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Abstract

Multipath signal is often considered an interference that must be removed. The coherence

between multipath and direct component makes it difficult to use conventional direction-of-

arrival (DOA) estimation methods in a smart antenna system. This study demonstrates a

new multipath signal DOA estimation technique. Unlike the common methods, without deco-

herence preprocessing, the proposed algorithm first apply a complex fast independent com-

ponent analysis (cFastICA) algorithm to obtain the steering vectors with multipath

information that corresponds to each source signal. Then, according to the special structure

of the obtained steering vectors and spatial sparsity of the multipath signal components, the

algorithm uses the solution of the sparse signal reconstruction problem in the compressive

sensing (CS) theory, and the DOA estimation of the multipath signal is translated into an l1

norm minimization problem. Finally, we search the space spectrums to acquire the DOAs

for each direct component and multipath component. Comparative simulation tests and

analysis prove the effectiveness of the proposed algorithm in estimation accuracy in under-

determined conditions.

1. Introduction

Array signal processing is widely used in radar, sonar, and seismic exploration, anti-jamming

and wireless communications. The global navigation satellite system (GNSS) has received a

great deal of attention and become increasingly popular because of its various applications in

both civil and military areas. For GNSS anti-jamming, array signal processing techniques can

transform the spatial direction of the beam, restrain the interference of the other directions,

and transform the signal gain at different spatial positions. By determining the spatial spectra

of the impinging targets, the direction-of-arrival (DOA) estimation on multi-antenna GNSS

receivers is an important aspect. It uses the relationship between various elements of the sensor

array in space to estimate the parameters of the spatial signals.

The signal broadcasted by the GNSS satellite is a spread spectrum signal. The blockage,

reflection and diffraction of signals by buildings or other obstacles significantly degrade the

availability and accuracy of the GNSS. The reflected signals can interfere with the reception of

PLOS ONE | https://doi.org/10.1371/journal.pone.0181838 July 27, 2017 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Zhao L, Xu J, Ding J, Liu A, Li L (2017)

Direction-of-arrival estimation of multipath signals

using independent component analysis and

compressive sensing. PLoS ONE 12(7): e0181838.

https://doi.org/10.1371/journal.pone.0181838

Editor: Yudong Zhang, Nanjing Normal University,

CHINA

Received: November 21, 2016

Accepted: July 8, 2017

Published: July 27, 2017

Copyright: © 2017 Zhao et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The joint financial support from the

National Natural Science Foundation of China

(under grant nos. 61304234, 61633008,

61304235), the Fundamental Research Funds for

the Central Universities (HEUCFX041403), and the

Post-Doctoral Scientific Research Foundation,

Heilongjiang Province (LBH-Q15033 and LBH-

Q14054) is gratefully acknowledged.

https://doi.org/10.1371/journal.pone.0181838
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181838&domain=pdf&date_stamp=2017-07-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181838&domain=pdf&date_stamp=2017-07-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181838&domain=pdf&date_stamp=2017-07-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181838&domain=pdf&date_stamp=2017-07-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181838&domain=pdf&date_stamp=2017-07-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0181838&domain=pdf&date_stamp=2017-07-27
https://doi.org/10.1371/journal.pone.0181838
http://creativecommons.org/licenses/by/4.0/


the signals that are directly received from the satellites; this phenomenon is known as multi-

path interference or multipath because the signals are received via multiple paths. These multi-

path interferences must be mitigated or may cause the signal received by the array antenna to

have a direct component and several multipath components, which are coherent to one

another. These components will be merged into a source signal and make the signal subspace

rank deficient when general DOA estimation methods are used, such as multiple signal classifi-

cation (MUSIC) [1] and estimating signal parameters via rotational invariance techniques

(ESPRIT) [2] to find the direction of the multipath signal (the signal with multipath compo-

nents). The estimated performance will decline and may fail.

For the DOA estimation of multipath signals, most researchers preprocess the coherent sig-

nals to achieve decoherence and then estimate the DOAs. Currently, coherent signal-prepro-

cessing methods mainly include the following two categories:

Examples of dimensionality reduction methods are the forward spatial smoothing (SS)

algorithm [3], forward and backward spatial smoothing algorithm [4], and modified spatial

smoothing algorithm [5]. This type of method is easy to implement, and when combined with

the MUSIC algorithm, it is considered a very effective DOA estimation algorithm for multi-

path signals [6]. However, because the algorithm obtains the decoherence capacity at the

expense of loss array aperture and requires more antenna array elements to handle the same

number of signals, the estimated performance decreases.

