
RESEARCH ARTICLE

A computational modelling framework to

quantify the effects of passaging cell lines

Wang Jin, Catherine J. Penington, Scott W. McCue, Matthew J. Simpson*

School of Mathematical Sciences, Queensland University of Technology (QUT) Brisbane, Queensland 4000,

Australia

* matthew.simpson@qut.edu.au

Abstract

In vitro cell culture is routinely used to grow and supply a sufficiently large number of cells for

various types of cell biology experiments. Previous experimental studies report that cell char-

acteristics evolve as the passage number increases, and various cell lines can behave differ-

ently at high passage numbers. To provide insight into the putative mechanisms that might

give rise to these differences, we perform in silico experiments using a random walk model to

mimic the in vitro cell culture process. Our results show that it is possible for the average pro-

liferation rate to either increase or decrease as the passaging process takes place, and this is

due to a competition between the initial heterogeneity and the degree to which passaging

damages the cells. We also simulate a suite of scratch assays with cells from near–homoge-

neous and heterogeneous cell lines, at both high and low passage numbers. Although it is

common in the literature to report experimental results without disclosing the passage num-

ber, our results show that we obtain significantly different closure rates when performing in

silico scratch assays using cells with different passage numbers. Therefore, we suggest that

the passage number should always be reported to ensure that the experiment is as reproduc-

ible as possible. Furthermore, our modelling also suggests some avenues for further experi-

mental examination that could be used to validate or refine our simulation results.

Introduction

In vitro cell culture is routinely used to grow and supply cells for various types of cell biology

experiments [1]. These experiments are used to study a wide range of biological phenomena

including drug design, cancer spreading and tissue repair [2–5]. According to the American

Type Culture Collection (ATCC) protocols, to grow cells in traditional two–dimensional (2D)

in vitro cell culture, cells propagated in a growth medium are initially seeded as a monolayer in

a cell culture flask [6], as shown in Fig 1a. Cells are seeded in a monolayer with a density typi-

cally varying from 10–20% of confluence [6]. Cells are then cultured in an incubator, in an

appropriate temperature and CO2 concentration, and grown until they reach a density of

80%–90% of confluence [6]. To continue growing the population, cells are lifted, often using

trypsin, and spilt into smaller proportions. The smaller subpopulations are transferred into

new cell culture flasks to re-grow [6]. This process is referred to as passaging, with passage
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number indicating the number of splits [6, 7]. Although passaging is a standard process in 2D

cell culture, the passage number of cells used in experiments is not always reported in experi-

mental protocols [8–13].

It is known that passaging can affect cells in a number of ways, and therefore has the poten-

tial to impact the reproducibility of in vitro experiments [12]. There are many ways in which

passaging can affect cells. For example, primary cells, which are directly isolated from living

tissues [14], undergo morphological changes and cumulative damage as the passage number

increases [15–22]. As a result, the cell morphology, migration rate and proliferation rate can

become increasingly varied, which is thought to increase the heterogeneity in cell lines [16, 17,

19, 21, 22]. Because a range of cell behaviours could depend on passage number, the passaging

process can be a source of variability that affects the reproducibility of various in vitro experi-

ments, such as 2D scratch assays [7, 12, 13].

Fig 1. Schematic illustration of the simulation domain. (a) Photograph of a 75 cm2 cell culture flask. (b) Schematic of the 10

cm × 7.5 cm simulation domain that represents the 75 cm2 flask. The orange squares in (a) and (b) indicate the 2 mm × 2 mm field of

view. (c) Snapshot of the field of view at 15% confluence. (d) Snapshot of the field of view at 85% confluence.

https://doi.org/10.1371/journal.pone.0181941.g001
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Seemingly contradictory observations have been reported about the effects of passaging cell

lines [16, 17, 21–23]. For example, Hayflick reports that for human diploid cell lines, cells at

high passage numbers demonstrate increased generation time, gradual cessation of mitotic

activities, and accumulation of cellular debris [17]. This observation of decreased cell prolifera-

tion rate is also supported by studies of other cell lines [16, 21, 22]. However, Lin and cowork-

ers show that the population of LNCaP cells at passage number 70 is over two times larger

than that at passage number 38 after five days [23]. It has also been stated that for some cell

lines, changes due to the passaging process occur at relatively low passage numbers, whereas

for other cell lines the changes occur at relatively high passage numbers [7]. Therefore, we are

motivated to undertake a mechanistic study to quantify how different variables relevant to the

passaging process might give rise to such seemingly contradictory observations and to explore

how these effects might impact the reproducibility of in vitro experiments.

