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Abstract

A growing number of studies have investigated combination treatment as an approach to

treat bone disease. The goal of this study was to investigate the combination of alendronate

and raloxifene with a particular focus on mechanical properties. To achieve this goal we uti-

lized a large animal model, the beagle dog, used previously by our laboratory to study both

alendronate and raloxifene monotherapies. Forty-eight skeletally mature female beagles

(1–2 years old) received daily oral treatment: saline vehicle (VEH), alendronate (ALN), ral-

oxifene (RAL) or both ALN and RAL. After 6 and 12 months of treatment, all animals under-

went assessment of bone material properties using in vivo reference point indentation (RPI)

and skeletal hydration using ultra-short echo magnetic resonance imaging (UTE-MRI). End

point measures include imaging, histomorphometry, and mechanical properties. Bone for-

mation rate was significantly lower in iliac crest trabecular bone of animals treated with ALN

(-71%) and ALN+RAL (-81%) compared to VEH. In vivo assessment of properties by RPI

yielded minimal differences between groups while UTE-MRI showed a RAL and RAL+ALN

treatment regimens resulted in significantly higher bound water compared to VEH (+23 and

+18%, respectively). There was no significant difference among groups for DXA- or CT-

based measures lumbar vertebra, or femoral diaphysis. Ribs of RAL-treated animals were

smaller and less dense compared to VEH and although mechanical properties were lower

the material-level properties were equivalent to normal. In conclusion, we present a suite of

data in a beagle dog model treated for one year with clinically-relevant doses of alendronate

and raloxifene monotherapies or combination treatment with both agents. Despite the

expected effects on bone remodeling, our study did not find the expected benefit of ALN to

BMD or structural mechanical properties, and thus the viability of the combination therapy

remains unclear.
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Introduction

The skeletal biology community has declared a crisis in osteoporosis treatment [1]. The use of

bisphosphonates, the longtime gold-standard treatment for bone loss, has declined due to con-

cerns over rare, but serious side effects such as osteonecrosis of the jaw and atypical femoral

fractures [2,3]. Although other anti-remodeling agents such as denosumab and raloxifene and

anabolic agents such as tereparatide are approved for use and effective [4], there is a clear need

to develop newer strategies for long-term preservation of skeletal health.

A growing number of studies have investigated combination treatment as an approach

to treat bone disease [5]. These studies, both clinical and preclinical, have taken various

approaches (co-administration or sequential treatment) and most often have combined anti-

resorptive and anabolic treatments due to their distinctly different mechanisms of action.

Recent data have documented that raloxifene, an anti-resorptive, has positive effects on the

mechanical properties. Specifically, raloxifene can act through non-cellular pathways (effects

exists in devitalized bone) to modify the hydration of the bone matrix and thus enhanced the

mechanical properties (specifically to toughness) [6]. These effects of raloxifene have been

shown, both in vitro and in vivo [6–10], to reverse the bisphosphonate-induced reduction of tis-

sue-level bone toughness [11]. The lone clinical study examining combination of alendronate

and raloxifene showed modest effects relative to either monotherapy, but outcomes were

restricted to serum biomarkers of bone formation/resorption and bone mineral density (BMD),

and bone mechanical properties were not evaluated [12].

The goal of this study was to investigate the combination of alendronate and raloxifene

with a particular focus on mechanical properties. To achieve this goal we utilized a large ani-

mal model, the beagle dog, used previously by our laboratory to study both alendronate and

raloxifene monotherapies. In these past studies, we have shown that clinically-relevant doses of

alendronate have a significant positive effect on bone mass, bone remodeling suppression, and

bone ultimate load while also documenting a significant reduction in tissue toughness [13–

21]. Conversely we have documented that monotherapy with raloxifene has only modest

effects on bone mass and remodeling suppression, but also significant positive effects on ulti-

mate load and toughness, the latter being associated with improvements in tissue hydration

[7,22,23]. It is based on the scientific premise of these previous datasets that the current study

was designed. We hypothesized that combining alendronate and raloxifene treatment would

improve bone’s mechanical properties more than either drug alone by allowing the alendro-

nate-induced increases in bone density (volume and mineralization) and the raloxifene-

induced benefits to bone material properties.