Examples of non-dimensionality reduction methods are the Toeplitz algorithm [7] and sub-

space fitting algorithm [8]. Toeplitz algorithm is easy to implement and can be used for a low

SNR; however, the computation complexity of the algorithm is high, and the estimation error

is large. Similar to MUSIC and ESPRIT, the subspace fitting algorithm can be considered a

subspace algorithm and has decoherence properties and good estimation performance with a

low signal-to-noise ratio and low sampling number. However, the algorithm involves a high-

dimensional optimization problem and high computational complexity during the fitting pro-

cess, and the global convergence of parameters is not guaranteed.

Sparse signal reconstruction in the compressed sensing (CS) theory [9], which is a new

method of signal analysis, can be used to obtain a concise expression of the signal and has been

used in many fields [10][11][12][13]. Because there are only a few non-zeros in the spatial

spectrum of array signals, which represent their corresponding spatial locations, this sparsity

can be applied to the DOA estimation. Bilik proposed to use the compressive sensing (CS) the-

ory to reconstruct the high-resolution spatial spectrum from a small number of spatial mea-

surements [14]. Compressive MUSIC identifies the parts of support using CS, after which the

remaining supports are estimated using a new generalized MUSIC criterion that can approach

the optimal l0-bound with a finite number of snapshots [15]. Li introduced CS to single-snap-

shot DOA estimation [16]. The method proposed by Wei Zhu provided high resolution while

using a uniform linear array without restricting the requirements of the spatial and temporal

stationary and correlation properties of the sources and noise [17].

The independent component analysis (ICA) algorithm is also suitable for processing array

signals. It has no special requirements for the unknown source signal, noise or transmission

channel. The algorithm can separate the mixed signal and has good denoising performance

without compromising the details of other signals. Chang proposed a complex-valued ICA

approach to simultaneously run the DOA estimation and Blind signal separation [18]. Jančovič
presented an underdetermined DOA estimation algorithm that used the ICA and time-

frequency masking [19]. The proposed method in [20] extracts the Gaussian noise basis vector

using the modified complex-valued FastICA algorithm and improves the resolution capability

of a sensor array on which non-Gaussian signal sources with high correlation are impinging.

DOA estimation of multipath signals using ICA and CS
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A new method for the DOA estimation of uncorrelated and coherent signals was proposed in

[21].

Most DOA estimation methods based on CS and ICA are only used to process the array sig-

nal without multipath. As with many decoherence algorithms, the algorithms in [20] and [21]

eliminate only the coherence among the signals, obtain the DOA of the direct component, and

do not use the coherence information to obtain the DOAs of multipath components.

In this paper, according to the special structure of the steering vector with multipath infor-

mation, an algorithm based on CS and ICA is proposed. The new method uses the ICA algo-

rithm to obtain the steering vector, which contains the multipath component information, and

the CS theory is used to estimate the DOA of the direct component and each multipath com-

ponent of the array signals. This method is significant to suppress the multipath interference

in the beamforming process. In addition, without decoherent preprocessing, the calculation

process is simplified.

The structure of the paper is as follows. In Section 2, the signal model with multipath com-

ponents is introduced. In Section 3, we describe the process using the new approach to achieve

the DOA estimation of the multipath signal. In Section 4, some comparable simulation and

test results are demonstrated for the proposed method and spatial smoothing with the MUSIC

algorithm in different conditions. Section 5 summarizes the conclusions.

2. Problem Formulation

Consider a uniform linear array (ULA) with M isotropic sensors and take the first sensor as

the reference. N source signals are received by the array antenna and receive a mixed signal of

M parallel channels. The result is expressed as

XðtÞ ¼ ASðtÞ þ nðtÞ ð1Þ

where X(t) = [x1(t), x2(t), . . . xm(t)]T is the received signal of each array element;

A = [a1,a2,. . .aN] is the direction matrix of the antenna array, which is an array manifold; an is

a steering vector of the n-th channel, whose value is determined by the DOA and array element

arrangement in the antenna array; S(t) = [s1(t), s2(t), . . . sN(t)]T is the source signals; and n(t) is

an added white Gaussian noise (AWGN) vector.

