Logical Memory II. AD patients could have MMSE scores

of 20 to 27 and a CDR of 0.5 or 1.0. Of the 135 MCI subjects from whom the CSF proteomic

data were available at baseline, 122 subjects stayed in the study for at least 36 months.

CSF samples

CSF samples (0.5 mL) were obtained in the morning after an overnight fast and processed

using the Caprion Proteomics platform that uses mass spectrometry to evaluate the ability of a

panel of peptides to discriminate disease states and disease progression. Procedures for CSF

sampling, transport, and storage have been described previously [31]. The CSF multiplex mul-

tiple reaction monitoring (MRM) panel was developed by Caprion Proteomics in collabora-

tion with the Biomarker Consortium Project Team. A total of 320 peptides generated from

tryptic digests of 143 proteins were used in this study (see S1 Table for list of peptides and pro-

teins). These peptides include a series of peptides representing inflammatory markers and pep-

tides identified in an earlier phase of the program that used multiplexed immunoassay based

platform (performed by Rules Based Medicine).

Details regarding the technology, quality control and validation can be found in the Use of

Targeted Mass Spectrometry Proteomic Strategies to Identify CSF-Based Biomarkers in Alz-

heimer’s Disease Data Primer (http://adni.bitbucket.org/csfmrm.html). In brief, as described

in the data primer and in Spellman et al. (2015) [32], CSF samples were depleted of plasma

proteins using a Multiple Affinity Removal System (MARS-14) column, trypsin digested (1:25

protease:protein ratio), lyophilized, desalted and analyzed by LC/MRM-MS analysis on a

QTRAP 5500 LC-MS/MS system at Caprion Proteomics. MRM is a mass spectrometry-based

platform that has been shown to be reproducible within and across laboratories and instru-

ment platforms [33]. MRM experiments were performed on triple quadrupole (Q) mass spec-

trometers. The first (Q1) and third (Q3) mass analyzer were used to isolate a peptide ion and a

corresponding fragment ion. The fragment ions were generated in Q2 by collision induced

dissociation (CID). The 320 peptides met all the quality control criteria set by the ADNI work-

ing group.

Analysis

For the univariate analysis to identify individual peptides that are either differentially

expressed between AD and NL subjects, or between MCI-AD progressors versus non-progres-

sors, the analysis of covariance model (ANCOVA) was used with age and gender as covariates

and the groups to be compared as fixed effect. This model was fit on the log2 transformed

quantile-normalized intensities of the peptide expression values. Outliers were identified and

excluded based on the residuals from this ANCOVA model whose values were either less than

Q1–1.5 x (Q3-Q1) or above Q1 + 1.5 x (Q3-Q1), where Q1 and Q3 are the first and third quar-

tiles of the distribution of residuals. The significance of peptides was assessed and is reported

in terms of the false discovery rate estimate (q-value) [34], and the relevant summary statistics

such as the receiver operator characteristic area under the curve (ROC AUC), fold change, and

the effect size, along with p-values are also reported.

Multivariate predictive modeling analysis was then carried out to derive a signature (combi-

nation of peptides and any additional covariates) that optimally differentiates the AD versus

NL subjects. The list of candidate predictors considered for selection in this signature included

the list of 320 peptides of the CSF proteomic panel, plus age, gender and apolipoprotein E

(APO-E) status (totally 323 predictors). An algorithm based on the logistic regression model

with lasso-based penalty [35] was employed for this analysis. To ensure the stability and

robustness of the selection of a subset of predictors for the optimal signature via this algorithm,
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a bootstrap procedure [36] was used to estimate the lasso penalty parameter. The performance

of the optimal peptide signature from this algorithm that differentiates the AD and NL subjects

was evaluated via a rigorous five-fold internal stratified cross-validation procedure. In this pro-

cedure, all steps of the model building and signature derivation process were fully embedded

within the cross-validation [37]. The predictions of all the left-out folds from this cross-valida-

tion procedure [14] were first aggregated, and the performance measures such as the overall

classification accuracy, sensitivity, specificity, and the positive and negative predictive values

were evaluated on these aggregated predictions. This internal cross-validation procedure was

repeated 20 times, and the mean and standard deviation of these performance measures are

reported.