Methods

Animals and study design

All procedures were approved by the Indiana University School of Medicine IACUC prior to

initiating the study. Forty-eight skeletally mature female beagles (1.2 ± 0.1 years old) were pur-

chased from Marshall Farms USA (North Rose, NY). Following two weeks of acclimatization

animals began daily oral treatment: saline vehicle (VEH; 1 ml/kg/day), alendronate (ALN, 0.2

mg/kg/day), raloxifene (RAL, 0.5 mg/kg/day) or the combination of ALN and RAL (ALN

+RAL). ALN (synthesized by the IU Clinical chemistry core) was mixed in sterile saline while

raloxifene (Eli Lilly) was mixed in 10% hydroxypropyl-ß-cyclodextrin (Sigma); the latter to

facilitate going into solution and to increase palatability for oral dosing. The ALN and RAL

doses represent the clinical dose equivalent of daily dosing used for the treatment of post-men-

opausal osteoporosis and match the doses we have previously shown to have skeletal benefits
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in a dog model [22]. Dosing was conducted in the morning, prior to any feeding, for one year.

Animals were housed in standard laboratory housing conditions and received daily husbandry

care including access to outside runs when weather was appropriate.

After 6 and 12 months of treatment, all animals underwent assessment of bone material

properties using in vivo reference point indentation; a subset of animals had in vivo assessment

of skeletal hydration using ultra-short echo magnetic resonance imaging at two time points

(see details below). To label active bone remodeling sites at the end of the experiment, animals

were injected with calcein (5 mg/kg, intravenous) using a 2-12-2-5 schedule (two days of dose,

twelve days off, two more days of dose, five days to euthanasia). Animals were euthanized by

intravenous administration of sodium pentobarbital after 1 year of treatment. Tissues were

collected and stored frozen wrapped in saline-soaked gauze (for imaging/mechanical testing)

or fixed in 10% neutral buffered formalin (for histology).

In vivo mechanical assessment

Reference point indentation [24] and Osteoprobe tests [25] were conducted as previously

described in detail. Two different methods were used in order to compare them against each

other and determine their respective ability to detect treatment-induced differences. Briefly,

animals were sedated and local anesthesia was administered to the testing site. Reference point

indentation (RPI: BioDent Hif, Active Life Scientific, Santa Barbara, CA) was conducted on

the right anterior tibia midshaft using a protocol designed for clinical studies. The periosteum

was scraped from the underlying cortex, a reference force of ~13 N was applied to stabilize the

unit, and the measurement protocol was initiated (four preconditioning cycles at a force of 1

N and a frequency of 5 Hz followed by a series of 10 testing cycles at 10 N and 2 Hz). Five

measurements, within a few mm of each other, were collected on each animal. If a test was

found to be unusable during the live animal testing, a replacement was run. In cases where the

data were found after the fact to be implausible (for instance a negative indentation distance

that was not caught during the in vivo test), it was not used in the analysis leaving some ani-

mals with only four tests. Key outcome parameters include first cycle indentation distance,

unloading slope, indentation distance increase, total indentation distance, and total energy

absorption.

Osteoprobe measurements were performed on the left tibia of each dog at a location similar

to RPI on the right limb. Following administration of a local anesthetic the test probe was care-

fully inserted through the lifted skin and positioned normal to the bone surface (based on the

judgement of the individual doing the testing). The device was slowly lowered to activate the

indentation cycle, which monitors the indentation depth increase resulting from an impact

load of 30N superimposed on a 10 N triggering preload (40 N total force). Each Osteoprobe

measurement session consisted of 5 indentations located at least 2 mm apart along a line paral-

lel to the long axis of the diaphysis and was performed without removing the probe from the

skin between indents. The direction of this spacing was switched (moving proximally or dis-

tally from the midpoint) between 6 and 12 months to avoid indenting a previously tested site.

In some cases (30 out of 96 test sessions), 1–5 additional measurements were made based on

our assessment that one or more indents were questionable and warranted flagging for further

evaluation. Five indents on the manufacturer-provided poly(methyl methacrylate) block were

performed immediately following each bone test, both to calibrate the system to each individ-

ual probe and to allow calculation of the bone material strength index (BMSi). BMSi represents

the indentation depth on the bone relative to the plastic block.

All animals were conscious and mobile within 30 minutes post-testing using a modification

of the Glasgow Composite Pain Scale. There was no sign of pain or discomfort based on pain
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scoring taken within the first 8–12 h post-test, and then again 24 h post-test thus no post-

operative pain medications were given. Data analyses were conducted using methods previ-

ously described in substantial detail by our group for both Biodent [24] and Osteoprobe [25]

machines.

