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Abstract

We report the results of a bilingual continuous recognition memory task during which single-

and multi-neuron activity was recorded in human subjects with intracranial microwire

implants. Subjects (n = 5) were right-handed Spanish-English bilinguals who were undergo-

ing evaluation prior to surgery for severe epilepsy. Subjects were presented with Spanish

and English words and the task was to determine whether any given word had been seen

earlier in the testing session, irrespective of the language in which it had appeared. Record-

ings in the left and right hippocampus revealed notable laterality, whereby both Spanish and

English items that had been seen previously in the other language (switch trials) triggered

increased neural firing in the left hippocampus. Items that had been seen previously in the

same language (repeat trials) triggered increased neural firings in the right hippocampus.

These results are consistent with theories that propose roles of both the left- and right-hemi-

sphere in real-time linguistic processing. Importantly, this experiment presents the first

instance of intracranial recordings in bilinguals performing a task with switching demands.

Introduction

Language has been the prime example of lateralization of cognitive function ever since Broca

[1] and Wernicke [2] presented case studies of patients who suffered localized left-hemisphere

(LH) damage resulting in language-specific deficits. In recent decades, research using func-

tional magnetic resonance imaging (fMRI; [3–7]), magnoencephalagraphy (MEG; [8–9]), posi-

tron emission tomography (PET; [10–12]), intracortical recordings [13], and event-related

potentials (ERPs; [14–17]) suggests that language function is more distributed than Broca and
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Wernicke initially proposed. Language appears to operate via a complex network of intercon-

nected brain regions spanning both hemispheres [18–20].

One framework that makes explicit predictions about global hemispheric differences in lan-

guage processing is Federmeier’s PARLO model [15] (for another similar model, see [21]).

According to this framework, when it comes to lexical processing, recording ERPs while pre-

senting words in one half of the visual field (i.e., the right visual field) suggests that the LH

operates over message-level meanings [22], allowing for more predictive, or "top-down," pro-

cessing. Moreover, the LH seems to be responsible for selecting the meanings of words that are

appropriate in the given context. In contrast, the right hemisphere (RH) seems to operate in a

more "bottom-up" fashion, recognizing incoming words as they are encountered, operating

over lower-level features, and retaining a more veridical representation of the input. Federme-

ier [15] reports results from a study by Metcalf et al. [23] in which split-brain patients in a lexi-

cal recognition memory task displayed a RH advantage in rejecting "lures" that were

semantically similar to words that had been previously studied (cf. [24] with brain-intact par-

ticipants). Federmeier points out that data such as these have been taken as evidence that the

LH attends to "category invariant input features" (p. 499 in [15]), such as meaning, while the

RH "processes and retains veridical, item-specific. . .and perhaps form-specific" representa-

tions of input (p. 499 in [15]). In addition to delineating hemispheric contributions during lan-

guage processing, the PARLO model has been instrumental in distinguishing top-down and

bottom-up processes during word learning [25] and non-literal sentence processing [26].

Suggestive new evidence, to be summarized below, about the functional role of the hippo-

campus in real time interpretation decisions further supports a more interconnected picture of

language processing. Traditionally, the hippocampus has been linked to the formation of long-

term declarative memory, including the acquisition, storage, and retrieval of declarative infor-

mation [27]. These representations can be updated and consolidated over long periods of time

to incorporate new sources of information [28–29].

Only recently has the hippocampus been examined as potentially having a role in real- time

language processing [30–31], especially when comprehenders must flexibly update linguistic

representations as they engage in activities like referential communication [32] and incremen-

tal sentence processing [33]. There is some evidence suggesting a central role of the hippocam-

pus in the creation and integration of relational representations (i.e., input is bound with

situation, context, speakers, and intentions), as well as the flexible expression of these represen-

tations [32]. Duff and Brown-Schmidt [32] point to studies of hippocampal amnesiacs and

fMRI investigations of normal hippocampal activity, all of which suggest that "new hippocam-

pus-dependent representations are available rapidly enough to influence ongoing processing

when new information is perceived; old information is retrieved; and representations are held

on-line to be evaluated, manipulated, integrated, and used in service of behavioral perfor-

mance" (p. 5 of [32]).

Further insight into the role of the hippocampus in lexical access is provided by Hernandez

[34], who measured hemodynamic changes in Spanish-English bilinguals as they named pic-

tures in both their dominant (Spanish) and second (English) languages. Hernandez [34]

observed an interesting lateralization difference, such that picture naming in Spanish gener-

ated larger changes in the left hippocampus, whereas picture naming in English generated

larger changes in the right hippocampus. Hernandez cites related data by Whatmough and

Chertow [35] that showed increased LH hemodynamic changes correlated with monolingual

word retrieval, and increased RH changes with picture naming. Alongside Hernandez’s results

with bilinguals, the general conclusion is that picture naming in a bilingual’s dominant lan-

guage is more reliant on semantic memory, subserved primarily by the left hippocampus.

Single unit recordings in bilinguals during recognition
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Picture naming in the non-dominant language, on the other hand, is more reliant on recogni-

tion memory, subserved primarily by the right hippocampus.

The view outlined by Federmeier [15] that the LH operates over more abstract, semantic

representations, and that the RH operates over more concrete, surface-level, veridical repre-

sentations, is consistent with the left- vs. right-hippocampal data presented by Hernandez

[34]. That is, accessing engrained, default linguistic information (e.g., from one’s native lan-

guage) relies heavily on LH “top-down” resources, a process perhaps akin to activating a type
of some semantic representation (i.e., a general abstraction of meaning). Accessing less-famil-

iar representations (e.g., from one’s second language) seems to be supported by RH “bottom-

up” resources, perhaps due associated with the activation of tokens, or specific instances that

contain item- and context-unique features. Furthermore, this picture is largely consistent with

a proposal by Jiang and Forster [36] about the lexical representations of unbalanced bilinguals,

or individuals who have unequal usage and proficiency of their two languages. The authors

elaborate on the Revised Hierarchical Model (RHM; [37–38]) to state that lexical items in the

native language (L1) are represented in an abstract "lexical memory" (or a type), such that rep-

resentations are contextually independent. Lexical items in the second language (L2), on the

other hand, have context-bound representations. These “tokens” contain surface-level (form)

representations, along with tags of when and where they were encountered. These veridical

tokens are accessed for L2 words prior to activating links to L1 representations and, subse-

quently, the semantic “type” representations.