The above optimal peptide signature derived to differentiate the AD and NL subjects was

then tested on a separate independent group of MCI subjects at baseline to predict their future

progression to AD. As the peptide signature would return the prediction results as simply AD

or NL, the prediction of an MCI subject as NL was considered as “Signature Negative” at base-

line, and the prediction of an MCI subject as AD was considered as “Signature Positive” at

baseline. The accuracy of this prediction was then assessed relative to the true progression sta-

tus of the MCI subjects to AD over the next 36 months.

The performance of this peptide signature was further evaluated in terms of its ability to dif-

ferentiate the future “time to progression” from MCI to AD of these baseline signature positive

and signature negative MCI subjects via Kaplan-Meier analysis. For this evaluation, the pro-

gression of MCI subjects to AD over the entire future time course until the last follow-up visit

was taken into consideration. This evaluation of the AD versus NL peptide signature on the

future progression of a separate group of MCI subjects to AD would not only serve as an inde-

pendent verification of the utility of our peptide signature, but also put it to a greater test to see

whether it is robust enough to address a different and more important question related to pre-

dicting the future disease progression in AD.

Results

Disease-state demographics

Data from 287 subjects were analyzed, with the largest proportion (135/287 or 47.1%) coming

from MCI subjects. Of the 66 AD subjects, 65 were diagnosed as “probable” and 1 was diag-

nosed as “possible” AD. The subjects were balanced across the NL, MCI and AD groups in

terms of age (range of means = 74.79–75.80 years, p>0.05) and education (range of means =

15.11–16.0 years, p>0.05). There were more males (59.9%) than females (40.1%) in the study,

though similar numbers of male and female MCI subjects converted to AD over a three-year

period (52.3 vs. 65.8%, p = 0.166, Chi-squared test). As shown previously [38], the presence of

the APO-E4 allele tracked with disease state (71.2% AD, 52.6% MCI and 31.8% NL, p<

0.0001, Chi-squared test). In addition, the presence of this allele also tracked with MCI to AD

progression over a 36-month period (37.5% of non-E4 vs. 56.3% of E4 progressed to AD,

p = 0.028, Chi-squared test), see Tables 1 and 2.

Disease-state classification: Univariate analysis

A large number of peptides were found to be differentially present in AD vs. NL subjects. As

expected, one APO-E peptide sequence was present in substantially higher amounts in AD vs.

NL subjects (APOE_LGADMEDVR: 17.29 fold difference in median value, q = 9.45E-07, see

Table 3). This finding was previously known since this sequence is found only in APOE4+ sub-

jects [39,40]. Other peptides, some known to be involved in neuronal function (e.g., CA2D1,

the voltage-dependent calcium channel subunit alpha-2/delta-1), and others not classically
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associated with neuronal function (e.g., FABPH), differed between AD and NL subjects. Using

a q-value < 0.05 criteria, 39 out of 320 peptides reached statistical significance with this false

discovery rate correction, while 11 out of 320 had q-values less than 0.005 (see Fig 1 for the top

8 peptides).

Disease-state classification: Multivariate analysis

Creation of an optimized multivariate signature improved disease state differentiation compared

to individual peptides. Inclusion of all 320 peptide sequences, demographic data (age, gender,

education) and APO-E4 status produced an optimized 16-peptide signature. The size of our sig-

natures and contents were determined via a totally data-driven manner via the mathematical opti-

mization and algorithm described in the Methods section in detail. The signature components are

shown in Fig 2, coefficients are shown in S2 Table. Though this model’s ability to differentiate AD

from NL was relatively modest, with the area under its receiver-operating characteristic curve

(ROC AUC) of 0.89 +/- 0.01 (based on 20 iterations of 5 fold cross validation), this value was

higher than that seen of any individual marker (highest was APO-E with 0.73).