Ultra-short Echotime MRI (UTE-MRI)

Detailed methods for imaging and analysis have been previously described [7]. Briefly, one

half of the animals in each group (n = 6/group) were anesthetized (ketamine/diazepam fol-

lowed by inhalation isoflurane) and the hind limbs were immobilized in a custom configured

splint that permitted precise placement of the two channel Miniflex1 surface coils (Rapid MR

International) laterally over the diaphysis inferior to the tibial plateau, closely matching the

region of in vivo mechanical assessment. Each animal was scanned on an Siemens 3T Tim

Trio MRI using a 3D UTE sequence with the following characteristics: TR (Time to repeat the

sequence) 20 ms; TE1 (Echo time 1) variable (0.05, 0.06, 0.07, 0.08, 0.10, 0.12, 0.14, 0.20, 0.30,

0.40, 0.50, 0.60, 0.80, 1.0, 1.1 ms); TE2 (Echo time 2) 5 ms; Fat Saturation; Average 1, Excita-

tion Flip Angle 50˚; Normalization Filter; Acquisition Matrix 80x80x80 mm; Field of View

50x50 mm; Spatial Resolution 0.63x0.63x0.63 mm, and TA (Total acquisition time) 28 min.

Image volumes for both variable (TE1) and fixed (TE2) echo times were imported, seg-

mented, and quantified using Analyze 11.0 (AnalyzeDirect). Marrow and cortical bone for

each image series per animal were segmented on the shortest TE1 image using a region grow-

ing technique, where the distal and proximal limits were prescribed at a fixed distance from

the center of the field of view. Segmented regions were then extracted for all TE1 and TE2

images volumes, thereby permitting secondary analysis of the UTE signal. Receiver gain offset

differences between successive images were scaled using previously published equations [7].

To improve model fits in low signal to noise data, images were corrected and individually

modeled using a double exponential decay [26,27], with the minor modifications [7], to com-

pute percent free and bound water.

Dynamic histomorphometry

Iliac crests and ribs (9th right) were processed for histology following previously published

methods [14]. Following embedding in methyl methacrylate, iliac crest sections were cut using

a microtome (4 μm) and cover-slipped unstained. Embedded ribs were cut using a wire-saw

(80–100 μm) and mounted unstained. Rib analyses were conducted within the cortex of one

section to assess intracortical remodeling rate. The number of osteons with label (Labelled

osteon #), label length, and distance between labels (mineral apposition rate, MAR) were quan-

tified and normalized to cortical bone area to calculate bone formation rate (BFR) as previ-

ously described [13]. Iliac crest samples were measured within the trabecular bone region

(approximately an 8 mm2 region of interest) of one section for amount of single and double

labelled surface (to calculate mineralizing surface/bone surface (MS/BS) and distance between

labels (MAR) for calculation of bone formation rate (BFR) [14]. All nomenclature is in accor-

dance with published standards [28].

Ex vivo skeletal imaging

Prior to mechanical testing bones, various imaging modalities were utilized to determine

BMD or bone architecture/geometry. Lumbar vertebrae (L4) were scanned using dual-energy

x-ray absorptiometry (DXA) for assessment of overall areal bone mineral density (aBMD) and

bone mineral content (BMC) as previously described [14]. Vertebrae and femoral necks were

scanned with microCT (Skyscan 1172 and 1176, respectively) to determine bone volume/tissue
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volume ratios (BV/TV) along with trabecular thickness and number. Ribs (right 11th) and fem-

oral diaphyses were scanned with peripheral quantitative computed tomography (pQCT) to

determine bone area and cross-sectional moment of inertia. All nomenclature is in accordance

with published suggestions [29].

Ex vivo mechanical testing

Lumbar vertebrae (L4) and femoral necks were tested in compression; the femoral mid-diaph-

ysis, and rib were tested in three-point bending. Both compression and bending tests represent

quasi-static uniaxial conditions. L4 were thawed to room temperature, end plates removed

(low speed saw under irrigation) and then tested at a rate of 0.5 mm/min on a MiniBionix

system (MTS) [14]. Femoral three-point bending was conducted in the posterior/anterior

direction using a bottom fixture span length of 50 mm centered at the mid-point with a dis-

placement rate of 60 mm/min on a MiniBionix system (MTS). Following testing, the proximal

femur was potted in low melting point alloy and the head of the femur compressed downward

at 1.8 mm/min on a servohydraulic system (Test Resources). Ribs were tested at the point of

greatest curvature, with a lower span length of 25 mm, at a displacement rate of 20 mm/min

on a servohydraulic system (Test Resources). Load/displacement curves were analyzed using

customized MATLAB codes for determination of ultimate load, stiffness, displacement, and

energy absorption. For the rib and femoral diaphysis, material properties were calculated by

accounting for bone geometry using standard methods [30].