In light of Hernandez’s [34] results, the PARLO model [15], and Jiang and Forster’s [36]

proposal, one might predict discriminatory roles of the left and right hippocampus during

bilingual processing, especially when bilinguals are asked to operate over input that is pre-

sented alternately in both the L1 and L2.

Motivation and hypotheses for the present study

Despite the mounting evidence for intra-hemispheric neural signatures of bilingual language

processing (for ERPs see [15]; for MRI see [34–35; 39] for PET see, [40]), little work has exam-

ined this pattern with a method that offers combined spatial and temporal sensitivity. The

research reported here addresses this issue by directly measuring single neuron activity using

microwires implanted within candidate brain regions during a recognition memory task. The

data were collected from bilingual Spanish-English speakers as they performed a task, which

required them to process interleaved Spanish and English words. The goal was to determine if

there is evidence at the level of individual neurons for theoretical claims about the lateraliza-

tion of language processing (e.g., [15]) with special reference to the hippocampus and the

nature of lexical access in bilinguals (e.g., [36–38]).

We specifically tested whether hippocampal neurons differentiated tokens (surface form

information) and types (semantic information) when bilinguals perform a continuous recog-

nition memory task (CRM; [41–42]). In the bilingual CRM, participants are presented with a

list of words from two languages, in this case English and Spanish. The participant’s task is to

determine whether each word that is presented has been seen before in the testing session or

not (i.e., determine old/new status of words), independent of the language it appears (or

appeared previously) in (Fig 1). In this way, the bilingual CRM engages both “top-down” and

“bottom-up” processing: If the target word, e.g., river, has been seen previously in the list in

English, a correct YES response can be provided by accessing “bottom-up” form information

(tokens) or “top-down” meaning representations (types). If the target word, again river, has

been seen previously in Spanish (i.e., rio), however, “bottom-up” processing, alone, cannot be

used to answer correctly, as the exact surface form has not been encountered in the list. In this

Single unit recordings in bilinguals during recognition
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case, “top-down” processing must be used to access the semantic type that binds together both

forms (river and rio) to determine that the correct answer is YES.

When the Jiang and Forster model [36] is set in the context of the more recent neurocogni-

tive studies summarized by Federmeier [15] and the bilingual fMRI data of Hernandez [34],

we can generate the following predictions. If the RH operates over more veridical, surface-

level (token) representations, and if the right hippocampus is more active for “bottom-up”

processing, then changes in neuron-level firing should be greater in the right hippocampus for

targets that were previously seen in the same language (repeat trials). If the LH operates over

more abstract, meaning-based (type) representations, and if the left hippocampus is more

active for “top-down” processing, then changes in neural activity should be greater in the left

hippocampus for targets that were previously seen in the different language (switch trials). To

preview our results, we observe this pattern of lateralization, which constitutes the first report

of single neuron activity in the brains of bilingual subjects as they switch between linguistic

representations.

Materials and methods

Subjects and language proficiency

The participants were 5 patients with drug-resistant epilepsy requiring the implantation of

depth electrodes (Ad-Tech Medical, Racine, WI) for clinical evaluation and consideration of

possible surgical resection of their seizure focus. All patients provided informed written con-

sent to participate in the research study. Consent was obtained by one of the authors (PNS)

conducting a discussion with the patient of the risks and benefits of participating which was

then documented using a written consent document. The procedures for obtaining consent

and the consent document were reviewed and approved by the Institutional Review Board of

St. Joseph’s Hospital and Medical Center (human subjects assurance #00001499). All patients

Fig 1. Bilingual continuous recognition memory task. Subjects are asked to indicate whenever a word repeats independently of the

language in which it appears. NonTargets are new items presented for the first time and Targets are old items that repeat. NonSwitch

Targets repeat in the same language (matching in form and meaning) and Switch Targets repeat in a different language (matching only in

meaning).

https://doi.org/10.1371/journal.pone.0181850.g001
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were right-handed, Spanish-English bilinguals with mostly balanced levels of proficiency in

both languages, as measured by their performance on Cloze tests administered in both lan-

guages. In each Cloze test, every seventh word was deleted, and subjects were instructed to fill

in the missing word in each of resultant blanks (40 total blanks in the Cloze test in each lan-

guage) (see Examples 1 and 2 below). We implemented two scoring methods. The first adopted

a strict criterion, such that participants had to provide an exact match for the missing item in

order to be scored as correct. The second used a relaxed coding standard by scoring any struc-

turally and semantically valid options beyond just the expected word as correct. In both cases,

a higher score corresponds to higher proficiency. Patient Cloze scores and demographics

appear in Table 1. Using Cloze as an estimate of proficiency, two of five subjects were Spanish

dominant and the remaining three were fairly balanced on this instrument. Note, however,

that all subjects reported Spanish being their native language.

1. His mind wanderedas he drove ______ (past) small farms and he began
to ______(imagine)living on his own piece of ______(land) and
becomingself-sufficient.

2. Es una del las tiendasmás ______ (ricas)de las capital,y aunque
hay ______(otros)tiendascomo la tienda de don Samuel,______
(ninguna)es tan rica.