For every source signal, if Pmultipath components are also received, since the multipath

components are attenuated relative to the direct component without waveform changing, an is

rewritten as

ân ¼ an þ
XP

p¼2

cnLPanLP ; ðn ¼ 1; 2 � � �NÞ ð2Þ

where anLp is the steering vector of the p-th multipath component in the n-th channel; and cnLp
is the propagation attenuation coefficient of the p-th multipath component in the n-th

channel.

The following relationship exists between the angle of arrival θn and the steering vector an
for a ULA:

an ¼ ½1; e
j2pdsinyn=l; � � � ; ej2pðM� 1Þdsinyn=l�

T
; ðn ¼ 1; 2 � � �NÞ ð3Þ

where d is the array element spacing, and λ is the wavelength of the received signal.

Eq (1) shows that the source signals are linearly mixed by the antenna array and that the

array manifold Â is an aggregate of the steering vector ân of each source signal. For the
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multipath receipt condition, the steering vector also contain multipath information, as

expressed in Eq (2), which is the sum of all steering vectors multiplied by their attenuation

coefficients.

3. Proposed DOA estimation method

Many studies have verified that the mixed signal can be separated into source signals using the

ICA algorithm [22]. Hence, the linear mixed array, which is array manifold Â, can be obtained.

For a ULA, its array manifold follows the Vandermonde matrix structure, and the DOAs can

be easily determined [18].

However, in the multipath receipt environments, the steering vector ân in the array mani-

fold, which is obtained with signal separation using ICA, contains multipath components.

These multipath components are included in Eq (4). The steering vector of each component

should be resolved in underdetermined conditions. If the expected DOAs are expended to the

entire spacing spectrum, the DOA spacing distribution is notably sparse and satisfies the

important assumption of the compressive sensing theory. Thus, the sparse spectrum of ân is

obtained by minimizing the l1 norm using compressive sensing. Then, the expected DOAs are

obtained.

Currently, the DOA estimation process can be divided into two steps: separation of the sig-

nal using ICA to estimate the array manifold Â and obtaining the DOAs of the direct and mul-

tipath components using compressive sensing.

3.1 Separating signals using the ICA algorithm

The signals from different sources are typically statistically independent from one another.

The ICA algorithm uses this characteristic to estimate the source signals from the observed

mixed signals.

To use the ICA algorithm, the statistical properties of the source signals satisfy the following

assumptions:

1. All the source signals are independent from each other. In practical, this assumption is not

strict and easy to satisfy.

2. At most only one of the independent signals can be Gaussian. Most of the digital communi-

cation signals can be considered as sub-Gaussian and therefore this assumption holds[23].

Because noise can be used as sources and separated from the mixed signals, a noisy signal

model can be considered a promotion of a noise-free mode[24]. Therefore, a noise-free linear

instantaneous mixture ICA model is discussed. Similar to Eq (1), N unknown mutually statisti-

cally independent source signals are received byM sensors through an unknown linear chan-

nel transmission. The received signal formulated in Eq (1) can be simply expressed as

XðtÞ ¼ ASðtÞ ð4Þ

A matrixW should be obtained when ICA is used to process the received mixed signal to

estimate the source signal:

YðtÞ ¼WXðtÞ ¼WASðt Þ ¼ GSðtÞ ð5Þ

where the ICA output Y(t) = [y1(t), y2(t), . . . yn(t)]T is the estimation of unknown source sig-

nals S(t) = [s1(t), s2(t), . . . sN(t)]T,W is the de-mixing matrix (or weighted matrix), and G is the

global matrix. If there is only one element approximately equal to 1 in each row and each

DOA estimation of multipath signals using ICA and CS
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column of G while the other elements are approximately zero, the source signals are success-

fully separated.

There are many approaches to solve the ICA problem using Eq (7) [25][26][27]. Since com-

plex calculations must be solved in this study, a complex fast independent component analysis

(cFastICA) algorithm [28][29] is applied, as proposed by Bingham and Hyvärinen from the

Helsinki University of Technology in Finland based on the classic real fast ICA algorithm (Fas-

tICA)[30].

FastICA is one of the most common algorithms with a fast convergence, and the learning

rate does not have to be set.