Although problems associated with high passage numbers are widely acknowledged, the

mechanism of passage–induced changes is not well understood [7, 16, 17, 21–26]. For exam-

ple, standard experimental protocols suggest avoiding cells at high passage numbers, whereas

the definition of a ‘high passage number’ is rather vague [7, 25]. On the other hand, the mecha-

nism that causes the seemingly contradictory observations at high passage numbers still

remains unknown [16, 17, 21–23]. Computational models can be useful for exploring mecha-

nisms and trade-offs between various factors. Therefore, the problems with high passage num-

bers invoke us to apply a computational model to investigate putative mechanisms that could

lead to the seemingly contradictory changes. As far as we are aware, this is the first time that

problems with passaging of cell lines are investigated using a computational approach of this

kind.

In this work, we describe a mathematical model that can be used to study the passaging pro-

cess in 2D in vitro cell culture [27, 28]. A key feature of our model is that we allow individual

cells within the population to take on a range of characteristics, such as variable proliferation

rates, and therefore it is natural to focus on using a discrete model for this purpose [27, 29]. In

particular, we are interested in examining whether the apparently contradictory effects of pas-

saging reported in the literature can be recapitulated using a fairly straightforward discrete

model. After examining the trade-off between cell heterogeneity and passage–induced damage,

we then use the in silico model to examine how the passaging process might affect the repro-

ducibility of scratch assays [3, 30]. In this work we focus on the impact of passaging on the cell

proliferation rate, and apply a discrete model to explain how passaging can lead to either

increasing or decreasing proliferation rates, depending on the competing effects of natural

inheritance versus passaging–induced damage. In our model we impose three key assump-

tions: (i) the passaging process does not affect the cells’ ability to migrate; (ii) initially the pro-

liferation rate of each cell is assigned randomly from a normal distribution; and (iii) when

proliferating, daughter cells inherit the same proliferation rate as the mother cell. Our

approach is to focus on two prototype cell populations. The first is near–homogeneous in the

sense that the proliferation rate of the cells is close to constant throughout the population ini-

tially. The second has a distinctively heterogeneous distribution of proliferation rates. For each

prototype population, we systematically vary the amount of damage caused by passaging to

investigate the impact of the damage.

Discrete model

Model framework

We use a discrete random walk model to simulate the passaging process and we refer to indi-

vidual random walkers in the model as cells. All simulations are performed on a hexagonal
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lattice, with the lattice spacing Δ taken to be equal to the average cell diameter [27]. The model

includes crowding effects by ensuring that there is, at most, one cell per lattice site [31]. Each

lattice site, indexed (i, j) where i; j 2 Zþ, has position

ðx; yÞ ¼
ði � 1ÞD;

ffiffiffi
3
p
ðj � 1ÞD=2

� �
if j is even;

ði � 1=2ÞD;
ffiffiffi
3
p
ðj � 1ÞjD=2

� �
if j is odd;

8
<

:

such that 1� i� I and 1� j� J [27]. In any single realisation of the model, the occupancy of

site (i, j) is denoted Ci,j, with Ci,j = 1 if the site is occupied, and Ci,j = 0 if vacant.

If there are N(t) cells at time t, then during the next time step of duration τ, N(t) cells are

selected independently at random, one at a time with replacement, and given the opportunity

to move [27, 31]. The randomly selected cell attempts to move, with probability Pm, to one of

the six nearest neighbour sites, with the target site chosen randomly. Motility events are

aborted if a cell attempts to move to an occupied site. Once N(t) potential motility events are

attempted, another N(t) cells are selected independently, at random, one at a time with

replacement, and given the opportunity to proliferate with probability Pp. The location of the

daughter cell is chosen, at random, from one of the six nearest neighbour lattice sites [27, 31].