Bilingual continuous recognition memory task

During the bilingual CRM task, participants were instructed to judge semantic repetitions

over the course of the experimental session. They were asked to provide a ‘no’ response to any

items judged as a new and unseen and ‘yes’ response to any old items that repeated, regardless

of the language in which the word was presented. There were 150 items, each one consisting of

a Spanish-English translation pair. Thus each participant saw 300 experimental words (targets)

interspersed with 60 Spanish and 60 English fillers that were not paired with translation equiv-

alents. The use of filler words and a pseudo-random order of presentation was designed to

ensure that the odds of a word being new on any given trial were 50% (for most participants,

the design was unbalanced because the experiment was often terminated early due to clinical

constraints). As illustrated in Fig 1, the first presentation of each member of the translation

pair (to which participants should have responded "No"; non-target) was followed, after 0–31

intervening words, by either another presentation of the same word (target) in the same lan-

guage (non-switch) or by its translation equivalent in the opposite language from the first pre-

sentation (switch). Half of all eventual targets (75) appeared first in English, and half (75) in

Table 1. Subject-level demographics and language proficiency.

English Cloze Spanish Cloze

Subject Age Gender Strict Lax Strict Lax

S26 40 F 1 7 17 22

S37 31 F 15 26 23 32

S40 43 F 12 24 18 25

S49 49 M 22 24 26 36

S50 28 F 27 35 18 36

Spanish and English proficiency was measured using two scoring systems, strict and lax (see text).

https://doi.org/10.1371/journal.pone.0181850.t001
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Spanish. Half of these targets (give or take one item, due to the odd number) repeated in the

same language (e.g., shoe appearing after shoe) and roughly half repeated in the opposite lan-

guage (e.g., shoe appearing after zapato). On a single trial of the task, participants saw a fixation

cross for 400–600 ms, followed by the to-be-judged word for 1000 ms, followed by a question

mark, which appeared until a response was made or until 2000 ms had elapsed. The lag sepa-

rating a repeating item from its initial presentation ranged from 1 (immediate repeat) up to 32

intervening items, though we did not examine lag as a factor in our analyses due to the limited

number of observations at each lag.

Word set. The stimulus words included Spanish and English adjectives, verbs, and nouns

(50 from each word class) that were drawn from the LexEsp corpus for Spanish words [43]

and the COCA corpus for English words [44]. Stimuli were carefully selected by the second

author and a fluent Spanish-speaking linguist according to three criteria. First, the items were

matched pairwise in log frequency based on frequency per million in their respective corpora

(English: M = 1.947, Spanish: M = 1.943) and string length (English: M = 5.68, Spanish:

M = 6.38). Second, items were selected to control for number of senses in both languages, i.e.,

as much as possible, each item has one, or one extremely dominant, sense. For example, words

with multiple senses like "bank" (bank of a river, bank for money, bank as a kind of shot) were

excluded. Finally, items were selected that have, as much as possible, only one direct or

extremely frequent translation in the corresponding language.

Valence and arousal norms for 141 or the 150 English stimuli used here are provided in

Table 2 [45]. Mean valence (~5.2) and arousal (~4.3) norms qualify as neutral and moderately

low, respectively. Valence and arousal norms for 30 or the 150 Spanish stimuli (nouns and

adjectives only) used here are provided [46] in Table 3. Mean valence (~4.6) and arousal

(~5.48) norms qualify as neutral for both ratings. The slightly higher overall arousal rates for

Spanish words compared to English words is consistent with the full Spanish data set reported

in [46] as compared against their English counterparts in [47].

Table 2. Valence and arousal for English word categories (141 out of 150).

English Valence Arousal

Word Type Mean SD Range Mean SD Range

Noun 5.54 1.11 2.74–7.88 4.00 0.99 2.40–6.05

Verb 5.16 1.53 1.96–7.89 4.42 1.10 2.24–7.10

Adjective 4.95 1.75 2.1–7.59 4.64 1.02 2.25–6.95

All Items 5.21 1.50 1.96–7.89 4.35 1.07 2.24–7.10

https://doi.org/10.1371/journal.pone.0181850.t002

Table 3. Valence and arousal for Spanish word categories (30 out of 150).

Spanish Valence Arousal

Word Type Mean SD Range Mean SD Range

Noun 5.39 1.83 2.06–7.20 5.83 2.03 4.03–7.38

Verb No data No data No data No data No data No data

Adjective 4.16 1.61 1.61–7.79 5.40 2.00 4.16–6.93

All Items 4.56 1.68 1.61–7.79 5.48 2.01 4.03–7.38

SD = standard deviation

https://doi.org/10.1371/journal.pone.0181850.t003
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Behavioral response measures

We examined both the accuracy and response times as subjects performed the CRM task.

Accuracy and response time on correct items were modeled first as a function of Old/New Sta-

tus (Target versus NonTarget items) and Language (Spanish versus English items), and then as

a function of Language Switching (Switch versus NonSwitch targets) and Language. Accuracy

was assessed with a generalized linear mixed-effects (GLM) model with Subjects and Items

(word stimuli) as random effects. Response time was tested with a linear mixed-effects (LME)

model with the same random effect structure. To account for the range of frequencies of our

stimuli, we included log frequency as a covariate in all models of response time [48]. We report

the maximal model that converged, which contained the most allowable number of random

slopes [49]. All analyses were conducted using lme4 version 1.1–10 (in R version 3.2.1 [50–

51]).

Microwire recordings

Neural activity was recorded bilaterally from 38 μm diameter microwires implanted in 4 brain

areas—hippocampus, amygdala, ventromedial prefrontal cortex, and anterior cingulate cortex

(ACC)—as subjects performed the CRM task.

Implantation & recording. We used surgical and recording methods, which we have pre-

viously described in Valdez et al. [52]. In brief, nine microwires were implanted stereotactically

(Medtronic StealthStation) with a 1.5T structural MRI through skull bolts at each recording

site protruding from the clinical depth electrodes used to locate epileptogenic focus [53–54].

