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Abstract

In spite of decades of theorizing, the origins of Zipf’s law remain elusive. I propose that a Zip-

fian distribution straightforwardly follows from the interaction of syntax (word classes differ-

ing in class size) and semantics (words having to be sufficiently specific to be distinctive and

sufficiently general to be reusable). These factors are independently motivated and well-

established ingredients of a natural-language system. Using a computational model, it is

shown that neither of these ingredients suffices to produce a Zipfian distribution on its own

and that the results deviate from the Zipfian ideal only in the same way as natural language

itself does.

Introduction

George Kingsley Zipf (1902-1950) famously observed that the frequency of occurrence of

words is neither uniformly nor normally distributed, but inversely related to their frequency

rank instead [1]. That is, using a text dependent parameter C, the frequency of word i corre-

sponds to the division of C by the rank position of i:

frequencyi ¼ C=ranki ð1Þ

The corresponding Zipfian distribution is given on the A panel of Fig 1. It is more com-

monly presented in double-log space (panel B) in which it forms the straight line that is char-

acteristic for power laws [2]. Zipf’s law is a special type of power law, however, namely one in

which the slope of this line in a plot with equal axes is –45˚; a defining, but often overlooked

characteristic. On panel C, a natural-language distribution is shown for comparison (viz. Mel-

ville’s Moby Dick). As can be seen, natural language seems to behave according to Zipf’s law

indeed.

Zipf’s empirical observation of the relation between the frequency of occurrence of a word

and its frequency rank probably is “the most well-known statement of quantitative linguistics”

[3]. First observed in linguistics, the distribution was soon recognized in other disciplines too.

In fact, Zipfian distributions are claimed to be “about as prevalent in social sciences as Gauss-

ian distributions are in the natural sciences [. . .], which implies that Zipf’s Law captures a very

fundamental regularity in the universe surrounding human beings” [4]. As could be expected

then, there is a vast literature on Zipfian distributions. But as several reviews conclude, in spite

of the amount of work on Zipf’s law, no satisfactory account has been given and its origins still

remain controversial (cf. [5–7]). For example, Piantadosi notes that “essentially all of the work
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in language research has focused solely on deriving the law itself in principle; very little work

has attempted to assess the underlying assumptions of the hypothesized explanation” [7].

What is crucially needed, Piantadosi argues, is providing evidence for the cognitive validity

of the proposal. This paper directly responds to this call to action, proposing a linguistically

informed explanation in which the distribution follows from the interaction between syntax

and semantics. After briefly explaining the idea, I will show how it qualifies both descriptively

and in terms of the validity of its ingredients.

Materials and methods

Zipf’s law follows from the interaction between syntax and semantics, and neither of them is

sufficient. As for syntax, language makes use of different word classes to build sentences.

Whereas these word classes, or parts of speech (POS), are used with a comparable overall fre-

quency, they differ hugely in class size. For example, there are only three articles in English

(the, a, an) but probably more than 10,000 nouns. Therefore, an article will be more frequently

used than the average noun. Within word classes, some words apply more often than others

because of their meaning. As thing is a more general noun than submarine (the set of objects

the former can refer to in fact includes the referent set of the latter), it can be expected to be

used more often. Words shouldn’t be too general, however, as this would lead to ambiguity. In

order to become frequent (within a word class), a word should be specific enough to single out

its referent in context and general enough to be applied to different referents.

For both of these observations there is independent and well-established evidence. In the

next sections, it will first be shown how syntax and semantics can be modeled and that neither

of them is sufficient to explain Zipf’s law on its own. Next, I will show their interaction does pro-

duce a near-Zipfian distribution, only deviating from the ideal in the way natural language does.

Syntax

With the present availability of large language corpora that are annotated for POS, it is easy to

show that word classes vary in size by orders of magnitude. For present purposes, it is irrele-

vant which word classes are used how frequently exactly; the important point is that all natural

languages make use of different word classes, and that the number of items in these classes is

extremely different indeed. Table 1 gives an overview of the major POS classes that are recog-

nized in the Corpus of Spoken Dutch (CGN, 8.6M words; [8]), the Brown corpus (1.1M words;

Fig 1. Zipf’s law. A: Predicted frequency by rank. B: Predicted frequency by rank in double-log space. C: Frequency development in Melville’s Moby

Dick.

https://doi.org/10.1371/journal.pone.0181987.g001
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[9]), and the Hungarian National Corpus (HNC, 187M words of which only the Hungarian-

press subcorpus is used; [10]; all data used in this paper are open-access available through

third parties; cf. Section S2 File for repositories.) As can be seen, in each language the differ-

ence in overall class frequency is negligible in comparison with the difference in class size.