Statistics

Statistical assessment of endpoint data was conducted using a one-way ANOVA followed by

post-hoc tests (protected LSD) when the F-value was significant. Outcome measures with lon-

gitudinal data (in vivo mechanics and UTE-MRI) were assessed using two-way ANOVA (drug

and time) with repeated measures followed by simple main effects analysis when the F-value

was significant. For all tests, p values� 0.05 were used for statistical significance. Data are pre-

sented as mean and standard deviation.

Results

There was no significant difference in animal body weight at baseline or at the end of the

experiment (Table 1). Overall, all animals gained significant body weight with no difference in

gain among groups. There was no difference in femoral length or width among groups at the

end of the experiment (Table 1).

Bone formation rate was significantly lower in iliac crest trabecular bone of animals treated

with ALN (-71%) and ALN+RAL (-81%) compared to VEH (Fig 1). Trabecular MS/BS was sig-

nificantly lower in all three treatment groups relative to VEH (RAL -21%; ALN -65%; ALN

+RAL—80%) while MAR was lower than VEH only in ALN and ALN+RAL groups (Table 2).

Intracortical bone formation rate of the rib was not significantly different than VEH in any of

the three treatment groups (Table 2).

In vivo assessment of the tibia using BioDent RPI revealed no significant effects of time,

treatment, or interaction between for any variable (Table 3, Fig 2). There was a significant

main effect of time (but not treatment or interaction) for BMSi with values at 12 months

higher than those at 6 months (Fig 2). There was a significant main effect of treatment on

bound/free water of the proximal tibia with RAL and RAL+ALN treatment regimens; both

resulted in significantly higher bound water compared to VEH (+23 and +18%, respectively;

Fig 2).
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There was no significant difference among groups for DXA-based measures of the entire

4th lumbar vertebra body or micro-CT based measures of trabecular bone (Table 4). Compos-

ite (both cortical and trabecular bone together) analysis of the central femoral neck revealed

no significant effect of any treatment on total bone volume or BV/TV (Table 4). There was no

significant effect of treatment on femoral mid-diaphysis cortical bone density or geometry

(Table 4). Cortical BMC, BMD and area of the rib were all significantly affected by drug treat-

ment (Table 4). Cortical BMC and cortical area of RAL-treated animals was significantly lower

Table 1. Body mass and femoral dimensions.

VEH ALN RAL ALN + RAL ANOVA

p Value

Initial body mass, kg 7.6 ± 0.7 7.6 ± 1.3 7.4 ± 1.2 7.5 ± 0.7 0.978

Final body mass, kg 9.1 ± 0.8 8.9 ± 1.1 8.5 ± 1.3 8.4 ± 1.1 0.404

Femoral length, mm 101 ± 5 105 ± 9 104 ± 5 106 ± 8 0.372

Femoral width (M-L), mm 9.7 ± 0.5 9.7 ± 0.7 9.4 ± 0.7 9.6 ± 0.5 0.690

Femoral width (A-P), mm 8.8 ± 0.5 8.7 ± 0.6 8.7 ± 0.5 8.9 ± 0.6 0.672

Data presented as mean and standard deviation. All sample sizes = 12/group.

https://doi.org/10.1371/journal.pone.0181750.t001

Fig 1. Iliac crest trabecular bone formation rate. * p < 0.05 versus vehicle.

https://doi.org/10.1371/journal.pone.0181750.g001
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than all other groups while cortical BMD was significantly higher in ALN+RAL compared to

all other groups.

There was a significant effect of treatment on multiple structural mechanical properties of

the rib (Table 5, Fig 3). Animals treated with RAL had significantly lower ultimate load and

work to failure relative to VEH and lower stiffness relative to ALN+RAL There were no signifi-

cant differences among groups for estimated material properties. There were no differences

in structural or estimated material mechanical properties of the femoral diaphysis or femoral

neck (Table 5). Interestingly, during the femoral neck tests, 6 of the 12 bones from animals

Table 2. Dynamic histomorphometry of trabecular and cortical bone.