In the hippocampus, the target for microwire tip placement was the mid-body of the hippo-

campus; in the amygdala, the target was the center of the amygdala; in the anterior cingulate

cortex, the target was the anterior cingulate gyrus, above and behind the genu of the corpus

callosum; and, in the ventromedial prefrontal cortex, the target was just below the anterior cin-

gulate gyrus and corpus callosum, in the most anterior portion of the gyrus rectus. Using these

techniques, the error in tip placement is estimated to be +/-2mm [55]. While this resolution is

insufficient to determine subfields within the hippocampus or nuclei within the amygdala, it is

sufficient to allow discovery of neural firing differences between major brain areas and sides of

the brain.

Following patients’ recovery from surgery, the microwires were connected to headstage

amplifiers, which applied a 400x gain to yield eight differential recording channels relative to

one ground microwire. Extracellular potentials were low-pass filtered and sampled (16 bits) at

29,412 Hz. Possible action potential events were detected as excursions from baseline in a

band-pass filtered signal (300–3000 Hz).

Spike sorting. Possible action potentials were high-pass filtered from the digitized signal

to determine event shape, and all events recorded from individual channels were grouped into

sets of similar waveform shape (clusters) with KlustaKwik 1.5 [56], which is based on a modi-

fied Celeux-Govaert expectation maximization algorithm [57]. Post-sorting, each cluster was

classified as either noise, multi-unit or single-unit activity per the criteria listed in Table 1 of

Valdez et al. [52]. Fig 2 illustrates events in a cluster classified as single-unit activity after sort-

ing. See Table 4 for the number of units recorded in each region.

Neural response measures. Raw spike counts were tallied in a test period spanning 200–

1000 ms after the presentation of each word [58]. The background firing rate was measured

during the complementary period prior to the stimulus onset (-200 –-1000 ms). Test period

spike counts were then normalized relative to the mean and standard deviation of the back-

ground for each cluster.

Single unit recordings in bilinguals during recognition
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Our primary interest is in how neural firing may be affected by three types of stimulus-level

information, including Old/New Status (Targets, NonTargets), Language Switch Type

(Switches, NonSwitches), and the Language in which a word was presented (English, Spanish).

To detect such changes in firing, we examined neural activity at two levels. First, we examined

whether the average neural firing in a brain area, the average of all the clusters recorded in a

brain area, showed significant evidence of changes in average firing as a function of these 3

independent variables and their interactions. Second, we examined whether properties of the

distribution of neuronal firing, other than the average, changed as a function of these 3

Fig 2. Waveform shape of single-unit activity recorded in the right amygdala. Extracellular potential

difference (in microvolts) as a function of time during waveform (in milliseconds) with peak centered at 0.25

milliseconds. Solid line shows average value for all waveforms in cluster and dotted lines show ±1 standard

deviation.

https://doi.org/10.1371/journal.pone.0181850.g002

Table 4. Number of clusters recorded at each site for each subject.

Area Side S26 S37 S40 S49 S50 Total

Amygdala Left 5/11 0/0 3/2 1/1 1/12 10/26

Amygdala Right 2/0 2/13 0/0 1/1 3/5 8/19

Anterior Cingulate Left 0/14 0/0 1/0 2/4 0/0 3/18

Anterior Cingulate Right 0/6 0/0 0/0 2/8 0/18 2/32

Hippocampus Left 2/0 0/12 0/0 0/0 1/3 3/15

Hippocampus Right 2/1 4/10 0/0 0/1 1/11 7/23

Ventromedial PFC Left 1/7 5/14 0/0 0/0 0/0 6/21

Ventromedial PFC Right 2/10 0/6 2/0 0/1 1/14 5/31

Values appear separately for single unit recording count/multiunit recording count.

https://doi.org/10.1371/journal.pone.0181850.t004
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independent variables. All of these analyses were performed in two ways: those conducted on

correct trials only and those conducted on all trials, ignoring accuracy. In the sections that fol-

low, results are reported for the main effect of Old/New Status, the main effect of Language

Switch Type, and the interaction of Language and Language Switch Type.

To examine changes in average firing, we aggregated all clusters in a specific brain area and

performed a one-sample t-test to determine whether there was a net average change in the nor-

malized firing rates of all clusters in a brain area. A t-value greater than zero would indicate on

average, a signal present in some brain region is more active for level 1 of a factor (e.g., for

Old/New Status, Targets>NonTargets), while a t-value less than zero would suggest the oppo-

site pattern (e.g., for Old/New Status, Targets < NonTargets). Because we only maintained

specific predictions about hippocampal activity, all p-values on pairwise comparisons between

factors across the left and right hippocampi were adjusted for two comparisons using a Benja-

mani-Hochberg correction).

To visualize the overall outcome of this analysis, we plotted the distribution of t-values as

density histograms. Thus, positively-skewed distributions index increased neural activity for

level 1 compared to level 2 of a factor, and negatively-skewed distributions correspond to

increased neural activity for level 2 relative to level 1 of a factor.

To determine whether changes in the distribution of firing rates amongst clusters, other

than a change in the average firing rate, may have occurred, we produced Q-Q plots to visually

distinguish average shifts in the distribution across all clusters versus large effects on a limited

subset of items across clusters (see also [58]). Finally, in some cases, we also explored effects

within the remaining neuroanatomical areas (i.e., anterior cingulate cortex, amygdala, and

ventromedial prefrontal cortex). For these analyses, p-values were adjusted for 8 total compari-

sons to compare across all non-hippocampal regions where we had no a priori predictions

about the laterality of activity.

Results

Behavioral results

We first examined how well the subjects performed the CRM task and whether their perfor-

mance depended on whether the word was new or old and which language the word was pre-

sented in.