In the cFastICA algorithm, a more robust and faster approach is developed to approximate

the negative entropy

JðyÞ � ½EfFðyÞg � EfFðvÞg�2 ð6Þ

where y is the output variable with zero mean and unit variance; v is a Gaussian random vari-

able with zero mean and unit variance; and F(�)is an arbitrary non-quadratic function.

The purpose of the algorithm is to maximize J(y) by selecting the mixing matrixW.

Similar to the FastICA algorithm, an approximate higher-order statistic (e.g., F(y) = −exp

(−y2/2)) is applied to the above cost function in cFastICA. A derived iterative formula of the

de-mixing matrixW is as follows:

wkþ1 ¼ EfXðwHk XÞ
�f ðjwHk Xj

2
Þg � Eff ðjwHk Xj

2
Þ þ jwH

k Xj
2f 0ðjwH

k Xj
2
Þgwk

wkþ1 ¼
wkþ1

kwkþ1k

ð7Þ

where w is a raw value of the de-mixing matrixW and f(�)and f0(�) are the first- and second-

order derivatives of F(�), respectively.

By comparing Eqs (1) and (4), it is observed that the de-mixing matrixW of the cFastICA

algorithm can be considered an array manifold of signals received by the antenna array.

As previously mentioned, if the global matrix G =ŴÂ has only one element that is approxi-

mately 1 in each row and each column and the other elements are approximately 0, the mixed

signal will be successfully separated. Therefore, the inverse matrix (or pseudoinverse matrix

when the number of sources N is not equal to the number of sensorsM) Â of the de-mixing

matrix estimationŴ can be considered the estimation of array manifold A. There are some

differences in amplitude, phase and sort order between Â and A due to the inherent uncer-

tainty of the ICA algorithm [22]. Fortunately, these differences do not affect the final DOA

estimation results because the DOA depends on the ratio between the elements in a steering

vector.

Certainly, the ICA algorithm should pre-process the received data, which includes center-

ing and whitening the received data. These operations can improve the convergence proper-

ties, relieve the ill-posed problem, eliminate the information redundancy or reduce the effect

of noise.

3.2 Estimating the DOA using the compressive sensing theory

CS theory is a new theory about sparse signal acquisition and recovery, which was proposed by

Candes [31], Romberg [32], Tao and others in 2006. Unlike the traditional Nyquist sampling

theorem, the CS theory is a new signal sampling, encoding and decoding theory that fully uses

the signal sparsity or compressibility. The CS theory combines the sampling and compression

into one. The realization process of the algorithm collects the non-adaptive linear projection

measured value of the signal and reconstruct the original signal from a small number of

DOA estimation of multipath signals using ICA and CS
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measured values according to the corresponding reconstruction algorithm, which significantly

reduces the sampling rate of signal. It can be used to accurately restore the original signal or

estimate the signal parameters by using much less required measurement data than the classic

Nyquist sampling theory.

In the CS theory, using a random measurement matrix, a sparse high-dimensional signal

can be projected onto a low-dimensional space, and this random projection contains sufficient

information to reconstruct the signal. Using the sparsity priori conditions of the signal, the

original signal can be reconstructed by the optimization theory algorithm with a high

probability.

As introduced in subsection 3.1, the weighted matrix estimationŴ is determined; then, the

estimation Â = [â1,â2,. . .,âN] of the array manifold A is obtained. ân(n = 1, 2, . . .N) is the esti-

mated steering vector with multipath component information and corresponds to each source

signal. Thereafter, Eq (2) can be rewritten as

ân ¼ ½~an; ~anL2
; ~anL3

; � � � ; ~anLP �½~cnL1
; ~cnL2

; ~cnL3
; � � �~cnLp �

T
þ _n

¼ BCþ _n
ð8Þ

where B ¼ ½~an; ~anL1
; ~anL2

; � � � ; ~anLP � is a set of steering vectors, which describe the direct compo-

nent and multipath components, which are received from the same source and enter the array

antenna. C ¼ ½~cnL1
;~cnL2

;~cnL3
; � � �~cnLP �

T
is a set of propagation attenuation coefficients of the

multipath components relative to the direct components. In particular, ~cnL1
is the attenuation

coefficient of the direct component, and its value is equal to 1. _n is the discrepancy between

the estimated steering vector (after adjusting the amplitude and sequence) and the actual steer-

ing vector caused by additive noise in Eq (1).