If word class was the only factor at play, a Zipfian distribution would follow from sampling

a number of items from each class that is proportional to the overall class frequency. For exam-

ple for Dutch, to simulate a corpus of 100 words, we should randomly draw (with replacement)

six articles from a set of five, 18 pronouns from a set of 86, etc. (cf. Table 1). Fig 2 shows the

results of this procedure. As can be seen, the different parts of speech, represented by the num-

bers in the plot (1 is for articles, 2 for pronouns, the rest is unintelligible because of overlap),

occupy frequency regions that seem to be of the right order of magnitude. But unlike in natural

language, the different frequency bands do not line up. Also, the word classes form distinct

groups, whereas in natural language, classes overlap (e.g. the most frequent N outranks the

least frequent P by far). In sum, distinguishing between word classes does not suffice to explain

Zipf’s law.

Semantics

As pointed out above, in order to become frequent, a word should be specific enough to single

out its referent in context and general enough to be applied to different referents [11]. A simple

way of approximating the degree of specification is by determining the depth of embedding of

a word in a word taxonomy such as WordNet [12], assuming that a word inherits all of the

specifications of its parent including those that set it apart from its sisters. (Note that this is

only used as an initial proxy to show how meaning specificity matters; meaning will be opera-

tionalized differently in the remainder.) In WordNet, meanings are organized in synonym

sets, groups of words with approximately the same meaning. Various lexical relations are

determined between these sets. For our purposes, the most important relation is the super–
subordinate or the is-a relation. For example, we find 17 subsequent superordinate sets for

submarine, starting with submersible, submersible warship, and only two for thing, viz.

physical entity � entity, the top node of the noun taxonomy. If we now look up the total fre-

quency in the Brown corpus for all nouns in the two meaning sets, we find, not unexpectedly,

that the latter is more frequent than the former (with 484 against 178 attestations, in which all

Table 1. Overall frequency per 100 words and size of main POS classes in Dutch (CGN), English (Brown), and Hungarian (HNC). Sorted by average

expected word frequency. For Hungarian, only the Hungarian-press subcorpus is used. POS abbreviations: ART article, PRO pronoun, CON connective, P

adposition, INT interjection, ADV adverbial, NUM numeral, V verb, A adjective, N noun. [8–10].

Dutch (8.6M) English (1.1M) Hungarian (71M)

pos freq members pos freq members pos freq members

ART 6.02 5 ART 1.43 6 DET 12.59 2

PRO 17.79 86 CON 2.17 66 CON 7.14 71

CON 6.66 33 DET 2.04 72 PRO 4.84 216

P 9.09 72 P 4.16 164 P 1.82 289

INT 9.01 774 PRO 2.77 146 NUM 2.83 3,937

ADV 11.99 1,121 ADV 7.50 2,225 Adv 7.67 11,896

NUM 1.40 466 V 23.72 12,130 V 10.98 34,679

V 17.48 24,371 A 11.45 8,435 A 11.14 58,765

A 6.45 15,681 NUM 2.36 1,747 N 29.43 193,252

N 13.09 91,762 N 37.60 34,017

https://doi.org/10.1371/journal.pone.0181987.t001
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178 hits for submarine in fact were due to the synonym sub, which is homonymous and whose

frequency is due to its other meaning substitute). (Note that this procedure does not distin-

guish within homonymic or polysemic sets, which is not a problem, as the simple word counts

it tries to account for, such as the one in Fig 1, also ignore this.) We can check whether the

intuition about the relation between meaning specificity/embedding depth and frequency of

usage is right in general by doing the same for all nouns in WordNet. The top panel in Fig 3

shows the distribution of two different “specificity” classes over the overall frequency distribu-

tion of nouns in the Brown corpus, viz. nouns that have an embedding depth between 3 and 9

(medium; red circles), and nouns that are either on top or towards the lower ends of the taxon-

omy (high/low; blue pluses). Words that were not attested in the corpus were removed. As

can be seen, the most frequently used concepts indeed are modestly specified with a depth of

embedding of 3–9; that is, specific enough to be distinctive while general enough to be reus-

able. On the bottom panel, the distributions of the log rank per specificity class is shown.

Words with modest specification have a lower rank (or higher frequency) on average and span

the entire range; words with a high/low degree of specification have higher ranks only.