VEH ALN RAL ALN + RAL ANOVA

p value

Iliac crest

Animals with double label, # 12 11 12 12

Mineral apposition rate, μm/day 1.28 ± 0.20 0.94 ± 0.37 *^ 1.29 ± 0.29 1.04 ± 0.22 *^ 0.006

Mineralizing surface/Bone surface, % 33.8 ± 11.3 12.0 ± 8 *^ 26.5 ± 5.7 * 7.44 ± 4.1 *^ 0.0001

Rib

Animals with double label, # 11 11 11 11

Mineral apposition rate, μm/day 1.06 ± 0.39 1.07 ± 0.39 1.09 ± 0.4 0.99 ± 0.52 0.995

Labelled osteons, #/mm2 3.2 ± 2.7 1.8 ± 1.4 1.82 ± 2.02 0.95 ± 0.77 * 0.044

Intracortical bone formation rate, %/year 17.9 ± 16.7 9.7 ± 9.1 11.3 ± 10.9 6.4 ± 5.7 0.105

Data presented as mean and standard deviation. All sample sizes = 12/group. p < 0.05 vs (*) VEH, (^) RAL

https://doi.org/10.1371/journal.pone.0181750.t002

Table 3. In vivo tibia indentation and hydration properties after 6 and 12 months of treatment.

Time point VEH ALN RAL ALN + RAL Drug effect Time effect Interaction

BioDent

First cycle indentation distance (ID), μm 6 mth 142 ± 49 114 ± 14 116 ± 21 111 ± 22 0.054 0.581 0.591

12 mth 131 ± 36 118 ± 32 128 ± 27 122 ± 34

Unloading slope, N/mm 6 mth 0.43 ± 0.06 0.43 ± 0.06 0.43 ± 0.04 0.46 ± 0.06 0.668 0.452 0.263

12 mth 0.45 ± 0.07 0.46 ± 0.06 0.43 ± 0.06 0.44 ± 0.03

Indentation distance increase (IDI), μm 6 mth 13.0 ± 1.5 12.6 ± 1.2 12.0 ± 1.6 11.5 ± 1.8 0.124 0.609 0.218

12 mth 13.2 ± 2.0 11.9 ± 1.6 12.1 ± 1.5 12.6 ± 1.7

Total ID, μm 6 mth 149 ± 50 121 ± 15 122 ± 21 117 ± 22 0.053 0.569 0.604

12 mth 137 ± 34 124 ± 32 134 ± 28 239 ± 34

Total energy, μJ 6 mth 912 ± 131 859 ± 108 869 ± 138 897 ± 135 0.353 0.053 0.864

12 mth 1009 ± 230 890 ± 175 957 ± 200 941 ± 145

Osteoprobe

Bone material strength index (BMSi) 6 mth 68.7 ± 3.9 70.3 ± 7.5 68.8 ± 4.5 69.6 ± 7.1 0.935 0.003 0.717

12 mth 71.7 ± 5.9 72.0 ± 4.5 73.8 ± 5.9 72.6 ± 6.3

UTE-MRI

Bound water, % 6 mth 60.4 ± 9.5 62.0 ± 5.8 69.7 ± 12.0 67.0 ± 9.3 0.050 # 0.087 0.901

12 mth 50.2 ± 9.9 56.6 ± 11.5 65.7 ± 15.9 62.7 ± 13.1

Free water, % 6 mth 39.6 ± 9.5 38.0 ± 5.8 30.3 ± 12.0 33.0 ± 9.3 0.050 # 0.087 0.901

12 mth 49.8 ± 9.9 43.4 ± 11.5 34.3 ± 15.9 37.3 ± 13.1

Data presented as mean and standard deviation. Sample sizes for RPI and Osteoprobe measures = 12/group; sample size for UTE-MRI = 6/group.
# significant main effect of RAL and RAL+ALN versus VEH when values across times are pooled.

https://doi.org/10.1371/journal.pone.0181750.t003
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treated with ALN+RAL failed in the shaft region as opposed to the neck. No other treatment

group had any bones fracture at the shaft.

Discussion

There is a growing interest in the concept of combination drug treatment for treating osteoporo-

sis [5]. Few studies have combined two anti-remodeling agents based in part on the assumption

that they would both be targeting osteoclast activity. Since raloxifene has recently been shown to

positively affect bone material properties via enhanced skeletal hydration [6–8], we aimed to

determine if these effects would combine with those of bisphosphonates to produce superior

mechanical properties than either therapy alone. Although previous work in rats supported the

idea of a mechanical benefit to combining alendronate and raloxifene [31], the current study

showed no benefit of combination treatment on mechanical properties, or a multitude of other

skeletal properties, in a non-ovariectomized beagle dog model.