All components of a source signal can be extended to the entire space domain because a

measured target in the entire space domain only occupies a small amount of angular resolution

units, which implies that only the P non-zero elements in the entire space domain and remain-

ing elements are zero. Therefore, the target distribution space is sparse. Consequently, the

multi-objective estimation problem is considered a sparse vector reconfiguration, the non-

zero elements of the sparse vector and their locations in the vector imply the magnitude and

angle of the object.

According to the compressive sensing theory, the steering vector can be re-configured to an

over-complete dictionary. The specific method samples the angular space or uniformly discre-

tizes the angle space. As a result, the angle space is divided into uniform grids. Suppose the

indices of Q grids are [φ1,φ2, . . .φQ], these Q grids will be the candidate direction of the arrival

vectors, and P⪡Q. According to Eq (5), the over-complete dictionary is B = [b(φ1),b(φ2), . . .

b(φQ) and bðφqÞ ¼ ½1; e
� j2pdsinφq=l; � � � ; e� j2pðM� 1Þdsinφq=l�

T
(1�q�Q).

Eq (10) is a typical single-measurement vector (SMV) model in the compressive theory.

Furthermore, it is an underdetermined equation, and the solution obtained using traditional

methods is not unique. However, its most sparse solution can be found by solving the optimi-

zation problem

minkCkl0 s:t: ân ¼ BCþ _n ð9Þ

where kCkl0 is the l0 norm of C or the number of non-zero elements of C. This is a non-

deterministic polynomial-time hard problem (NP-Hard) [33]. There are CPM possible linear

combinations that satisfy Eq (11). A simpler l1 norm optimization can be used to solve this

DOA estimation of multipath signals using ICA and CS
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problem [34]. Thus, Eq (1) can be expressed as

minkCkl1 s:t: ân ¼ BCþ _n ð10Þ

This noisy SMV problem can be converted to solve the second-order cone programming

(SOCP) [35]:

minkCkl1 s:t: kân � BCk
2

l2
� b

2
ð11Þ

where β is the variance of _n. In practice, after acquiring and tracking the GNSS signal, the dis-

crepancy between the local generated signal and the practical received signal separated by ICA

can be obtained. Meanwhile, the discrepancy between the estimated steering vector (after

adjusting the amplitude and sequence) and the actual steering vector can be obtained.

In this study, the interior point method (IPM) is applied [36] to solve Eq (11) and achieve

the sparse spectrum of C.

With reference to Eq (8), the following conclusion can be made. For a signal source with a

direct component and a multipath component, if φq is equal to the DOA of the direct compo-

nent, the attenuation coefficient cq is approximately equal to 1. If φq is equal to the multipath

component DOA, the attenuation coefficient cq is approximately equal to the attenuation coef-

ficient of this component. If φq is not equal to the direct component or multipath component

DOA, the corresponding cq is approximately equal to 0. Therefore, expected results can be

obtained through the sparse spectrum peak. Additionally, the incident signal can be deter-

mined from the direct or multipath component based on the value of cq.

3.3. DOA estimation algorithm summarization

The proposed DOA estimation algorithm is summarized as follows, and a flow chart of the

algorithm is shown in Fig 1.

1. Pre-process received array signals, including the centering and whitening processes.

2. Initialize the weighted vector w of the first component and successively iterate w using

Eq (7).

3. If the algorithm does not converge, go to step (2); if the algorithm converges, obtain the

weight vector of an independent component.

4. Obtain the weight vectors of all components, which is the de-mixing matrixŴ.

5. Calculate the inverse (or pseudoinverse) of the de-mixing matrixŴ to obtain the array

manifold estimation Â.

6. Create an over-complete dictionary B according to the grid indices of the DOA space.

7. Solve the SOCP problem and obtain the sparse spectrum of the propagation attenuation

coefficient set Ĉ for a source signal.

8. Find the peak values of the sparse spectrum and obtain the DOAs of the direct and multi-

path components that correspond to ân.