If the selected lattice site is occupied, the potential proliferation event is aborted. In contrast, if

the selected site is vacant, a new daughter cell is placed on that site. After the N(t) potential

proliferation events have been attempted, N(t + τ) is updated [27, 31].

The discrete models in this study are coded in C++, and the simulation code is supplied in

S1 Supporting Information.

Simulation domain

The domain is a rectangle of dimensions 10 cm by 7.5 cm, which we use to represent the

75 cm2 cell culture flask in Fig 1a. This corresponds to a simulation domain in which I = 4168

and J = 3610, with Δ = 24 μm [3]. Therefore, the maximum number of cells in a 100% conflu-

ent monolayer is approximately 15 million. To simplify our visualisation of the model output,

although we always perform simulations on the entire 10 cm by 7.5 cm simulation domain, we

visualise a smaller, 2 mm by 2 mm, subregion in the centre of the simulation domain, as

shown in Fig 1b. No flux boundary conditions along the boundaries of the simulation domain

are applied in all cases. For the remainder of this work, we visualise snapshots of the distribu-

tion of cells in the smaller field of view, such as the results in Fig 1c and 1d.

Initial condition

Simulations are initiated by randomly populating 15% of lattice sites [6]. At each passage num-

ber, the growth of cells in the culture is terminated when 85% confluence is reached. The migra-

tion probability Pm of each cell is held constant. Motivated by experimental data of the duration

of the mitotic phase for individual cells [32], each cell is initially assigned a random value of Pp,

drawn from a normal distribution N ðmp; sÞ to mimic the stochasticity in proliferation rate

among the initial population. When a proliferation event takes place, we invoke the simplest

mechanism by assuming that both daughter cells inherit the proliferation rate of the mother

cell. For all simulations we set Pm = 0.35, μp = 0.004, Δ = 24 μm and τ = 1/12 h so that we are

considering cell populations with a typical cell diameter, cell diffusivity (D� 600 μm2/h) and

average proliferation rate (λ� 0.05 /h) [27, 31]. We consider two prototype cell populations: (i)

a near–homogeneous cell population with a relatively small variance, σ = 1 × 10−4; and (ii) a het-

erogeneous cell population with a larger variance, σ = 1 × 10−3. We choose the values of the

standard deviation σ, so that the proliferation rate distribution is within a biologically
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reasonable range, and the degree of heterogeneity in the near–homogeneous and heterogeneous

cell lines are distinguishable.

Passaging

In our simulations passaging takes place immediately after the population grows to 85% con-

fluence [6]. To split the populations we randomly select a number of cells that is equivalent to

cover 15% of lattice sites. These cells are randomly placed on an empty simulation domain to

mimic the splitting of cells in the passaging process. Note that Pm is constant for all cells

whereas we allow Pp to vary amongst the population and we also assume that the process of

passaging the cells involves some damage [21]. Considering that the passaging process involves

a combination of chemical (e.g. the usage of trypsin) and mechanical disturbances known to

disrupt normal cell behavior, it is reasonable to incorporate some kind of damage mechanism

into the passage simulations [6, 15–17, 20–22]. However, the exact cause and the form of the

passage–induced damage have not been established. Therefore any form of the passage–

induced damage which illustrates certain degrees of stochasticity could be a reasonable choice.

In this study, we consider two different degrees of passage–induced damage:

• Small amount of damage: Pp of each cell is decreased by �, where

� � N ð2� 10� 5; 2� 10� 5Þ; and

• Large amount of damage: Pp of each cell is decreased by �, where

� � N ð1� 10� 4; 1� 10� 4Þ.