Fig 2. In vivo assessments after 6 and 12 months of treatments among the groups. (A) First cycle indentation depth from BioDent cyclic indentation

device showed significant group effects but no effect of time or interaction between group and time. (B) Bone material strength index (BMSi) from

Osteoprobe impact testing showed no significant effect of treatment or time. (C) Bound water from UTE-MRI measures of the proximal tibia showing

higher percentages in raloxifene and combination treatments relative to vehicles. Gray bars represent 6 months; Black bars represent 12 months.

* p < 0.05 when pooled across groups relative to VEH group.

https://doi.org/10.1371/journal.pone.0181750.g002
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The premise of the current work was based on previous beagle dog studies, in our lab and

others, showing that alendronate treatment improved bone mass and structural-level mechani-

cal properties while also compromising tissue-level properties (mainly toughness) [14–

16,19,20,32,33]. These previous studies from our laboratory utilized the same age/breed/sex of

dog and the same alendronate doses as those used in the current work, yet the results have

striking differences. Despite the reduction in bone remodeling being similar (current study

BFR/BS was -71% vs VEH at iliac crest; previous work -67% vs VEH at vertebra [22]), there

was no significant effect in the current study on properties such as vertebral trabecular BV/TV,

aBMD, or any structural biomechanical properties of the rib, vertebra, femoral neck, or femo-

ral diaphysis. One key difference with past work in our laboratory is that this study dosed

animals with alendronate synthesized in-house, while previous studies used the compound

provided from the drug manufacturer. The NMR spectra of the two compounds and the sup-

pression of bone remodeling was similar, however, so it is unlikely that the drug itself explains

the lack of mechanical property differences.

In the same way that alendronate failed to produce many effects seen previously, our raloxi-

fene monotherapy group also had distinct differences compared to past data. There was no

positive effect of raloxifene dosing on either structural or material-level mechanical properties

as has been noted previously [22,23]. Raloxifene-treated animals had modest reductions in

remodeling (current study BFR/BS was -21% vs VEH at iliac crest; previous work -18% vs

VEH at vertebra [22]) and also had significantly higher percent bound water in the tibia cortex,

assessed in vivo at 6 and 12 months in a subset of animals (Fig 2C). This effect on hydration

is consistent with at least part of the mechanism of action of raloxifene, that of enhanced

Table 4. Bone density, architecture and geometry.

VEH ALN RAL ALN + RAL ANOVA

p value

Vertebra

Areal bone mineral density (BMD), mg/mm2 0.87 ± 0.11 0.88 ± 0.09 0.85 ± 0.13 0.86 ± 0.07 0.859

Bone mineral content (BMC), mg/mm 1.18 ± 0.25 1.25 ± 0.14 1.13 ± 0.18 1.18 ± 0.18 0.482

Bone area, mm2 1.36 ± 0.23 1.42 ± 0.14 1.35 ± 0.18 1.38 ± 0.16 0.776

Bone volume / tissue volume (BV/TV), % 21.6 ± 3.6 21.8 ± 4.7 20.8 ± 3.1 20.6 ± 3.0 0.799

Cross-sectional tissue area, mm2 137 ± 14 145 ± 20 135 ± 16 145 ± 17 0.324

Trabecular number, #/mm2 2.1 ± 0.3 2.1 ± 0.3 2.1 ± 0.2 2.1 ± 0.3 0.877

Trabecular thickness, μm 102 ± 7 104 ± 11 100 ± 10 95 ± 6 0.149

Femoral Neck

Total volume, mm2 84 ± 32 83 ± 45 84 ± 32 86 ± 25 0.996

Bone volume, mm2 39 ± 16 37 ± 23 42 ± 22 37 ± 14 0.940

BV/TV, % 46 ± 10 45 ± 14 49 ± 14 44 ± 14 0.751

Femoral Diaphysis

Bone area, mm2 44.7 ± 3.7 45.3 ± 4.9 44.6 ± 4.1 45.8 ± 4.8 0.903

Cortical thickness, mm 1.89 ± 0.17 1.95 ± 0.16 1.97 ± 0.13 2.00 ± 0.18 0.469

Cross-sectional moment of inertia, mm4 314 ± 74 305 ± 77 289 ± 75 311 ± 77 0.866

Rib

Cortical area, mm2 6.49 ± 0.56 6.60 ± 0.73 5.65 ± 0.88 *#& 6.68 ± 0.90 0.008

Cortical BMC, mg/mm 7.33 ± 0.67 7.50 ± 0.80 6.41 ± 1.06 *#& 7.74 ± 1.05 0.005

Cortical BMD, mg/mm2 1128 ± 24 1138 ± 31 1133 ± 24 1160 ± 21 *#^ 0.023

Cross-sectional moment of inertia, mm4 7.53 ± 1.6 7.24 ± 1.7 5.73 ± 1.7 7.41 ± 2.18 0.066