9. Obtain all DOAs of the direct and multipath components one-by-one.

4. Test results and analysis

This section focuses on evaluating the proposed coherent signal DOA estimation scheme. As

introduced in Section 1, currently, the DOA estimation methods of coherent signals are

DOA estimation of multipath signals using ICA and CS
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mainly spatial smoothing techniques such as SS-MUSIC and SS-ESPRIT, which are widely

accepted. In addition, [37] provides a detailed comparison of these two methods. Correspond-

ingly, SS-MUSIC is significantly advantageous. Therefore, the proposed ICA-CS and

SS-MUSIC schemes are compared in this section.

To comprehensively assess ICA-CS, four sets of simulation studies were performed to verify

the spatial resolution, accuracy at different SNRs, snapshots and underdetermined conditions.

Fig 1. Flow chart of the proposed algorithm.

https://doi.org/10.1371/journal.pone.0181838.g001

Table 1. The general simulation conditions.

Signal type GNSS navigation signals

Number of satellites 4

Incident angles of direct components -40˚ -20˚ 10˚ 40˚

Number of multipath components 2 1 1 0

Incident angles of multipath components 30˚, -10˚ -30˚ 20˚ NA

Propagation attenuation coefficients -6 dB, -9 dB -7 dB -8 dB NA

https://doi.org/10.1371/journal.pone.0181838.t001
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Simulation conditions were set up based on assumptions of the actual GNSS signal trans-

mission environment. The processing object is a GNSS signal in this paper, which indicates

that at least four satellites are required to complete the positioning solution, so the direct sig-

nals are set from four different directions. To study the adaptability of the simulation, for the

source signals, we set the existence of one multipath component, two multipath components

and no multipath component. The following general simulation conditions are shown in

Table 1. The GNSS navigation signals from 4 satellites are incident to the uniform linear array

of 12 elements from different angles, the incident angles are -40˚, -20˚, 10˚, and 40˚. There are

2 multipath components for the first signal, and the incident angles are 30˚ and -10˚; the sec-

ond and third signals each have 1 multipath component, and the incident angles are -30˚ and

20˚; and the fourth signal does not have a multipath component. The propagation attenuation

coefficients of the 4 multipath components are -6 dB, -7 dB, -8 dB, and -9 dB.

Simulation 1: Spatial resolution

For Simulation 1, the signal-to-noise ratio (SNR) of the signals was 20 dB, and the sampling

number was 2000. The incident angle of multipath component for the second signal was set as

-22˚. The space spectrum estimation results of the two algorithms are shown in Fig 2.

Fig 2. Local contrast diagram of spatial spectrum of the independent component analysis-compressive sensing

and spatial smoothing-multiple signal classification algorithm.

https://doi.org/10.1371/journal.pone.0181838.g002
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From the simulation results, the ICA-CS algorithm has sharper peaks than SS-MUSIC;

when the direct component and its multipath component are separated by 2 degrees, the

SS-MUSIC algorithm cannot distinguish their arrival directions, and the ICS-CS algorithm

can obtain the desired result. Thus, the DOA estimation results of the ICA-CS algorithm have

a higher resolution in the spatial spectrum because the spatial spectrum of the MUSIC algo-

rithm reflects the distance between the steering vector and noise subspace, and the perfor-

mance of the algorithm depends on their orthogonality. In the coherent signal reception

environment, a distorted covariance matrix worsens the orthogonality. Correspondingly, the

resolution of the MUSIC algorithm deteriorates. The spatial spectrum of the ICA-CS reflects

the signal energy from a certain angle in the space domain, and the spatial spectrum amplitude

is zero at the angle of no signal arrival; therefore, needle-shaped curves appear in Fig 2.

In addition, the DOAs of all components can be achieved from the spatial spectrum of the

array signal using the SS-MUSIC algorithm. However, it is difficult to distinguish the direct

and multipath components received from the same source signal. The ICA-CS algorithm

solves the steering vector that corresponds to each source signal to calculate the DOAs of its

direct and multipath components. As a result, the spatial spectrums of the four source signals

are shown in Fig 3. Different multipath components and their attenuation are also observed.

Fig 3. Spatial spectrum of all components for each signal using the independent component analysis-

compressive sensing algorithm.

https://doi.org/10.1371/journal.pone.0181838.g003
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Simulation 2: DOA estimation error at various SNRs

The conditions of Simulation 1, except for the SNR, were used to assess the DOA estimation

error at various SNRs. The range of tested SNR is 10–40 dB with an interval of 2 dB. The esti-

mated DOA errors were obtained using 100 independent trials of the experiment. A different

computer realization of the noise was rendered for each trial. For the first source signal, the

root-mean-square error (RMSE) of the DOA estimation of the direct and multipath compo-

nents changes with the SNR for different algorithms, as shown in Fig 4 (the three graphs show

the estimation results of the direct component, multipath component 1, and multipath compo-

nent 2).