The performance of the 16-peptide multivariate signature was compared to all permuta-

tions of Aβ42, t-tau and p-tau (181) in the CSF, including their ratios, and published cut-points

[17]. Across all measures, the 16-peptide multivariate signature outperformed the other mark-

ers significantly (Table 4). In addition, including Aβ42, t-tau and p-tau (181) with the 16-pep-

tide signature did not result in a significant improvement in performance.

MCI-AD progression: Univariate analysis

We compared CSF profiles for MCI patients that converted to AD by the 36 month visit vs.

MCI patients that did not convert. Three markers had marginal q-values of 0.0508: hemoglo-

bin subunit alpha (HBA), neuronal pentraxin 2 (NPTX2) and poliovirus receptor-related

protein 1 (PVRL1, Table 5). Interestingly, the APO-E peptide (LGADMEDVR), which demon-

strated excellent differentiation between AD vs. NL, ranked 199/320 for predicting conversion

Table 1. Disease-state demographics.

AD (n = 66) MCI (n = 135) NL (n = 86)

Gender (n) M 37 91 44

F 29 44 42

Apo-E (n) E4 47 71 21

Non-E4 19 64 65

Age (years, mean +/- SD) 75.09 ± 7.52 74.79 ± 7.36 75.80 ± 5.55

Education (years, mean +/- SD) 15.11 ± 2.96 16 ± 3 15.64 ± 2.97

Baseline MMSE (mean +/- SD) 23.52 ± 1.85 26.91 ± 1.74 29.05 ± 1.02

https://doi.org/10.1371/journal.pone.0182098.t001

Table 2. Three-year MCI converter vs. nonconverter demographics.

MCI to AD converters (n = 64) MCI non-converters (n = 71)

Gender (n) M 40 51

F 24 20

Apo-E (n) E4 40 31

Non-E4 24 40

Age (years, mean +/- SD) 74.92 +/- 7.57 74.68 +/- 7.21

Education (years, mean +/- SD) 15.59 +/- 3.02 16.36 +/- 2.89

Baseline MMSE (mean +/- SD) 26.36 +/- 1.68 27.41 +/- 1.64

https://doi.org/10.1371/journal.pone.0182098.t002
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from MCI to AD. These data suggest that individual peptide markers do a poor job of predict-

ing MCI to AD progression on their own; hence the motivation to combine markers in a mul-

tivariate analysis to increase their utility (below).

MCI-AD progression: Multivariate analysis

The same 16-peptide multivariate signature that was developed for disease state classification

was employed on the MCI subjects, which represent a completely independent population, at

Table 3. Normal vs. Alzheimer Disease, univariate analysis. Shown are the analytes with a q-value < 0.05.