Effects of Old/New Status and Language. The maximal GLM model of accuracy

included Old/New Status and Language as fixed effects and by-Subject random slopes of both

fixed effects and their interaction and by-Item random slopes of Old/New Status. The model

revealed a main effect of Old/New Status (β = 2.57, SE = 0.61, z = 4.22, p<0.001), such that

NonTargets resulted in more accurate responses (M = 0.81) compared to Targets (M = 0.33;

see left panel of Fig 3). There was no significant effect of Language (β = -0.25, SE = 0.28, z =

-0.87, p = 0.38) and no interaction of these two factors (β = -0.04, SE = 0.33, z = -0.11,

p = 0.91).

Response times of correct items were evaluated in an LME model with Old/New Status and

Language as fixed factors, Log Frequency of each word as a covariate, and by-Item random

slopes of Language. We observed main effects of Language (β = -77.14, SE = 26.79, t = -2.88,

p = 0.004) and Old/New Status (β = 62.44, SE = 26.94, t = 2.32, p = 0.02), but no interaction of

Old/New Status and Language (β = -67.82, SE = 51.68, t = -1.31, p = 0.19). This indicates that

correctly recognized Spanish words elicited slower frequency-adjusted response times

(M = 71ms) compared to their English counterparts (M = 4ms), and Targets were processed

slower (M = 75ms) than NonTargets after frequency was taken into account (M = 0ms; see

right panel of Fig 3). Overall, Target items led to less accurate processing accompanied by
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slower response times on correct items relative to NonTarget items. This response time profile

is consistent with other CRM data that use a version of the task without language switching

[59].

Effects of Language Switch Type and Language. We next examined whether subject’s

performance on the CRM task depended on whether the language of word presentation

changed between first and second presentations of a word. We modeled accuracy as a function

of Language Switch Type and Language with by-Subject and by-Item random slopes of Switch

Type. This maximal GLM model revealed a main effect of Language Switch Type (β = -1.11,

SE = 0.43, z = -2.62, p = 0.009), such that NonSwitch targets were more accurate (M = 0.41)

than Switch targets (M = 0.25; see left panel of Fig 4). There was no significant effect of

Fig 3. Behavioral patterns as a function of language and Old/New Status. Panel A depicts accuracy and

Panel B depicts correct response times adjusted for word frequency, each for Targets and NonTargets split by

Language (Spanish and English). * denotes significance at the p<0.05 level.

https://doi.org/10.1371/journal.pone.0181850.g003

Fig 4. Behavioral patterns as a function of Language Switch Type. Panel A depicts accuracy and Panel

B depicts correct response times adjusted for word frequency, each for Switch and NonSwitch cases split by

Language (Spanish and English). * denotes significance at the p<0.05 level; † marginal at the p<0.07 level.

https://doi.org/10.1371/journal.pone.0181850.g004
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Language (β = 0.27, SE = 0.21, z = 1.67, p = 0.21) and no interaction of Language Switch Type

and Language (β = -0.02, SE = 0.43, z = -0.05, p = 0.96).

The LME model of correct response times included fixed effects of Language Switch Type

and Language, Log Frequency of each word as a covariate, and by-Subject random slopes of

Language Switch Type, Language, and their Interaction. This maximal model did not reveal a

significant effect of Language Switch Type (β = 28.20, SE = 59.52, t = 0.47, p = 0.64). There

were also no effects of Language (β = -50.38, SE = 46.08, t = -1.09 p = 0.27) and no interaction

of Language Switch Type and Language (β = -24.51, SE = 100.38, t = -0.24, p = 0.81). To recap,

we observed robust effects of language switching in terms of accuracy, but no evidence for a

comparable effect on correct response time. Although we have no other bilingual CRM data to

call on for comparison, this finding is partially consistent with other work in the domain of

cross-linguistic switching that relies on different paradigms to measure performance under

switch and non-switch conditions [60–61]. We now turn our attention to measures of neural

activity, where we test the hemispheric lateralization hypotheses detailed in the previous

section.

Neural results

Effects of Old/New Status. We evaluated the effect of Old/New Status (Target versus

NonTarget) on average firing rates using paired t-tests that were run over all experimental tri-

als recorded within a brain area. Because there were very few observations at the single-unit

level, the results that follow are reported for combined single and multiunit activity. We

expected the hippocampus to distinguish old and new items, with higher activation for targets

relative to non-targets. We first tested this effect in the left and right hippocampi on correct

trials.

We observed effects of Old/New Status in the right hippocampus (t(29) = 2.64, padj = 0.03)

where there was a greater number of spikes for correct Targets compared to correct NonTar-

gets. No such effect appeared in the left hippocampus (t(17) = 1.64, padj = 0.24). The t-value

distribution is positively-skewed for the right hippocampus data (Panel A of Fig 5), illustrating

that Targets elicit more activity than NonTargets. Moreover, the data on the Q-Q plot corre-

sponding to the right hippocampus shift away from the reference line (see Panel B of Fig 5),

which indicates that the increased activity associated with Targets is not limited to a negligible

subset of observations in the right hippocampal units. Left hippocampus activity, on the other

hand, revealed a Q-Q plot with virtually no shift or deviations from the reference line, which

reflects the proper pattern given a non-significant finding. Interestingly, the effect in right hip-

pocampus weakened when error trials were included (i.e., when we analyze all trials, regardless

of performance accuracy; t = 2.22, p = 0.07). Thus, the hippocampus appears to preferentially

register cases when an item is properly recognized a repeat (i.e., hits). Overall, these results are

consistent with the prediction that targets should be associated with greater hippocampal firing

rates relative to non-targets.