Data presented as mean and standard deviation. All sample sizes = 12/group. p < 0.05 vs (*) VEH, (#) ALN, (^) RAL, (&) Combo

https://doi.org/10.1371/journal.pone.0181750.t004
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hydration of the tissue [6–8]. The reason this did not translate into alterations in whole bone

or tissue-level estimates of mechanical properties in any of the bone sites assessed mechanically

(rib, vertebra, femoral neck, femoral diaphysis) is not clear. In fact, rib mechanical properties

were significantly lower than all other groups, although this was clearly due to the ribs being

smaller as normalization for size negated all of the group differences.

Combining alendronate and raloxifene reduced remodeling to the same degree as alendro-

nate alone and increased bone hydration (percent bound water) to the same degree as raloxi-

fene monotherapy (Figs 1 and 2). The absence of additional suppression on remodeling

beyond either monotherapy is consistent with the clinical study that combined these two

agents [12]. There were no positive effects on mechanical properties that exceeded either

monotherapy, a finding that is different than our hypothesis, but also inconsistent with work

in ovariectomized rats [31]. In fact, the most interesting aspect of this study was the observa-

tion from the femoral neck tests where half of the combination treated group displayed distinct

fracture patterns. The femoral neck test is designed to produce a bending/shear moment on

the neck [34]. Of the 48 bones tested in this configuration, 6 of the bones fractured at the femo-

ral shaft rather than the neck, and all of these were in the combination treatment group. Prior

to the femoral neck mechanical tests, all specimens were scanned (at 50% length) and then

Table 5. Structural and estimated material properties.

VEH ALN RAL ALN + RAL ANOVA

p value

Rib 12 12 12 12

Ultimate load, N 92 ± 10 94 ± 14 74 ± 16 *#& 98 ± 19 0.002

Stiffness, N/mm 119 ± 17 124 ± 24 103 ± 21 #& 132 ± 28 0.028

Total displacement, μm 5664 ± 951 5055 ± 1000 5667 ± 806 4927 ± 626 0.071

Energy to failure, Nmm 416 ± 57 397 ± 100 328 ± 68 *# 393 ± 79 0.049

Ultimate stress, MPa 204 ± 29 212 ± 41 187 ± 44 221 ± 27 0.139

Modulus, GPa 6.6 ± 0.9 7.4 ± 1.4 7.6 ± 0.9 7.8 ± 1.1 0.067

Toughness, MJ/m3 36.9 ± 8.3 33.7 ± 7.7 29.9 ± 9.7 34.1 ± 4.3 0.193

Vertebra 12 12 12 12

Ultimate load, N 4187 ± 536 3940 ± 480 3711 ± 379 4008 ± 394 0.093

Stiffness, N/mm 12193 ± 4449 11791 ± 3381 9833 ± 2006 12301 ± 3163 0.253

Displacement to ultimate load, μm 666 ± 182 641 ± 218 696 ± 200 599 ± 197 0.685

Energy to ultimate load, Nmm 1647 ± 483 1352 ± 481 1333 ± 365 1336 ± 119 0.236

Femoral neck 9 7 9 6

Ultimate load, N 1681 ± 199 1552 ± 259 1653 ± 235 1773 ± 210 0.347

Stiffness, N/mm 709 ± 159 683 ± 151 675 ± 89 617 ± 130 0.596

Displacement to Ultimate load, μm 3339 ± 366 4051 ± 770 4246 ± 1023 3921 ± 836 0.105

Energy to Ultimate load, Nmm 3057 ± 388 3564 ± 1127 3969 ± 1444 3575 ± 847 0.335

Femoral diaphysis 10 12 12 10

Ultimate load, N 1436 ± 147 1542 ± 233 1427 ± 191 1501 ± 220 0.479

Stiffness, N/mm 1276 ± 157 1410 ± 221 1334 ± 197 1369 ± 271 0.521

Total displacement, μm 2879 ± 340 3027 ± 356 2802 ± 582 3029 ± 223 0.641

Energy to failure, Nmm 3152 ± 424 3623 ± 732 3008 ± 599 3497 ± 1143 0.187

Ultimate stress, MPa 276 ± 35 292 ± 25 280 ± 18 280 ± 32 0.542

Modulus, GPa 11.4 ± 2.1 12.4 ± 1.9 12.3 ± 1.7 12.0 ± 2.8 0.689

Toughness, MJ/m3 13.1 ± 1.9 14.9 ± 2.2 12.8 ± 3.1 14.0 ± 4.1 0.312

Data presented as mean and standard deviation. p < 0.05 vs (*) VEH, (#) ALN, (&) Combo