Symbol Sequence Fold Change ROC AUC Effect size p-value q-value

APOE LGADMEDVR 17.29 0.73 0.74 2.95E-09 9.45E-07

FABPH SLGVGFATR 1.30 0.72 0.81 1.57E-08 2.51E-06

FABPH SIVTLDGGK 1.35 0.73 0.86 2.49E-07 2.66E-05

PTPRN AEAPALFSR 0.87 0.66 -0.54 1.18E-05 0.0009

CA2D1 FVVTDGGITR 0.82 0.65 -0.55 3.14E-05 0.0019

VGF NSEPQDEGELFQGVDPR 0.80 0.67 -0.62 3.52E-05 0.0019

VGF AYQGVAAPFPK 0.83 0.64 -0.53 4.72E-05 0.0022

NPTXR LVEAFGGATK 0.78 0.69 -0.73 6.15E-05 0.0025

CCKN AHLGALLAR 0.82 0.65 -0.47 8.84E-05 0.0031

PTPRN SELEAQTGLQILQTGVGQR 0.88 0.63 -0.50 9.83E-05 0.0031

NPTXR ELDVLQGR 0.84 0.69 -0.70 1.34E-04 0.0039

PIMT VQLVVGDGR 0.86 0.66 -0.58 0.0003 0.0070

SCG1 NYLNYGEEGAPGK 0.82 0.67 -0.60 0.0003 0.0070

SCG2 VLEYLNQEK 0.91 0.63 -0.44 0.0004 0.0097

CH3L1 ILGQQVPYATK 1.09 0.62 0.48 0.0005 0.0100

VGF THLGEALAPLSK 0.88 0.63 -0.50 0.0005 0.0104

FAM3C GINVALANGK 0.86 0.63 -0.44 0.0006 0.0108

AMD IVQFSPSGK 0.85 0.66 -0.57 0.0006 0.0108

AMD IPVDEEAFVIDFKPR 0.90 0.62 -0.40 0.0007 0.0121

CA2D1 TASGVNQLVDIYEK 0.88 0.65 -0.46 0.0008 0.0121

CA2D1 IKPVFIEDANFGR 0.85 0.63 -0.44 0.0008 0.0121

CMGA SEALAVDGAGKPGAEEAQDPEGK 0.87 0.64 -0.43 0.0009 0.0137

CMGA YPGPQAEGDSEGLSQGLVDR 0.82 0.62 -0.38 0.0010 0.0145

NEGR1 SSIIFAGGDK 0.91 0.63 -0.51 0.0012 0.0155

CH3L1 SFTLASSETGVGAPISGPGIPGR 1.08 0.60 0.43 0.0013 0.0155

SCG1 HLEEPGETQNAFLNER 0.81 0.62 0.02 0.0013 0.0155

CMGA EDSLEAGLPLQVR 0.77 0.63 -0.25 0.0013 0.0155

NPTX2 LESLEHQLR 0.81 0.64 -0.52 0.0014 0.0156

NRCAM VFNTPEGVPSAPSSLK 0.89 0.64 -0.49 0.0016 0.0173

FAM3C SPFEQHIK 0.95 0.61 -0.44 0.0021 0.0225

PCSK1 GEAAGAVQELAR 0.87 0.63 -0.49 0.0024 0.0252

NPTX1 LENLEQYSR 0.89 0.63 -0.53 0.0026 0.0255

PCSK1 ALAHLLEAER 0.85 0.63 -0.51 0.0032 0.0308

SCG3 FQDDPDGLHQLDGTPLTAEDIVHK 0.84 0.63 -0.42 0.0035 0.0331

NPTX2 TESTLNALLQR 0.86 0.64 -0.55 0.0037 0.0341

TTHY TSESGELHGLTTEEEFVEGIYK 1.08 0.62 0.39 0.0051 0.0445

PDYN LSGSFLK 0.87 0.61 -0.35 0.0052 0.0445

PCSK1 NSDPALGLDDDPDAPAAQLAR 0.86 0.63 -0.44 0.0055 0.0464

NRCAM YIVSGTPTFVPYLIK 0.89 0.60 -0.32 0.0057 0.0468

https://doi.org/10.1371/journal.pone.0182098.t003
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baseline to predict their progression to AD over 36 months. As shown in Table 6, across all

measures, the 16-peptide signature outperformed all permutations of Aβ42, t-tau and p-tau

(181) and published cut-points [17]. Receiver-operator curves were constructed using all com-

binations of markers for Aβ42 and different forms of tau, for the 16-peptide signature shown

in Fig 2 and for a combination of the two for predicting the 36-month MCI-AD progression.

The largest area under the curve was observed for the 16-peptide signature (0.74), with a simi-

lar value seen for the combined 16-peptide + Aβ42/tau markers (0.73) and the lowest seen for

combinations of Aβ42/tau markers without the multivariate signature (0.64, p< 0.05, Fig 3).