In addition to the hippocampus, we also evaluated the effect of Old/New Status in the three

remaining brain regions. As can be seen in Fig 6, we found a general trend for increased firing

selectively in the left hemisphere for correct NonTargets relative to correct Targets (Amygdala:

t(35) = -2.93, padj = 0.05; Anterior Cingulate: t(20) = -4.11, padj = 0.004; Ventromedial Prefron-

tal Cortex: t(26) = -4.26, padj = 0.002; All right regions: ts<1.43, padjs>0.99). Notably, non-hip-

pocampal brain regions in the left hemisphere generally led to a pattern that did not emerge

within the left hippocampus. One possible explanation is that emotional processing (supported

by the amygdala and ventromedial prefrontal cortex) and inhibitory control (supported by

anterior cingulate cortex) coalesce to support processes involved with novelty detection.
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Support for this speculation comes from recent neuroimaging findings that indicate that the

amygdala is involved in cognitive processing beyond just emotion, including the detection of

new information [60]. Specifically, compared to familiar information, new information leads

to greater activation in the amygdala [62], as well as greater connectivity between it and sen-

sory regions [63].

Effects of Language Switch Type. Next we examined the effect of Language Switch Type

on target trials. Similar to the analyses of Old/New Status, we focused on spike counts obtained

from both single and multiunit recordings on correct trials. If the data are consistent with the

PARLO model detailed above, we predicted reliable, but asymmetrical activation patterns as a

function of Language Switch Type in hippocampal neurons. We observed greater activation

for correct Switch targets compared to correct NonSwitch targets in the left hippocampus (t
(17) = 2.68, padj = 0.03), but no effect in the right hippocampus (t(29) = -1.49, padj = 0.29).

Interestingly, a different profile of results emerged when we considered all trials, regardless

of behavioral performance (i.e, correct and incorrect items). In addition to greater firing

among Switch targets relative to NonSwitch targets in the left hippocampus (t(17) = 3.21, padj

= 0.01), we observed the reversed effect in the right hippocampus such that there was greater

firing among NonSwitch targets relative to Switch targets (t(29) = -3.49, padj<0.003). As Panel

A of Fig 7 illustrates, the distribution of unit-level t-values is positively-skewed for the left hip-

pocampus and negatively-skewed for the right hippocampus. Furthermore, Panel B of Fig 7

Fig 5. Hippocampal firing rates as a function of Old/New Status on correct trials only. Panel A displays

distributions of the t-values for Target-NonTarget comparisons of normalized spike counts in all units recorded

in the hippocampus. Panel B depicts Q-Q plots comparing the normalized spike count distribution of correct

Target trials vs. the distribution of correct NonTarget trials for the left and right hippocampus. * denotes cases

when the distribution is different from 0 at the p<0.05 level (all tests corrected for 2 comparisons using

Benjamini-Hochberg corrections).

https://doi.org/10.1371/journal.pone.0181850.g005
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confirms that this pattern is due to the activity of many units; the Q-Q plots of activity in both

the left and right hippocampus revealed shifts from the reference lines. As we expand on in the

General Discussion, this profile of results is consistent with the PARLO model.

In addition to hippocampal activity, we also explored whether spike counts in the remain-

ing brain regions were associated with Language Switch Type. Although we found no signifi-

cant Language Switch Type effects on correct trials alone (ts<2.73, padjs>0.08), we observed

reliable effects on all trials (correct and incorrect) within the left amygdala (t(35) = 5.67,

padj<0.001); all other regions: ts<2.79, padjs>0.08). Switch trials were associated with

increased activity relative to NonSwitch trials (see Fig 8). Interestingly, this effect appears in an

area that is associated with emotional regulation, which indicates that switching across lan-

guages within a continuous recognition task may recruit emotional processing resources.

Effects of Language and Language Switch Type. In light of extant findings that switching

from one’s L1 to one’s L2 is especially costly [37,64–65], we tested whether the effects of Lan-

guage Switch Type within the hippocampus was influenced by the Language (Spanish vs.

English) in which a target appeared. Because our subject group was composed entirely of

native Spanish speakers, we reasoned that switching from Spanish to English (L1-to-L2) would

incur a neural cost larger than that of switching from English to the dominant Spanish lexical

item (L2-to-L1). We tested this by conducting separate Language Switch Type analyses for

English and Spanish targets, with analyses of English targets reflecting L1-to-L2 processing

and those of Spanish targets reflecting L2-to-L1 processing.

In the hippocampus, we observed a significant effect of switching on English targets (i.e.,

Spanish to English) in both the left (t(17) = 2.53, padj = 0.04) and right hippocampi (t(29) =

Fig 6. Firing rates in all recorded brain regions as a function of Old/New Status on correct trials only.

Distributions of the t-values for Target-NonTarget comparisons of normalized spike counts in all units

recorded. * denotes cases when the distribution is different from 0 at the p<0.05 level (all tests corrected for 8

comparisons using Benjamini-Hochberg corrections).

https://doi.org/10.1371/journal.pone.0181850.g006
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-2.99, padj = 0.01). As can be seen Panel A of Fig 9, the neural activity associated with these

switches is positively-skewed in the left hemisphere, indicating more firing for English Switch

trials compared to English NonSwitch trials. The opposite pattern appeared in the right hippo-

campus, where English NonSwitch trials led to more activity than English Switch trials.

Spanish targets resulted in a similar pattern. There was an effect of Language Switch Type

in the left (t(17) = 2.47, padj = 0.05) and right hippocampus (t(29) = -2.85, padj = 0.02; Panel B

of Fig 9). This suggests that the Language Switch Type effects are comparable regardless of the

language into which one is switching and regardless of language dominance. This pattern is

not consistent with findings that L1-to-L2 switches are more demanding than L2-to-L1

switches. Instead, we report a general cost of switching for Spanish-to-English and English-to-

Spanish in Spanish-dominant individuals (though, note that a subset of our participants were

fairly balanced between English and Spanish as indicated by the Cloze scores in Table 1).

We also examined the joint effect of Language and Language Switch Type in the remaining

brain regions, and found no clear evidence of an effect of switching on English targets in any

region (ts<2.73, padjs>0.09). Switch effects of Spanish targets, on the other hand, revealed an

effect in the left amygdala (t(35) = 5.20, padj<0.001; all other regions: ts<1.61, padjs>0.10).