Each time the population of cells is split, the passage number increases by one. As previous

studies indicate that cell proliferation increases at high passage numbers [23], it is possible to

assume that the passage–induced damage could lead to the increase in proliferation rate. How-

ever, since the aim of this study is to examine the trade-offs between the initial heterogeneity

in cell proliferation and the passage–induced damage, in both scenarios we only consider

non–negative passage–induced damage by changing any negative damage to zero. This

assumption allows us to limit the factors that can increase cell proliferation.

Results and discussion

Passaging cell lines without passage–induced damage

We first investigate how the initial degree of heterogeneity in proliferation rate changes as the

passage number increases. In this first set of results we do not consider any form of passage–

induced damage. We consider a suite of simulations from passage number 0 to 30 and present

results for both the near–homogeneous cell line and the heterogeneous cell line. Snapshots of

the field of view at passage number 0 and passage number 30, for both prototype cell popula-

tions, are shown in Figs 2a–2d and 3a–3d, respectively. In each snapshot, different colours of

cells represent different ranges of the proliferation rate, with red indicating the fastest–prolifer-

ating cells and blue showing the slowest–proliferating cells. At the end of passage number 0 we

observe a larger variation in cell proliferation rate in the heterogeneous cell line than the near–

homogeneous cell line, as we might expect. At the end of passage number 30 we see that there

is a dramatic change in the average proliferation rate of cells in the heterogeneous cell line.

This change is caused by the fact that cells with higher proliferation rates are more likely to

produce daughter cells that directly inherit the higher proliferation rate of the mother cell.

Therefore, we observe a greater proportion of faster–proliferating cells in the heterogeneous

cell line at high passage number. This leads to a larger average value of Pp and a greater
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variation in Pp across the whole population of cells in the heterogeneous cells line, as shown in

Figs 2e–2h and 3e–3h, respectively.

To summarise how the cell proliferation rate changes with passage number, we plot the evo-

lution of the proliferation rate data from the entire populations as boxplots [33] in Fig 4. The

boxplots show the median and quartiles of the distribution of Pp from the entire population as

a function of the passage number. Comparing results in Fig 4a and 4d shows that the median

Pp increases much faster in the heterogeneous cell line than the near–homogeneous cell line.

For the near–homogeneous cell line the distribution of Pp appears to be approximately inde-

pendent of the passage number in this case. In contrast, the distribution of Pp for the heteroge-

neous cell line is strongly dependent on the passage number. In particular, the median Pp

increases, and the distribution of Pp becomes increasingly negatively skewed as the passage

number increases. Overall, these results suggest that starting with the same average proliferate

rate, the degree of heterogeneity of the cell line alone is enough to lead to very different out-

comes when the two cell lines are sufficiently passaged. Therefore, the initial heterogeneity of

the cell line appears to be important in terms of understanding how passaging affects proper-

ties of cell lines.

In this first set of results, we find that differences in the cell proliferation rate among the cell

population can lead to changes in the overall population behaviour at sufficiently high passage

numbers. We note that in both prototype cell populations, the average proliferation rate

Fig 2. Snapshots of simulations for a near–homogeneous cell line. For each passage number, snapshots at the beginning (15% confluence) and end

(85% confluence) of the experiments are shown. Results in (a)–(d), (i)–(l) and (q)–(t) show snapshots of the field of view at passage number 0 and 30, with

� = 0, � � N ð2� 10� 5; 2� 10� 5Þ and � � N ð1� 10� 4; 1� 10� 4Þ, respectively. Results in (e)–(h), (m)–(p) and (u)–(x) show distributions of Pp for the entire

domain at passage number 0 and 30, with � = 0, � � N ð2� 10� 5; 2� 10� 5Þ and � � N ð1� 10� 4; 1� 10� 4Þ, respectively. The distribution of Pp in each subfigure

is obtained from one single realisation. The colour bar indicates Pp for individual cells. �Pp and σp represent the mean and standard deviation of Pp. Each

simulation is initiated by randomly populating 15% of lattice sites, on a lattice of size I = 4168 and J = 3610, with Pp � N ð4� 10� 3; 1� 10� 4Þ for each cell. All

simulations correspond to Δ = 24 μm, τ = 1/12 h, and Pm = 0.35.

https://doi.org/10.1371/journal.pone.0181941.g002
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increases with the passage number and this is consistent with some previous experimental

studies [23]. However, most experimental studies report a decrease in average proliferation

rate with increasing passage number [16, 17, 21, 22]. This observation motivates us to include

a second mechanism in our discrete model, namely passage–induced damage.