The 16-peptide AD vs NL multivariate signature was then tested on the MCI subjects at

baseline to predict their progression to AD over the entire future time course up to the last fol-

low-up visit. The classifier built based on the 16-peptide AD vs NL signature was used to place

the MCI patients at baseline into two categories; those predicted as NL were considered as

“Signature Negative” and those predicted as AD were considered as “Signature Positive”. As

evident from Fig 4A, MCI subjects in the signature positive group at baseline had a much faster

median time to progression (MTP) to AD than those in the signature negative group (21.32

months versus 71.56 months, p = 3.3 x 10−7, hazard ratio = 3.38). While similar analysis using

combinations of Aβ42, t-tau and p-tau (181) to place the MCI subjects into signature positive

and negative groups at baseline reveal faster progression of the signature positive MCI subjects

to AD (MTP of 25.69 versus 48.89 months, p = 0.0065, hazard ratio = 1.92, Fig 4B), the 16-pep-

tide signature provided a more robust predictor of MTP (Table 7). The 16-peptide signature

Fig 1. Univariate analysis.Values of the 8 peptide markers with the lowest q-values in AD vs. NL disease state classification. Individual subjects are

shown as open circles. Boxes represent the first and third quartiles. The lines that extend out from the top and bottom ends of box indicate the range of the

range, minus the outliers. The points outside the lines are the low and high outliers.

https://doi.org/10.1371/journal.pone.0182098.g001
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also outperformed the published cut-points on Aβ42, t-tau and p-tau (181) [17], which had a

hazard ratio of 1.8. These data suggest that 16-peptide signature is a strong predictor of future

progression from MCI to AD over the subsequent years and outperforms the traditional CSF

biomarkers.

Discussion

In this study, the diagnostic and predictive accuracy of an array of 300+ peptides in the CSF

for the diagnosis of MCI and AD and for the prediction of progression from MCI to AD was

examined. It was found that several individual peptides, including many not classically associ-

ated with neuronal function, showed high statistical significance in distinguishing between AD

Fig 2. 16-peptide signature. Relative importance of the contribution of each peptide in the 16-peptide multivariate signature for differentiating AD vs. NL

that is subsequently used for predicting progression of MCI subjects to AD. Peptides are plotted in the order of their importance/contribution to this

multivariate signature in the logistic regression model. As the 16th peptide related to CATD appears to provide very little incremental value (noted in red), the

data-driven process that led to its inclusion in the signature suggested an overall benefit of retaining it in the signature. The coefficients for each of these

markers is given in S2 Table.

https://doi.org/10.1371/journal.pone.0182098.g002

Table 4. Performance of multivariate model to differentiate disease state. The top row corresponds to all permutations of Ab, tTau and pTau, and the

bottom row refers to the 16-peptide signature shown in Fig 2.

Accuracy Sensitivity Specificity PPV NPV

Aβ1–42, tTau, pTau signature 0.78 +/- 0.01 0.80 +/- 0.02 0.75 +/- 0.02 0.71 +/- 0.01 0.84 +/- 0.01

16-peptide signature 0.85 +/- 0.02 0.86 +/- 0.02 0.84 +/- 0.03 0.80 +/- 0.03 0.89 +/- 0.01

https://doi.org/10.1371/journal.pone.0182098.t004
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and NL. A 16-peptide multivariate signature based on these peptides was identified with an

overall classification accuracy of 85%, with improved accuracy, sensitivity, specificity and posi-

tive and negative predictive values compared to more traditional CSF markers. More notably,

when this same 16-peptide signature was tested on an independent group of 135 MCI subjects,

it outperformed the traditional Aβ/tau markers for predicting the future progression from

MCI to AD; a positive result on this 16-peptide multivariate signature at baseline resulted in a

3.38-fold faster progression to AD. Though some of these peptides have been described previ-

ously as individual biomarkers (see below), the current data suggest their combination outper-

forms previous CSF markers and point to the possibility that other novel markers may have a

previously unrecognized role in diagnostic testing as well as in understanding the pathophysi-

ology of AD.