Fig 4 shows that the error of the two algorithms gradually decreases to zero with increasing

SNR. A larger SNR results in a smaller DOA RMSE. Whether it is a direct component or two

multipath components, the introduced ICA-CS outperforms the SS-MUSIC algorithm. In par-

ticular, an expected DOA estimation is obtained using the ICA-CS at low SNR.

Simulation 3: DOA estimation error in various snapshots

In the following, the conditions of Simulation 1, except the snapshot, were used to assess the

DOA estimation error in various snapshots. In this test, the snapshot changes from 300 to

3000. The SNR is equal to 10 dB. In total, 100 independent trials of the experiment were con-

ducted. The RMSEs of the DOA estimation versus the number of snapshots are plotted in Fig

5 (the three graphs show the direct component, multipath component 1, and multipath com-

ponent 2).

Fig 5 shows a similar DOA estimation RMSE behavior to simulation 2. The DOA estima-

tion RMSEs gradually decrease when the number of snapshots increases. The DOA estimation

errors of the direct and multipath components are less than 0.2˚ for the lowest number of

snapshots using the ICA-CS algorithm. For the SS-MUSIC algorithm, whether for a direct

component or two multipath components, its performance is significantly worse than the

ICA-CS algorithm.

In Simulations 2 and 3, since the DOA estimation performance of the SS-MUSIC algorithm

depends on the covariance matrix, and the low SNR and low snapshot conditions lead to

covariance, a larger error occurs and creates a large distance error between the steering vector

and the noise subspace. Additionally, the spatial smoothing algorithm reduces the array aper-

ture and further decreases the estimation accuracy for the same number of antenna array ele-

ments. The ICA-CS algorithm does not destroy the signal details and de-noise the input

signals, which can help recover the actual steering vector with a small amount of error.

Simulation 4: ICA-CS in underdetermined case

In the SS-MUSIC algorithm, the spatial smoothing will deteriorate the array aperture, which

implies that the signal from at least 1 element is lost after the spatial smoothing process [3]. In

addition, the MUSIC algorithm requires that the number of array elementsM is greater than

the incident signal number N×P [1]. Therefore, the DOA estimation of N×P incident signals

(including all direct and multipath components) requires at least (N×P+2) array elements if

the SS-MUSIC algorithm is applied.

The new DOA estimation method ICA-CS can be used on the condition that the number of

array elementsM is not less than the number of source signals N. In CS theory, the number to

carry out sparse signal recovery is as large as half the sensor number [38]; that is, the number

of multipath components for each source signal P is not greater thanM/2. Therefore, the

ICA-CS algorithm can be used in the underdetermined case where N�M and P�M/2, that is,
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the proposed algorithm can be used to perform the DOA estimation ofM source signals with

N×P =M2/2 components.

In this simulation, the number of antenna array elements was set to 5. Under this condition,

the SS-MUSIC algorithm does not perform well. Therefore, we compare the estimation results

Fig 4. DOA estimation root-mean-square errors of all components at various signal-to-noise ratios.

https://doi.org/10.1371/journal.pone.0181838.g004
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Fig 5. DOA estimation root-mean-square errors of all components in various snapshots.

https://doi.org/10.1371/journal.pone.0181838.g005
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using the ICA-CS algorithm when the element number is 5 and 12. The other conditions are

consistent with Simulation 1. Fig 6 shows the contrast diagram of the spatial spectrum for 4

source signals under two different element number settings.

When the proposed algorithm realizes the DOA estimation of a multipath signal in the

underdetermined condition, or if the number of antenna array elements is less than the num-

ber of received signals, the simulation performance decreases, and the maximum estimation

error is approximately 1˚.

5. Conclusion

In this paper, we proposed a multipath DOA estimation method, which combines the complex

fast independent component analysis with the compressed sensing theory without decoher-

ence processing. The simulation results illustrate the effectiveness of the proposed method.