Passaging cell lines with passage–induced damage

We now investigate the impact of including passage–induced damage, and we consider both

small and large amounts of damage scenarios. All other features of our simulations are main-

tained as described in the section without passage–induced damage. Snapshots of simulations

including small and large amounts of damage, and boxplots showing the distribution of Pp

data are shown in Figs 2–4. Comparing results in Fig 2a–2h and 2i–2p suggests that we observe

very similar outcomes when we include a small amount of damage in the simulations of the

near–homogeneous cell line. Similarly, results in Fig 3a–3h and 3i–3p suggest that the small

amount of damage has a negligible impact on the passaging process for the heterogenous cell

line. In contrast, with the large amount of damage we see that the proliferation rate decreases

by passage number 30 in the near–homogeneous cell line, as shown in Fig 2q–2x, whereas

results in Fig 3q–3x show that the proliferation rate increases by passage number 30, but the

increase in proliferation rate is not as pronounced as in the case where there is no damage in

the heterogenous cell line.

Fig 3. Snapshots of simulations for a heterogeneous cell line. For each passage number, snapshots at the beginning (15% confluence) and end

(85% confluence) of the experiments are shown. Results in (a)–(d), (i)–(l) and (q)–(t) show snapshots of the field of view at passage number 0 and 30, with

� = 0, � � N ð2� 10� 5; 2� 10� 5Þ and � � N ð1� 10� 4; 1� 10� 4Þ, respectively. Results in (e)–(h), (m)–(p) and (u)–(x) show distributions of Pp for the entire

domain at passage number 0 and 30, with � = 0, � � N ð2� 10� 5; 2� 10� 5Þ and � � N ð1� 10� 4; 1� 10� 4Þ, respectively. The distribution of Pp in each subfigure

is obtained from one single realisation. The colour bar indicates Pp for individual cells. �Pp and σp represent the mean and standard deviation of Pp. Each

simulation is initiated by randomly populating 15% of lattice sites, on a lattice of size I = 4168 and J = 3610, with Pp � N ð4� 10� 3; 1� 10� 3Þ for each cell. All

simulations correspond to Δ = 24 μm, τ = 1/12 h, and Pm = 0.35.

https://doi.org/10.1371/journal.pone.0181941.g003

Passaging cell lines

PLOS ONE | https://doi.org/10.1371/journal.pone.0181941 July 27, 2017 7 / 16

https://doi.org/10.1371/journal.pone.0181941.g003
https://doi.org/10.1371/journal.pone.0181941


Results in Figs 2 and 3 focus on snapshots of the population at passage numbers 0 and 30.

Additional results in Fig 4b, 4c, 4e and 4f to show how the distribution of Pp evolves as a func-

tion of the passage number. For the near–homogeneous cell line, the median Pp decreases

monotonically with the passage number for both small and large amounts of damage. In con-

trast, the median Pp for the heterogeneous cell line behaves very differently as it increases until

approximately passage number 20, and then decreases with further passaging. These results,

combined, provide a simple explanation for why some previous studies have reported that the

proliferation rate can increase with passage number, as in the case of Fig 4d and 4e, whereas

other studies suggest that the proliferation rate can decrease with passage number, as in the

case of Fig 4c. In fact, our results suggest that it is possible to have a situation where the prolif-

eration rate both increases and decreases with passage number, as in the case of Fig 4f, and we

observe different trends depending on the passage number. These differences arise in our

model due to a trade-off between the initial heterogeneity of the cell line and the amount of

damage sustained in the passaging process.