These results provide the first glimpse of discriminate and direct neuroanatomical resources

that support switching into one’s L1 versus L2: Switching into most subjects’ dominant lan-

guage (Spanish) elicited greater firing in left amygdala, an effect that did not emerge under

Fig 7. Hippocampal firing rates as a function of Language Switch Type on all trials only (correct and

incorrect). Panel A displays distributions of the t-values for Switch-NonSwitch comparisons of normalized

spike counts in all units recorded in the hippocampus. Panel B depicts Q-Q plots comparing the normalized

spike count distribution of correct Switch trials vs. the distribution of correct NonSwitch trials for the left and

right hippocampus. * denotes cases when the distribution is different from 0 at the p<0.05 level (all tests

corrected for 2 comparisons using Benjamini-Hochberg corrections).

https://doi.org/10.1371/journal.pone.0181850.g007
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cases when subjects switched into their non-dominant language (English). This suggests that

the Switch effects in left amygdala (see previous section) may have been mediated by cases

when subjects must switch from English-to-Spanish. That is, the opposite switch from Span-

ish-to-English did not elicit a comparable change in neural firing in the left amygdala, where

the original switch effect appeared. This builds on functional MRI findings that discriminate

cases of switching between linguistic representations from cases of processing input from just

one language [66–68]. Finally, alongside the hippocampal findings, our results are compatible

with accounts that suggest network-wide support of cross-linguistic switching [18, 67, 69].

General discussion

The results presented here demonstrate the neural signature, at the single neuron level, of lexi-

cal recognition within and across languages in the bilingual brain. A cross-linguistic continu-

ous recognition memory task revealed significant and dissociative effects on neural firing

within the left and right hippocampi. Targets that were previously seen in the same language

(non-switches) triggered increased activation in the right hippocampus, whereas targets that

were previously seen in another language (switches) triggered increased activation in the left

hippocampus. This differential cross-hemispheric pattern aligns well with several models of

language processing that predict both bilingual and monolingual effects. For example, the

PARLO model proposes that the LH supports more abstract, “top-down” processing of seman-

tic content, while the RH places a premium on recognizing input in a veridical, “bottom-up”

fashion to enable processing of surface form [15]. Linking this idea to our findings, in order to

Fig 8. Firing rates in all recorded brain regions as a function of Language Switch Type on all trials

(correct and incorrect). Distributions of the t-values for Switch-NonSwitch comparisons of normalized spike

counts in all units recorded. * denotes cases when the distribution is different from 0 at the p<0.05 level (all

tests corrected for 8 comparisons using Benjamini-Hochberg corrections).

https://doi.org/10.1371/journal.pone.0181850.g008
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respond correctly on switch trials, the participant had to access a memory trace for an abstract

representation (i.e., a type common to both words), as the veridical representation alone

would not yield information that had been previously seen (i.e., two distinct tokens for each

word). In the non-switch trials, access to either level of representation could be used to arrive

at a correct response. Thus, switching from L1-to-L2 or L2-to-L1 would require the retrieval of

semantic information, while non-switch trials, like L1-to-L1 or L2-to-L2 could rely on any

information that repeats across items including veridical representations, form, or semantic

information.

Outside of the hippocampus, we observed an asymmetry in language switch direction on

Switch trials, such that the amygdala was differentially recruited for targets constituting a

switch from Spanish-to-English compared to those that were English-to-Spanish switches.

Switching from the non-dominant English to the dominant Spanish representation in these

relatively dominant Spanish speakers appears to engage the emotional processing resources

supported by the amygdala. (Note that early effects of valence on lexical processing have also

been reported for monolinguals [70–72].) Interestingly, the lateralized switch effect in hippo-

campus and the L1-to-L2 amygdala effects are compatible with those reported by Hernandez

[34]. One possible interpretation of this pattern stems from recent work in Keysar et al. [73]

and Costa et al. [74]. These researchers report a "foreign language effect," whereby bilinguals

responding to moral dilemmas and emotion-laden scenarios appear to rely less on emotion-

based heuristics in their non-dominant or L2 language compared to when operating in their

Fig 9. Hippocampal firing rates as a function of Language Switch Type and Language on all trials

(correct and incorrect). Panel A displays distributions of the t-values for Switch-NonSwitch comparisons

among English targets of normalized spike counts in all units recorded in the hippocampus. Panel B displays

distributions of the t-values for Switch-NonSwitch comparisons among Spanish targets of normalized spike

counts in all units recorded in the hippocampus. * denotes cases when the distribution is different from 0 at

the p<0.05 level (all tests corrected for 2 comparisons using Benjamini-Hochberg corrections).

https://doi.org/10.1371/journal.pone.0181850.g009
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L1. Costa et al. [74] also presented their participants with emotionally-neutral logic problems,

and observed that the foreign language advantage disappeared in their behavioral measures.

Although the words presented current CRM task were not particularly emotionally charged, it

is possible that even single-word stimuli in one’s dominant language are more tightly linked to

emotional centers than their translation equivalents in a non-dominant language.

Beyond the amygdala results, it is perhaps surprising that we did not find any compelling

evidence that the prefrontal regions from which we recorded (anterior cingulate cortex and

ventromedial prefrontal cortex) were sensitive to stimulus presentation in alternating lan-

guages. There are however three potential explanations of differences between our findings

here and those reported in the neuroimaging literature: differences in the task, differences in

the subject population, and differences between measurement techniques.