Review of specific analytes identified

Over the past several years, proteomic approaches have identified an alphabet soup of potential

markers that may be able to permit early diagnosis of AD or predict conversion from MCI to

AD [24–26,41–45]. Many of the potential markers identified by these studies have known or

suspected roles in either AD or in pathological processes thought to be disrupted in AD. For

example, as expected, one of the APOE peptides examined (LGADMEDVR), which is

Table 5. MCI to AD converters vs. non-converters, univariate analysis, lowest 20 q-values.

Symbol Sequence Fold Change ROC AUC Effect size p-value q-value

HBA FLASVSTVLTSK 1.66 0.63 0.47 0.0006 0.19

NPTX2 LESLEHQLR 0.80 0.65 -0.52 0.0013 0.19

HBA VGAHAGEYGAEALER 2.68 0.64 0.49 0.0017 0.19

HBB SAVTALWGK 2.23 0.63 0.44 0.0046 0.28

HBB VNVDEVGGEALGR 2.11 0.63 0.46 0.0049 0.28

PRDX1 DISLSDYK 1.12 0.61 0.36 0.0061 0.28

NPTX2 TESTLNALLQR 0.71 0.63 -0.47 0.0070 0.28

NRCAM SLPSEASEQYLTK 0.90 0.59 -0.34 0.0071 0.28

HBA TYFPHFDLSHGSAQVK 1.46 0.61 0.44 0.0128 0.37

CO3 IHWESASLLR 0.55 0.64 -0.41 0.0133 0.37

CFAB VSEADSSNADWVTK 0.88 0.63 -0.45 0.0137 0.37

HBB EFTPPVQAAYQK 2.18 0.61 0.52 0.0138 0.37

PVRL1 ITQVTWQK 0.92 0.63 -0.45 0.0164 0.40

CFAB YGLVTYATYPK 0.84 0.60 -0.36 0.0222 0.42

CO2 HAIILLTDGK 0.92 0.60 -0.37 0.0227 0.42

NPTXR ELDVLQGR 0.85 0.61 -0.39 0.0245 0.42

CAH1 YSSLAEAASK 1.35 0.59 0.31 0.0275 0.42

C1QB VPGLYYFTYHASSR 0.92 0.59 -0.26 0.0284 0.42

TTHY VEIDTK 1.10 0.59 0.24 0.0287 0.42

PRDX6 LSILYPATTGR 1.29 0.59 0.23 0.0287 0.42

https://doi.org/10.1371/journal.pone.0182098.t005

Table 6. Performance of multivariate model to differentiate MCI to AD converters vs. non-converters. The top row corresponds to all permutations of

Ab, tTau and pTau, and the bottom row refers to the 16-peptide signature shown in Fig 2.

Accuracy Sensitivity Specificity PPV NPV

Aβ1–42, tTau, pTau signature 0.62 0.78 0.49 0.58 0.71

16-peptide signature 0.70 0.78 0.63 0.65 0.76

https://doi.org/10.1371/journal.pone.0182098.t006

A novel CSF proteomic biomarker for the diagnosis and prediction of progression of Alzheimer’s Disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0182098 August 3, 2017 10 / 18

https://doi.org/10.1371/journal.pone.0182098.t005
https://doi.org/10.1371/journal.pone.0182098.t006
https://doi.org/10.1371/journal.pone.0182098


specifically expressed in APOE4+ individuals [39,40], showed different distributions between

AD and NL subjects (Table 3). This finding is not surprising given APOE4’s known association

with AD [38].

Other peptides identified in this study are less classically associated with AD. For example,

we observed that CSF FABPH levels were elevated in AD relative to controls and this marker

has previously been identified by several studies as being associated with AD [25,46–50].