When the SNR is 10 dB, the RMSE is maintained below 0.05˚, which is obviously better than

the classic SS-MUSIC algorithm. When the SNR is 10 dB and the sampling number is only

300, the estimated DOA RMSE can be maintained below 0.2˚, which is also applicable in the

absence of sufficient data. This algorithm can also perform a DOA estimation for multipath

signals in underdetermined cases that cannot be processed by other algorithms.

Fig 6. Contrast diagram of spatial spectrum for each signal for 5 and 12 array elements using the independent

component analysis-compressive sensing algorithm.

https://doi.org/10.1371/journal.pone.0181838.g006

DOA estimation of multipath signals using ICA and CS

PLOS ONE | https://doi.org/10.1371/journal.pone.0181838 July 27, 2017 14 / 17

https://doi.org/10.1371/journal.pone.0181838.g006
https://doi.org/10.1371/journal.pone.0181838


Similar to [14], a basis mismatch [39] may occur when the bearings of the far-field sources

appear between discretized angles. Luckily, the bearing space was discretized into a grid of 0.1˚

in the simulations of this paper, which makes the performance degradation errors because of

the basis mismatch less than 0.1˚, which is the resolution in simulations. In other words, the

simulation results are obtained in the presence of the basis mismatch. If the basis mismatch

problem is solved, the DOA estimation performance will be better, and this issue will be one of

my future studies.

Because of the experimental conditions are relatively complex, for example, to satisfy the

test requirements, we require several GNSS antennas and set them as a uniform linear array

while ensuring that specified number of direct components and its corresponding multipath

components are received by the antenna array. Thus, we only make the software simulations

and will perform the practical experiment in future studies.
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19. Jančovič P, Zou X, Köküer M. Underdetermined DOA estimation via independent component analysis

and time-frequency masking. Journal of Electrical and Computer Engineering, 2010; 2010: 36.

DOA estimation of multipath signals using ICA and CS

PLOS ONE | https://doi.org/10.1371/journal.pone.0181838 July 27, 2017 16 / 17

https://doi.org/10.1371/journal.pone.0181838


20. Chen S W, Jen C W, Chang A C. High-resolution DOA estimation based on independent noise compo-

nent for correlated signal sources. Neural Computing and Applications, 2009; 18(4): 381–385.

21. Ma G, Sha Z, Liu Z, Huang ZT. ICA-based direction-of-arrival estimation of uncorrelated and coherent

signals with uniform linear array. Signal, Image and Video Processing, 2014; 8(3): 543–548.

22. Hyvärinen A, Oja E. Independent component analysis: algorithms and applications. Neural networks,

2000; 13(4): 411–430.

23. Wang X, Huang Z, Zhou Y, Ren X. Approaches and applications of semi-blind signal extraction for com-

munication signals based on constrained independent component analysis: The complex case. Neuro-

computing, 2013; 101: 204–216.

24. Liquan Zhao. ICA algorithm and its application in array signal processing. Harbin Engineering Univer-

sity, 2009.

25. Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolu-

tion. Neural computation, 1995; 7(6): 1129–1159. PMID: 7584893

26. Amari S, Cichocki A, Yang H H. A new learning algorithm for blind signal separation. Advances in neural

information processing systems, 1996;757–763.

27. Cardoso J F, Souloumiac A. Blind beamforming for non-Gaussian signals. Radar and Signal Process-

ing, IEE Proceedings F. IET, 1993; 140(6): 362–370.

28. Bingham E, Hyvärinen A. A fast fixed-point algorithm for independent component analysis of complex

valued signals. International journal of neural systems, 2000; 10(01): 1–8.

29. Bingham E, Hyvärinen A. ICA of complex valued signals: a fast and robust deflationary algorithm. Neu-

ral Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference

on. IEEE, 2000;3: 357–362.

30. Hyvärinen A. A family of fixed-point algorithms for independent component analysis. Acoustics, Speech,

and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on. IEEE, 1997;5:

3917–3920.

31. Candès E J. Compressive sampling. Proceedings of the international congress of mathematicians.

2006;3: 1433–1452.

32. Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measure-

ments. Communications on pure and applied mathematics, 2006; 59(8): 1207–1223.

33. Candè E J, Wakin M B. An introduction to compressive sampling. Signal Processing Magazine, IEEE,

2008; 25(2): 21–30.

34. Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM review, 2001;

43(1): 129–159.
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