Fig 4. Distribution of Pp as a function of passage number. Results in (a)–(c) show boxplots of Pp for a near–homogeneous cell line at 85%

confluence for: (a) no damage � = 0; (b) small amount of damage, � � N ð2� 10� 5; 2� 10� 5Þ; and (c) large amount of damage, � � N ð1� 10� 4; 1� 10� 4Þ.

Results in (d)–(f) show boxplots of Pp for a heterogeneous cell line at 85% confluence for: (d) no damage � = 0; (e) small amount of damage,

� � N ð2� 10� 5; 2� 10� 5Þ; and (f) large amount of damage, � � N ð1� 10� 4; 1� 10� 4Þ. In each subfigure the distribution of Pp at individual passage

numbers is obtained from one single realisation. Each simulation is initiated by randomly populating 15% of lattice sites on a lattice of size I = 4168 and

J = 3610, with Pp � N ð4� 10� 3; 1� 10� 4Þ for the near–homogeneous cell line and Pp � N ð4� 10� 3; 1� 10� 3Þ for the heterogeneous cell line. All

simulations correspond to Δ = 24 μm, τ = 1/12 h, and Pm = 0.35.

https://doi.org/10.1371/journal.pone.0181941.g004
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Fig 5. Experimental images of an IncuCyte ZOOM™ scratch assay [3, 38]. The images in (a)–(c) show the closure of the initially scratched

region which is highlighted by the dashed orange lines at t = 0. The red scale bar corresponds to 300 μm. These images are reproduced, with

permission [3].

https://doi.org/10.1371/journal.pone.0181941.g005

Fig 6. Snapshots of a suite of scratch assays performed using a near–homogeneous cell line. In each column the distributions of cells at time t = 0, 24,

48, 72 h are shown. Each simulation is initiated by randomly populating a lattice of size 80 × 68, so that each site is occupied with probability 30%. A scratch of

23 lattice sites wide is made at t = 0 h. All simulations correspond to Δ = 24 μm, τ = 1/12 h, and Pm = 0.35. In each row the initial Pp of individual cells is

assigned by randomly selecting from the in silico data in Fig 2f, 2h and 2x, respectively.

https://doi.org/10.1371/journal.pone.0181941.g006
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Scratch assay with passaged cells

Having demonstrated that the interplay between cell heterogeneity and passage–induced dam-

age can lead to complicated trends in the relationship between the proliferation rate and pas-

sage number, it is still unclear how these kinds of differences can affect how we interpret in
vitro experiments. To explore this issue we use cells from a range of passage conditions to

mimic a scratch assay [30]. For this purpose we focus on the geometry associated with experi-

mental images obtained from an IncuCyte ZOOM™ scratch assay [3, 34–37], as shown in Fig 5.

The images, of dimension 1400 μm × 1900 μm, show a fixed field of view that is much smaller

than the spatial extent of the cells in the scratch assay [27, 38]. To model this situation we

apply zero net flux boundary conditions along all boundaries of the lattice. We use a lattice of

size 80 × 68 to accommodate a typical population of cells with Δ = 24 μm. To initialise the

scratch assay, we randomly populate all lattice sites with an equal probability of 30% [3]. To

simulate the scratch, we remove all cells from a vertical strip of width approximately 550 μm,

and we then observe the rate at which the populations spread into the vacant area. All cells

have the same constant value of Pm = 0.35, and we assign values of Pp by sampling from the

various histograms in Figs 2 and 3. This means that we are effectively simulating a scratch

assay using cells from different cell lines, with different amounts of passage-induced damage,

Fig 7. Snapshots of a suite of scratch assays performed using a heterogeneous cell line. In each column the distributions of cells at time t = 0, 24, 48,

72 h are shown. Each simulation is initiated by randomly populating a lattice of size 80 × 68, so that each site is occupied with probability 30%. A scratch of 23

lattice sites wide is made at t = 0 h. All simulations correspond to Δ = 24 μm, τ = 1/12 h, and Pm = 0.35. In each row the initial Pp of individual cells is assigned

by randomly selecting from the in silico data in Fig 3f, 3h and 3x, respectively.

https://doi.org/10.1371/journal.pone.0181941.g007
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and from different passage numbers according to our in silico results of cell culture growth in

the previous section.