https://doi.org/10.1371/journal.pone.0181750.t005
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underwent 3-point bending. Although the region of potting for the femoral neck tests was out-

side that of the support spans (and thus in theory not affected by the test), it is possible that

some residual effects of the diaphysis bending test influenced the femoral neck test. This how-

ever, doesn’t change the fact that these shaft fractures were only in the combination treatment

group, and occurred in 50% of the bones. The structural/tissue level effects that underlie these

fracture patterns in the combination treatment group are not clear but deserve further explora-

tion especially given the rising interest in atypical femoral fractures [2].

This study undertook in vivo assessments of bone properties using three technologies—

UTE-MRI, Osteoprobe, and BioDent. UTE-MRI has the ability to measure skeletal hydration

both ex vivo and in vivo [27,35–37]. We have previously reported data from the 6-month time

point of these same animals and shown that raloxifene-treated animals had significantly higher

percent bound water of the tibial cortex compared to vehicle-treated animals [7]. These higher

values in raloxifene-treated animals were retained at the 12 month time point (Fig 2C) [37].

Fig 3. Whole bone ultimate load from the (A) rib, (B) vertebrae, (C) femoral neck and (D) femoral diaphysis. p < 0.05 vs (*) VEH, (#) ALN, (&)

Combo.

https://doi.org/10.1371/journal.pone.0181750.g003
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The positive effect of raloxifene on bound water was noted in animals treated with the combi-

nation of alendronate and raloxifene to the same degree as raloxifene monotherapy. These

data suggest that positive effects on bound water are not negated by tissue-level changes

induced by bisphosphonates. Recent work has shown that raloxifene can in fact normalize tis-

sue-level properties in models where the negative effects of bisphosphonates exist [11].

BioDent and Osteoprobe are two devices developed for assessing properties of the bone

tissue under conditions of cyclic and impact indentation [38,39]. There remains some con-

troversy over various aspects of these devices [40], and what properties of the tissue they are

measuring are unclear, yet we chose to incorporate them into the current study to determine

if they could detect in vivo differences brought about by pharmacological therapy. Data from

raloxifene-treated animals at 6 months showed that compared to vehicle-treated animals

there were changes that were consistent with greater energy absorption capacity of the tissue

[24]. In the current analysis, incorporating time and treatment, there was a significant effect

of both alendronate and combination treatment that yielded lower total indentation dis-

tances. Based on some of the initial work with the BioDent machine this would be inter-

preted as a positive mechanical effect, given that indentation was shown to be inversely

related to tissue toughness [38,41]. More recent work with these machines has illustrated

that the relationship between indentation properties and whole bone and tissue-level

mechanics is not straightforward [42]. The Osteoprobe device was not able to separate the

groups and only showed a significant effect of time with lower values at 12 compared to 6

months when all animals were pooled. Based on the literature this would suggest all animals

lost mechanical competence over time [39,43] although direct relationships between BMSi

and mechanics are tenuous.

Beyond those aspects of the study outlined above, the work has various limitations. The ani-

mals in the study are not estrogen-deficient or osteoporotic, for reasons routinely described in

our previous work using this model. Given that dogs have naturally low estrogen levels, ovari-

ectomy tends not to mimic high-turnover conditions as occurs in other species including

humans. An advantage of the dog model, as opposed to rodents, is the presence of intracortical

remodeling which presents a physiological system of cortical bone similar to humans. The

group sizes of the study (12/gp) were based on previous work based on mechanical differences

in quasistatic tests; higher numbers may be necessary for some of the in vivo measures. Most

of all, though, the work is limited by the lack of the expected effects of the two monotherapies

on bone morphology/BMD and mechanical properties (such as toughness), making definitive

conclusions about the effectiveness of combination treatment difficult.

In conclusion, we present a suite of data in a beagle dog model treated for one year with

clinically-relevant doses of alendronate and raloxifene monotherapies or combination treat-

ment with both agents. Despite the expected effects on bone remodeling, our study did not

find the expected changes in bone geometry/architecture of the two monotherapies, and thus

the viability of the combination therapy remains unclear.
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