Instead of using embedding as an approximation, the degree of meaning specification of

words can also be simulated, by generating an abstract lexicon in which words are specified for

a number of meaning dimensions. The first dimension could be taken to represent a property

that all concrete objects do and abstract objects do not have (i.e., it is activated in the vector

Fig 2. Attempt to generate a Zipfian distribution with syntax only. To generate these results, the class

frequencies and class sizes reported for Dutch in Table 1 are used. Numbers correspond to word classes

when ordered by expected frequency.

https://doi.org/10.1371/journal.pone.0181987.g002
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representations of concrete objects only), the second dimension represents something ani-

mates objects do and inanimates do not have, etc. (cf. [13–16] for applications). Note that

qualitatively, this is very different from the vector-semantics approach used in modern compu-

tational linguistics (e.g. [17, 18]), in which vectors represent behavior in texts rather than the

underlying semantics that causes this behavior. Rather, the vectors used here should be under-

stood as representations of activation in a neural-network model of the brain [19, 20].

Fig 3. Frequency distributions of different specifity classes in the Brown corpus. Top panel:

distribution over overall distribution of nouns. Degree of meaning specification is approximated by

automatically determining the depth of embedding in the WordNet noun taxonomy. Words with lowest ranks

are all moderately specified with an embedding of 3–9 (red circles). Bottom panel: boxplots of frequency ranks

per specificity class.

https://doi.org/10.1371/journal.pone.0181987.g003
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Using this implementation, the usage of words is modeled by randomly generating contexts

with a target object and a set of distractors that are fully specified for all meaning dimensions.

Next, a word from the lexicon is selected that suffices to single out the target object. For exam-

ple, we may have two words in our lexicon, the first of which, a, is specified for all three mean-

ing dimensions, with values 0, 0, and 1 respectively, whereas the second, b, is specified for

dimensions D1 and D3 only, with values 0 and 1 (cf. Table 2). If the target object is a 0 0 1,

both words match in principle. In contexts with distractor objects that all happen to differ

from the target on either D1 or D3 (the first four distractors in Table 2), both words a and b
can be used; but whenever there is a distractor object that is similar to the target on both D1

and D3 (the fifth distractor), word a is necessary to uniquely refer to the target.

In a simulation whose results are shown in Fig 4, a lexicon of 1,000 words with ten meaning

dimensions is used, from which words are selected for 10,000 contexts with randomly gener-

ated targets and 5 randomly generated distractors. As with the natural-language example in

the previous figure, words of moderate specification are used most frequently.

Given the match between the results from the combined WordNet/Brown study and the

computer simulation, we can go one step further and develop a mathematical model of the

dependence of usage frequency on degree of specification. Assuming binary meaning dimen-

sions, the probability pa that a word is applicable in principle is .5nDim, with nDim being the

number of meaning dimensions for which that word is specified [21]. As this holds for both

target and distractor objects alike, the probability that a word can actually be used in context is

dependent on the number of distractor objects n: The probability pd that there is no distractor

object to which a word could apply is (1 − pa)n, hence the probability pu that a word will be

used is pa � pd. We can now randomly generate words, assign them a degree of specification

(without specifying the meaning dimensions), and calculate the expected usage frequency

given a given number of distractor objects. The results are shown in Fig 5. The close similarity

with the previous figure strongly suggest we have successfully modeled the interaction between

meaning specification and usage frequency.

Importantly, as the results in Fig 3 already showed, semantics alone does not suffice to yield

a Zipfian distribution: The frequency distribution within nouns is not the straight line through

double-log space Zipf’s law prescribes.

Combining syntax and semantics

In Fig 6, the results are shown when combining the two ingredients discussed above, using 10

word classes with 5, 30, 50, 100, 500, 500, 1,000, 15,000, 25,000, and 100,000 members, of equal

Table 2. Toy example of abstract lexicon and context. Words are specified for three dimensions or less,

referential objects are always fully specified. To distinguish the target from the first four distractors, words a

and b can both be used, in the presence of the fifth distractor, however, only a suffices.

word D1 D2 D3

a 0 0 1

b 0 – 1

. . .

target 0 0 1

distractors 1 0 1

1 0 0

1 1 1

0 1 0

0 1 1

https://doi.org/10.1371/journal.pone.0181987.t002
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frequency. The maximum number of dimensions an item is specified for is around 20 (given

thirty optional meaning dimensions), and the number of distractors to calculate the usage

probability is 5. As can be seen, the frequency development approximately follows Zipf’s law.

Equally importantly, the frequency ranges of the different word classes overlap (although this

is only visible for the lower ranks), just like in natural language.