FABPH is a small cytoplasmic protein involved in lipid metabolism and was initially identified

as a potential biomarker for cardiac injury [51] but also present in neurons [52]. It is not clear

if the presence of FABPH in the CSF is a marker of neuronal dysfunction, or simply a marker

of neuronal destruction, since elevations of serum and/or CSF FABPH have been seen in

Creutzfeldt–Jakob disease, traumatic brain injury, ischemic stroke and subarachnoid hemor-

rhage [53–57]. These findings may imply that FABPH is released from neurons during their

destruction, or alternatively that high CSF FABPH may predispose neurons to be vulnerable to

oxidative stress, since overexpression of FABPH sensitizes dopaminergic neurons to the toxic

effects of metabolic stressors such as 1-methyl-4-phenylpyridine, (MPP), while low levels of

FABPH are protective [58]. For these reasons, FABPH has been proposed by others to serve as

a general biomarker for synaptic destruction [57], analogous to creatine kinase or troponin for

myocyte damage.

Fig 3. Receiver-operator curves. Receiver-operator curves comparing the 16-peptide multivariate signature

(red dotted line) to combinations of Aβ42, tau and p-tau 181 (black line) as well as the 16-peptide signature

+ combinations of Aβ42, tau and p-tau 181 (blue dashed line) for the prediction of 36-month conversion from

MCI to AD.

https://doi.org/10.1371/journal.pone.0182098.g003
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We also identified NPTXR as being associated with AD, with CSF levels being lower in AD

compared to controls and higher in MCI-AD converters. These data, combined with previous

work demonstrating that NPTXR levels may be slightly higher in MCI subjects than controls,

but drop rapidly (by ~10%/year) in AD subjects, suggest that NPTXR is a dynamic biomarker

[26]. The current data are also consistent with work in presymptomatic subjects carrying

PSEN1 or the APP genetic mutations, who show elevated levels of CSF NPTXR [45]. The tran-

sient increases, then prominent drops, in CSF NPTXR levels suggest a complex relationship

between NPTXR levels and disease state, and are reminiscent of what is seen with other AD

biomarkers. For example, we previously observed pseudonormalization of several plasma bio-

markers that appeared to have a transition state in MCI patients that differed from controls,

then returned to baseline in AD [14]. Analogously, hippocampal blood-oxygen level depen-

dent signals increase in MCI subjects compared to NL, but then decrease in AD subjects [59].

The complex relationship between NPTXR and disease state is evidenced by some of the con-

flicting data in the literature. At least two other studies have found decreases in CSF NPTXR in

AD [23,26] while one documented higher levels of NPTXR in the CSF of patients with MCI

Fig 4. Kaplan-Meier curves. A) Kaplan-Meier curves over the entire time course until the last follow-up visit that show the relative rates of future progression

to AD for the MCI subjects identified as signature positive or negative at baseline by the 16-peptide multivariate signature. B) Similar curves, but for subjects

that were identified as signature positive or negative by the Aβ/t-Tau/p-Tau biomarkers. MTP = mean time to progression.

https://doi.org/10.1371/journal.pone.0182098.g004

Table 7. Performance of AD vs. NL multivariate signatures to differentiate the Time to Progression of MCI subjects to AD.

Median Time to

MCI-AD Progression

Hazard Ratio p-value

Signature Negative Signature Positive

Aβ1–42, tTau, pTau signature 48.89 25.69 1.92 0.0065

16-peptide signature 71.56 21.32 3.38 3.3 x 10−7

https://doi.org/10.1371/journal.pone.0182098.t007
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and AD [60]. The severity of cognitive impairment of the AD patients was not given in the lat-

ter study, and it is possible that the AD patients in their study were too early in their course to

show a drop in NPTXR levels. Alternatively, the method of measurement (Western blot) dif-

fers compared to the current study and may account for the discrepancy.