Snapshots from the discrete model, showing the progression of the scratch assays, are

shown in Figs 6 and 7. In general we see that, regardless of the initial cell population, all of the

scratch assays lead to successful closure by approximately 48–72 h, which is consistent with

standard experimental observations [3, 35]. However, close examination of the results

reveals some differences. In particular, visual inspection of the snapshots suggests that those

cell populations with higher initial proliferation rate lead to larger numbers of cells at later

times, and hence more rapid closure of the initially–vacant space. These trends are subtle,

but are most obvious in Fig 7 where the population corresponds to cells taken from passage

number 30, with no damage, leading to more effective re-colonisation of the initially–

vacant space than cells from passage number 0. Since these differences are subtle it may be dif-

ficult to detect them when visually comparing results from scratch assays. Therefore, we will

Fig 8. Averaged simulation data showing cell density profiles from the scratch assays. (a)–(c): Cell density profiles for a near–homogeneous

cell line. (d)–(f): Cell density profiles for a heterogeneous cell line. In each subfigure cell density profiles are given at t = 0, 24, 48, 72 h, and the direction

of increasing t is shown with the arrows. All simulation results are averaged across 100 identically prepared realisations of the discrete model, with

Δ = 24 μm, τ = 1/12 h, and Pm = 0.35, on a lattice of size 80 × 68. In each subfigure the initial Pp of individual cells is assigned by randomly selecting from

the corresponding in silico data in Figs 2f, 2h, 2x and 3f, 3h and 3x, respectively.

https://doi.org/10.1371/journal.pone.0181941.g008
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now quantify the spatial and temporal distribution of cells in Figs 6 and 7 to provide more

information.

Since the initial condition is uniform in the vertical direction [27, 31], we average the popu-

lation density in Figs 6 and 7 along each vertical column of lattice sites to obtain

hCii ¼
1

J

XJ

j¼1

Ci;j:

This quantity is further averaged by considering 100 identically prepared simulations of the

discrete model to reduce fluctuations [27]. This procedure allows us to plot the time evolution

of the average cell density as a function of the horizontal coordinate, as shown in Fig 8 [27].

Results in Fig 8a–8b suggest that the evolution of the cell density profile is practically indistin-

guishable when we consider cells from the near–homogeneous cell line that is passaged with-

out damage, as we might expect from the results in Fig 4a. In contrast, comparing results in

Fig 8a with results in Fig 8c shows that we observe very different results when damage is

included in the passaging process for the near–homogeneous cell line. When we consider the

results in Fig 8d–8f, for the heterogeneous cell line, we see that the evolution of the cell density

profiles is very different for all three cases considered.

Conclusion

Passaging of cell lines is an essential processes of growing cells in cell culture [6, 7]. The passag-

ing process involves both chemical and mechanical disturbances which accumulatively change

cell characteristics. Problems associated with high passage numbers, such as the change of cell

proliferation, are widely acknowledged. However, the mechanisms are not well understood

[16, 17, 21–26]. Therefore, the aim of this work is to use a computational approach to provide

insight into the putative mechanisms that could possibly lead to the problems.

In this work, we apply a lattice–based discrete model to investigate and quantify the impact

of passaging cell lines. Although there are many properties of cells that are affected by the pas-

saging process [15–17, 20–22, 24, 26], we choose to focus on how passaging affects the cell pro-

liferation rate. In our model, when a cell proliferates, the daughter cells directly inherit the

same proliferation rate as the mother cell. Furthermore, we also assume that during the passag-

ing process, the cell proliferation rate is decreased by some passage–induced damage. For all

results presented, we investigate the role of cell heterogeneity by comparing results where we

begin the passaging process with a hear-homogeneous population of cells where Pp is almost

constant, with a heterogeneous population of cells where Pp varies significantly among the

population.