In terms of the task performed, we note that the bilingual continuous recognition task used

here did not require language "switching" as usually conceived or implemented in studies of

bilingual language use [75–76]. We note in particular that the lack of observed results in the

anterior cingulate cortex (ACC) here contrasts with the results reported by Abutalebi and col-

leagues [76–77] (see also [78]), in which the ACC played a central role. We believe these differ-

ences may be due to the fact that the tasks described in [76–77] are quite different from the

task we used here. In [76] paper, the task was to listen to connected discourse that occasionally

switched on occasion mid-sentence from one language to another. In the [77] paper, the task

was a production task in which participants were required to switch from one language to

another. In both of these tasks, inhibition of one language or the other is critical (as Abutalebi

at al. [76–77] argue). Assuming that participants in the former task were attempting to con-

struct coherent interpretations of the input, on switch trials they would need to inhibit which-

ever language the sentence had begun in. In the latter task, participants had to inhibit one

language to name a picture in the other. As noted above, inhibition was in fact not strictly nec-

essary in our task, even in "switch" trials. In fact, in order to answer correctly ’yes’ on switch tri-

als, participants would not need to "switch" at all: they would in fact need to keep both

languages active, in order to remember that they had seen some word, in either language, that

meant, e.g., RIVER (where the capitalized word stands for the abstract semantic representation

of the entity). To answer correctly ’yes’ in the "non-switch" trials, they of course would not

have to switch (or inhibit another language), either. So, although there may have been some

trials on which participants could have consciously or actively inhibited one language in favor

of the other, doing so would not have been essential for their successful performance of the

task. As such, it is not terribly surprising that we observed no differences in activity in prefron-

tal regions associated with executive control.

In addition, given that the bilingual CRM task is first and foremost a recognition memory

task, it is possible that it was not demanding enough to recruit prefrontal regions or networks

associated with language-switching by other researchers (e.g., basal ganglia) [79–81]. For

example, the rapid instructed task learning (RITL) task employed in [79] included complex

mathematical operations and new instructions at the beginning of each trial, such that each

trial was a "novel task."

Differences between patient populations may also account for why we did not see differen-

tial patterns of activation as a function of switching in prefrontal regions. Recall that our data

were recorded from patients with severe epilepsy. Recent neuroimaging results implicating

prefrontal regions in language switching come from healthy participants. There are thought to

be neuroanatomical differences between patients with epilepsy (as in our population) and

healthy individuals [82] (but see [83] for evidence of negligible differences between epileptic

and non-epileptic neuron activity). For example, recent work suggests that such patients expe-

rience reorganization of language networks that result in great inter-hemispheric activation
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relative to healthy controls [82]. It is plausible that the current results are a by-product of some

gross rewiring of classic language networks, leading to the under-recruitment of prefrontal

regions typically observed to be highly active in bilinguals as they move between languages.

Future research exploring this speculation would be welcome.

Finally, it is important to note that neuroimaging studies provide an indirect measure of

neural activity, typically, changes in the level of the blood oxygen level dependent (BOLD) sig-

nal. The exact relationship between this signal and underlying firing of neurons in a given

brain area is still unclear [84–87] and may well differ between different brain areas and tasks

[88–92]. It is thus perhaps less surprising to see differences between the results reported by

direct measures of neural firing, such as reported here, and neuroimaging studies.

Future directions & concluding remarks

The current results provide a springboard for many areas of future experimentation. First, the

sample included only five patients, limiting the power to perform certain multivariate analyses,

(e.g., analyses of lag between repeating items, of which we had anywhere from no lag, or an

immediate repeat, up to a 32-item lag). Future work could explore the effects of lag and reten-

tion in a cross-linguistic task like ours in healthy samples using other methods like co-registra-

tion of fMRI and EEG or from non-invasive brain stimulation techniques (like transcranial

direct current stimulation or transcranial magnetic stimulation [93]). Second, although we

were not able to run an equivalent experiment with monolingual controls (due to the restric-

tions that come with identifying and testing patients like those who participated in our study),

it is possible that a comparable design could be developed to test for similar effects in healthy

monolinguals. One example might be a cross-modal running recognition memory task, in

which monolinguals judge whether they have seen repeating semantic information that

appeared either as pictures or words, irrespective of whether the given stimulus was previously

encountered in image or lexical form (cf. [34]). Finally, a wider spread of language dominance,

in both directions, among a larger sample of patients would be hugely beneficial in improving

both statistical power and the assessment of bilingual models (e.g., RHM) that make explicit

predictions with respect to L1-L2 balance.

The present experiment is able to distinguish between theories of language processing in

the brains of both monolinguals (e.g., PARLO) and bilinguals (e.g., RHM) at the level of the

fundamental computational units of the brain, namely, single neurons. Of particular interest

to bilingual language processing is the widespread, bilateral nature of linguistic function in

bilinguals. Although adding another language into the mix complicates the study of language

in the brain, coordinating, accessing, and generating multiple languages may engage non-lin-

guistic cognitive functions in quantitatively and/or qualitatively different ways than can be

observed in monolinguals [34, 40, 94]. For example, compared to monolinguals, bilinguals

routinely show more distributed patterns of neural activation [40, 95–96], which often mani-

fests as increases in global bilateral recruitment [39] (see [34] for an example of local bilateral

recruitment in hippocampus). For instance, Rüschemeyer and colleagues [97] observed

increased activation in the basal ganglia of bilinguals processing language in their L2 compared

to in their L1. Indeed, the basal ganglia has been recognized to be integral to higher-order cog-

nitive function [98], including learning and memory [99] and language [100]. Additional evi-

dence suggests that for both mono- and bilinguals, the coordination of lateralized language

processes appears to depend on the transmission of information across the corpus callosum

[101]. Although we lack a monolingual control group, our results are consistent with this col-

lection of findings, specifically by demonstrating that bilingual processing recruits brain

regions across both hemispheres and involves trade-offs between long-term memory and
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emotional regulation regions within the brain. To close, the present intracranial microwire

recordings point toward potentially fruitful avenues and questions for future studies using

both this and other intracranial recording methods [13], as well as non-invasive methods to

elucidate the cognitive and neural architecture supporting real-time processing efforts in

monolinguals and bilinguals.
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