Fig 4. Frequency distribution of different specificity classes in a computer simulation. The lexicon

consists of 1,000 words with ten optional meaning dimensions, from which words are selected for 10,000

contexts with randomly generated targets and 5 randomly generated distractors. Words with lowest ranks are

all moderately specified (2–4 dimensions; red circles). Bottom panel: boxplots of frequency ranks per

specificity class.

https://doi.org/10.1371/journal.pone.0181987.g004
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It has often been observed that natural language does not always behave neatly according to

Zipf’s law (unlike Melville’s Moby Dick shown in Fig 1). Fig 7 illustrates that the frequency dis-

tributions in the CGN and Brown corpus, represented by the grey circles, deviate considerably

from Zipf’s ideal. Interestingly, the model proposed here deviates from it in exactly the same

way, but only if we use the corresponding class sizes and frequencies shown in Table 1 (blue

Fig 5. Distribution of probability of usage of different specificity classes in a computational model.

The lexicon consists of 1,000 words with ten optional meaning dimensions. Probability of usage depends on

degree of specification and number of distractors assumed (here 5). As in the previous figures, words with

lowest ranks are all moderately specified (3–6 dimensions; red circles). Bottom panel: boxplots of frequency

ranks per specificity class.

https://doi.org/10.1371/journal.pone.0181987.g005
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triangles). If we mix the numbers, using the CGN class parameters to simulate a corpus of the

Brown size and the other way around, there is no match (red pluses).

Discussion

In this paper I have shown how a Zipfian distribution can be explained by the interaction

of syntax and semantics, thus providing a linguistically informed explanation of Zipf’s law.

Words are from different parts-of-speech classes, which differ in size by orders or magnitude.

Within classes, words differ in meaning by being differentially specified for a number of mean-

ing dimensions. If a word is specified for a few dimensions only, it becomes ambiguous; if it is

overly specific, it will hardly ever be applicable. It was shown that neither of these ingredients

suffices to produce Zipf’s law, but together they can.

Where the results differ from the Zipfian ideal, they do so in the way natural language does.

Thus, the model does not “overfit” Zipf’s law but really seems to capture the underlying lan-

guage mechanisms that drive it. This is all the more important as there are many ways of deriv-

ing a Zipfian distribution [22], whereas the real interest is of course in the natural-language

phenomenon.

According to Piantadosi, a “[t]rue psychological account” of Zipf’s law should be based on

independently testable phenomena and mechanisms that fit with known psychological pro-

cesses of word production and language use [7]. One should thus not only derive the law but

Fig 6. Generating Zipf’s law by combining syntax and semantics. 10 word classes of equal frequency are

used with 5, 30, 50, 100, 500, 500, 1,000, 15,000, 25,000, and 100,000 members; items can be specified for

maximally 30 meaning dimensions (mean 8.3, sd 2.0), and the number of distractors is 5.

https://doi.org/10.1371/journal.pone.0181987.g006
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motivate the underlying assumptions. By having provided independent evidence for the ingre-

dients (the most frequently used words were shown to be moderately specified and POS differ-

ences were established for three different languages), the ecological validity of the proposed

mechanisms should be clear. It is equally important to show that this does not hold for some of

the competing proposals. In S2 Text, a number of models are discussed that more or less span

the range from explaining Zipf’s law as a statistical quirk [23–25] to understanding it as the

inherent result of a communication system [6, 21, 26–29]. For a more elaborate review, I refer

the interested reader to the review by Piantadosi, who (indeed) concludes that many proposals

focus on the simple law rather than the less simple data and do not account for psychological

processes of language production [7]. I hope to have shown that neither of these concern

applies to my proposal.

Two puzzles still remain to be explained: Why a slope of –1 in double log space and what

about Zipf’s law in other, non-linguistic domains, where it is often reported too? Starting with

the latter, such distributions in fact seem to “suffer from a lack of sufficient statistics in the

region corresponding to the high values of the rank variable”, according to Montemurro [3].

He claims that Zipf’s law only applies to the first subset of the measurements; for the remain-

der of the data, a new power regime holds (the parameters of which depend on corpus size).

Also Newman observes that “[f]ew real-world distributions follow [the same] power law over

their entire range, and in particular not for smaller values of the variable being measured”

[22]. Crucially, this means that Zipf’s law need not be a “universal law for complex systems”

Fig 7. Frequency distribution in CGN (left) and Brown corpus (right). Blue triangles show the results of the model simulation using the

corresponding parameters from Table 1; red plusses show the results when mixing the CGN and Brown parameters.

https://doi.org/10.1371/journal.pone.0181987.g007
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[30] but that a language-specific explanation may be appropriate indeed. As for the first ques-

tion, the distinctive slope can be explained as an accidental result of the relative sizes of word

classes: It follows logically from open classes being magnitudes of orders larger in size than

closed classes (cf. S1 Text for formal proof).

Conclusion

Zipf’s law can be explained through the interaction between syntax and semantics. By using

these ingredients, the ecological validity of the model is warranted. Moreover, the model pre-

dictions deviate from the Zipfian ideal in exactly the same way as natural language does.
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