Additional markers were revealed in both the univariate and multivariate analyses. For

example, neurosecretory protein VGF (VGF), a nerve growth factor-responsive molecule

which is likely a precursor to several bioactive peptides, has been localized to the human and

rat cerebral cortex, and in the current study was found to be lower in the CSF of AD patients

(Fig 1) and ranked fourth in importance in multivariate signature (Fig 2). Several previous

reports have found depressed levels of VGF in the brain [61] and CSF [62–66] of AD patients

relative to controls, similar to the current findings. Additionally, CSF VGF levels are also

diminished in acute pediatric encephalopathy [67] and frontotemporal dementia [68], suggest-

ing that diminished CSF VGF may be a general marker of severe neuronal dysfunction. An

additional novel finding here is the potential role of receptor-type tyrosine-protein phospha-

tase-like N (PTPRN) in AD, as revealed by both the univariate and multivariate analyses.

PTPRN is a transmembrane protein implicated in multiple functions, including metabolism,

growth and differentiation and is expressed in neurons [69]. Previous work has indicated that

single nucleotide polymorphisms for the PTPRN gene were differentially related to CSF p-tau

levels in an MCI-AD converter group compared to an MCI nonconverter group [69]. To our

knowledge, this is the first report that PTPRN levels are depressed in the CSF of AD patients

and, given PTPRN’s role in metabolism [70], may open vistas to further examine metabolic

theories of the development of AD.

The current data also suggest a potential role for hemoglobin subunits in the prediction of

conversion from MCI to AD. This could point to blood contamination, but in a recent analysis

of this dataset, hemoglobin subunit levels were not found to correlate with CSF erythrocyte

counts [32]. It is possible that these peptides represent blood-brain barrier breakdown, which

has been documented to occur in AD [71], suggesting that this breakdown may be an early

marker for MCI to AD conversion.

Finally, a recent study also examined the current dataset and proposed a multivariate signa-

ture to predict MCI to AD conversion [32]. The 29-peptide signature in the Spellman et al.

study contained peptides from several proteins found in the signature from the current study

(ALDOA, FABPH, NPTXR, PRDX1, VGF), while several peptides did not overlap. It is impor-

tant to note that the signature observed in the Spellman et al. study was built and then tested

on the same MCI-to-AD conversion dataset. In contrast, in the current study the signature

was built on one dataset (AD vs. NL) and used to predict MCI-to-AD conversion on a com-

pletely independent group of subjects, increasing the external validity of the current approach.

This methodological difference may explain these differences in peptide signatures.

Conclusion

This study suggests that a novel signature of CSF peptides outperforms traditional CSF mark-

ers for the differentiation of AD from NL and prediction of future MCI to AD conversion.

Note that similar accuracy in predicting AD conversion was seen in a similar analysis using

multiple markers (APO-E genotype, neuropsychological testing and multiple imaging modali-

ties [72]). However, it may be impractical to obtain all of these markers from individual

patients. Therefore, one potential advantage of the current approach is that a single CSF study

may be sufficient for prediction of progression. The current study also extends recent findings

that FABPH and NPTXR may serve as CSF markers for the diagnosis of AD and prediction of

disease progression. In addition, this work also highlights potentially novel biochemical
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pathways affected in AD and may help open new avenues of investigation to the underlying

mechanisms of AD pathogenesis.
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43. Oláh Z, Kálmán J, Tóth ME, Zvara Á, Sántha M, Ivitz E, et al. (2014) Proteomic Analysis of Cerebrospi-

nal Fluid in Alzheimer’s Disease: Wanted Dead or Alive. Journal of Alzheimer’s Disease.

44. Maarouf CL, Andacht TM, Kokjohn TA, Castaño EM, Sue LI, Beach TG, Roher AE (2009) Proteomic

analysis of Alzheimer’s disease cerebrospinal fluid from neuropathologically diagnosed subjects. Cur-

rent Alzheimer research 6: 399. PMID: 19689240

45. Ringman JM, Schulman H, Becker C, Jones T, Bai Y, Immermann F, et al. (2012) Proteomic changes in

cerebrospinal fluid of presymptomatic and affected persons carrying familial Alzheimer disease muta-

tions. Archives of neurology 69: 96–04. https://doi.org/10.1001/archneurol.2011.642 PMID: 22232349
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