In the literature, previous experimental studies have reported apparently contradictory

results where some studies suggest that the average proliferation rate of cells can increase at

large passage number [23], whereas other studies suggest that the average proliferation rate of

cells can decrease with passage number [16, 17, 21, 22]. We find that by varying the competi-

tion between passage-induced damage and cell heterogeneity, our relatively straightforward

simulation model can predict each of these outcomes.

To study how passage number can affect in vitro experiments, we simulate a suite of scratch

assays using various populations of cells that are harvested from our in silico passaging process.

Our simulation results show that the passage number can lead to subtle changes in the evolu-

tion of the scratch assay and these changes might be very difficult to detect visually. We pro-

vide additional information about how the distribution of cells in a scratch assay might be

influenced by passage number by performing a large number of realisations and examining

the average cell density profiles. These average cell density profiles make it obvious that the
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passage number could affect the rate of scratch closure. This observation, together with the

fact that cell passage number is often unreported in the experimental literature [12, 13], could

explain why scratch assays are notoriously difficult to reproduce [39]. In addition, the results

of cell culture growth and scratch assays indicate that even at the same passage number, the

initial heterogeneity in cell proliferation can give rise to very differently behaving cell popula-

tions. Therefore, separating cell population without reporting the proliferative capacity can

also affect the reproducibility of in vitro experiments. However, the proliferative capacity of

cell lines can be difficult to measure experimentally, as most of the previous experiments only

report the cell population evolution [17, 23], or the duration of the cell cycle [32].

There are several implications of this study that could be of interest to the experimental

community. First, we suggest that the passage number of cell lines should always be reported.

Second, there is a need for more experimental evidence about the impact of passaging on pro-

liferation rates of various cell lines. For example, careful measurements of proliferation rates

over a sequence of passage numbers would provide more insight into the variability of key cell

properties in cell culture. This type of quantitative information would be invaluable for under-

standing reproducibility of standard in vitro experiments. Third, we acknowledge that our

choices of the standard deviation, σ, to define the spread of the distribution of proliferation

rates in the near–homogeneous and heterogeneous cell lines is rather theoretical. Recently,

Haass et al. have devised new experimental methods that can be used to measure the durations

of different phases in cell cycle for a range of melanoma cell lines [32]. This data could be used

used to estimate the properties of the distribution of cell proliferation rates, such as the mean

and standard deviation of the distribution of proliferation rates. Therefore, we suggest that

similar experiments could be performed to generate proliferation rate distribution over vari-

ous passage numbers for a range of different cell lines of interest. This data could then be

directly integrated within our in silico models to examine the interplay between the degree of

heterogeneity and passage–induced damage.

There are also several implications of this study that are of interest to the applied mathemat-

ics and mathematical biology communities. First, here we focus on the case where there is het-

erogeneity in the rate at which individual cells proliferate in the population but, we treat the

motility rate as a constant. This is because most previous experimental studies have reported

differences in the rate of proliferation as a function of passage number rather than differences

in the rate of migration [17, 22, 23]. However, heterogeneity in cell migration rate can also

affect the reproducibility of in vitro experiments [21], especially scratch assays in which cell

migration plays a key role in wound closure [3]. An interesting extension of our present study

would involve dealing with both variability in the motility rate and the proliferation rate

[40]. Second, in our work we make the most straightforward assumption that daughter cells

inherit Pp directly from the mother cell. It might be more plausible to introduce some stochas-

ticity in the inheritance process, and it might also be plausible to incorporate some kind of age-

ing process where the proliferation depends on the age structure of the population [21]. We

have chosen not to include these additional details as we wish to present a simpler model that

is capable of illustrating a proof–of–principle concept rather than capturing every possible fea-

ture of the underlying biology. Finally, another extension of this work would be to consider

the derivation of an accurate mean–field approximation that could be used to describe the evo-

lution of the cell density profiles in Fig 7. This is a challenging task because all previous deriva-

tions of such mean–field partial differential equations involve populations of cells with

constant rates [27, 31, 41–45], whereas we are dealing with a more realistic heterogeneous pop-

ulation of cells.
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